mirror of
https://github.com/dart-lang/sdk
synced 2024-11-05 18:22:09 +00:00
c0ddb83c3b
https://codereview.chromium.org/63093003/ R=regis@google.com, zra@google.com Review URL: https://codereview.chromium.org//62953014 git-svn-id: https://dart.googlecode.com/svn/branches/bleeding_edge/dart@30124 260f80e4-7a28-3924-810f-c04153c831b5
2763 lines
82 KiB
C++
2763 lines
82 KiB
C++
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
|
|
// for details. All rights reserved. Use of this source code is governed by a
|
|
// BSD-style license that can be found in the LICENSE file.
|
|
|
|
#include "vm/globals.h"
|
|
#if defined(TARGET_ARCH_ARM)
|
|
|
|
#include "vm/assembler.h"
|
|
#include "vm/longjump.h"
|
|
#include "vm/runtime_entry.h"
|
|
#include "vm/simulator.h"
|
|
#include "vm/stack_frame.h"
|
|
#include "vm/stub_code.h"
|
|
|
|
// An extra check since we are assuming the existence of /proc/cpuinfo below.
|
|
#if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID)
|
|
#error ARM cross-compile only supported on Linux
|
|
#endif
|
|
|
|
namespace dart {
|
|
|
|
DEFINE_FLAG(bool, print_stop_message, true, "Print stop message.");
|
|
DECLARE_FLAG(bool, inline_alloc);
|
|
|
|
bool CPUFeatures::integer_division_supported_ = false;
|
|
bool CPUFeatures::neon_supported_ = false;
|
|
#if defined(DEBUG)
|
|
bool CPUFeatures::initialized_ = false;
|
|
#endif
|
|
|
|
|
|
bool CPUFeatures::integer_division_supported() {
|
|
DEBUG_ASSERT(initialized_);
|
|
return integer_division_supported_;
|
|
}
|
|
|
|
|
|
bool CPUFeatures::neon_supported() {
|
|
DEBUG_ASSERT(initialized_);
|
|
return neon_supported_;
|
|
}
|
|
|
|
|
|
// If we are using the simulator, allow tests to enable/disable support for
|
|
// integer division.
|
|
#if defined(USING_SIMULATOR)
|
|
void CPUFeatures::set_integer_division_supported(bool supported) {
|
|
integer_division_supported_ = supported;
|
|
}
|
|
|
|
|
|
void CPUFeatures::set_neon_supported(bool supported) {
|
|
neon_supported_ = supported;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Probe /proc/cpuinfo for features of the ARM processor.
|
|
#if !defined(USING_SIMULATOR)
|
|
static bool CPUInfoContainsString(const char* search_string) {
|
|
const char* file_name = "/proc/cpuinfo";
|
|
// This is written as a straight shot one pass parser
|
|
// and not using STL string and ifstream because,
|
|
// on Linux, it's reading from a (non-mmap-able)
|
|
// character special device.
|
|
FILE* f = NULL;
|
|
const char* what = search_string;
|
|
|
|
if (NULL == (f = fopen(file_name, "r")))
|
|
return false;
|
|
|
|
int k;
|
|
while (EOF != (k = fgetc(f))) {
|
|
if (k == *what) {
|
|
++what;
|
|
while ((*what != '\0') && (*what == fgetc(f))) {
|
|
++what;
|
|
}
|
|
if (*what == '\0') {
|
|
fclose(f);
|
|
return true;
|
|
} else {
|
|
what = search_string;
|
|
}
|
|
}
|
|
}
|
|
fclose(f);
|
|
|
|
// Did not find string in the proc file.
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
|
|
void CPUFeatures::InitOnce() {
|
|
#if defined(USING_SIMULATOR)
|
|
integer_division_supported_ = true;
|
|
neon_supported_ = true;
|
|
#else
|
|
ASSERT(CPUInfoContainsString("ARMv7")); // Implements ARMv7.
|
|
ASSERT(CPUInfoContainsString("vfp")); // Has floating point unit.
|
|
// Has integer division.
|
|
if (CPUInfoContainsString("QCT APQ8064")) {
|
|
// Special case for Qualcomm Krait CPUs in Nexus 4 and 7.
|
|
integer_division_supported_ = true;
|
|
} else {
|
|
integer_division_supported_ = CPUInfoContainsString("idiva");
|
|
}
|
|
neon_supported_ = CPUInfoContainsString("neon");
|
|
#endif // defined(USING_SIMULATOR)
|
|
#if defined(DEBUG)
|
|
initialized_ = true;
|
|
#endif
|
|
}
|
|
|
|
|
|
// Instruction encoding bits.
|
|
enum {
|
|
H = 1 << 5, // halfword (or byte)
|
|
L = 1 << 20, // load (or store)
|
|
S = 1 << 20, // set condition code (or leave unchanged)
|
|
W = 1 << 21, // writeback base register (or leave unchanged)
|
|
A = 1 << 21, // accumulate in multiply instruction (or not)
|
|
B = 1 << 22, // unsigned byte (or word)
|
|
D = 1 << 22, // high/lo bit of start of s/d register range
|
|
N = 1 << 22, // long (or short)
|
|
U = 1 << 23, // positive (or negative) offset/index
|
|
P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
|
|
I = 1 << 25, // immediate shifter operand (or not)
|
|
|
|
B0 = 1,
|
|
B1 = 1 << 1,
|
|
B2 = 1 << 2,
|
|
B3 = 1 << 3,
|
|
B4 = 1 << 4,
|
|
B5 = 1 << 5,
|
|
B6 = 1 << 6,
|
|
B7 = 1 << 7,
|
|
B8 = 1 << 8,
|
|
B9 = 1 << 9,
|
|
B10 = 1 << 10,
|
|
B11 = 1 << 11,
|
|
B12 = 1 << 12,
|
|
B16 = 1 << 16,
|
|
B17 = 1 << 17,
|
|
B18 = 1 << 18,
|
|
B19 = 1 << 19,
|
|
B20 = 1 << 20,
|
|
B21 = 1 << 21,
|
|
B22 = 1 << 22,
|
|
B23 = 1 << 23,
|
|
B24 = 1 << 24,
|
|
B25 = 1 << 25,
|
|
B26 = 1 << 26,
|
|
B27 = 1 << 27,
|
|
};
|
|
|
|
|
|
uint32_t Address::encoding3() const {
|
|
if (kind_ == Immediate) {
|
|
uint32_t offset = encoding_ & kOffset12Mask;
|
|
ASSERT(offset < 256);
|
|
return (encoding_ & ~kOffset12Mask) | B22 |
|
|
((offset & 0xf0) << 4) | (offset & 0xf);
|
|
}
|
|
ASSERT(kind_ == IndexRegister);
|
|
return encoding_;
|
|
}
|
|
|
|
|
|
uint32_t Address::vencoding() const {
|
|
ASSERT(kind_ == Immediate);
|
|
uint32_t offset = encoding_ & kOffset12Mask;
|
|
ASSERT(offset < (1 << 10)); // In the range 0 to +1020.
|
|
ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4.
|
|
int mode = encoding_ & ((8|4|1) << 21);
|
|
ASSERT((mode == Offset) || (mode == NegOffset));
|
|
uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2);
|
|
if (mode == Offset) {
|
|
vencoding |= 1 << 23;
|
|
}
|
|
return vencoding;
|
|
}
|
|
|
|
|
|
void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) {
|
|
ASSERT(Utils::IsAligned(data, 4));
|
|
ASSERT(Utils::IsAligned(length, 4));
|
|
const uword end = data + length;
|
|
while (data < end) {
|
|
*reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction;
|
|
data += 4;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Emit(int32_t value) {
|
|
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
|
|
buffer_.Emit<int32_t>(value);
|
|
}
|
|
|
|
|
|
void Assembler::EmitType01(Condition cond,
|
|
int type,
|
|
Opcode opcode,
|
|
int set_cc,
|
|
Register rn,
|
|
Register rd,
|
|
ShifterOperand so) {
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
|
|
type << kTypeShift |
|
|
static_cast<int32_t>(opcode) << kOpcodeShift |
|
|
set_cc << kSShift |
|
|
static_cast<int32_t>(rn) << kRnShift |
|
|
static_cast<int32_t>(rd) << kRdShift |
|
|
so.encoding();
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitType5(Condition cond, int32_t offset, bool link) {
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
|
|
5 << kTypeShift |
|
|
(link ? 1 : 0) << kLinkShift;
|
|
Emit(Assembler::EncodeBranchOffset(offset, encoding));
|
|
}
|
|
|
|
|
|
void Assembler::EmitMemOp(Condition cond,
|
|
bool load,
|
|
bool byte,
|
|
Register rd,
|
|
Address ad) {
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B26 | (ad.kind() == Address::Immediate ? 0 : B25) |
|
|
(load ? L : 0) |
|
|
(byte ? B : 0) |
|
|
(static_cast<int32_t>(rd) << kRdShift) |
|
|
ad.encoding();
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitMemOpAddressMode3(Condition cond,
|
|
int32_t mode,
|
|
Register rd,
|
|
Address ad) {
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
mode |
|
|
(static_cast<int32_t>(rd) << kRdShift) |
|
|
ad.encoding3();
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitMultiMemOp(Condition cond,
|
|
BlockAddressMode am,
|
|
bool load,
|
|
Register base,
|
|
RegList regs) {
|
|
ASSERT(base != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 |
|
|
am |
|
|
(load ? L : 0) |
|
|
(static_cast<int32_t>(base) << kRnShift) |
|
|
regs;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitShiftImmediate(Condition cond,
|
|
Shift opcode,
|
|
Register rd,
|
|
Register rm,
|
|
ShifterOperand so) {
|
|
ASSERT(cond != kNoCondition);
|
|
ASSERT(so.type() == 1);
|
|
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
|
|
static_cast<int32_t>(MOV) << kOpcodeShift |
|
|
static_cast<int32_t>(rd) << kRdShift |
|
|
so.encoding() << kShiftImmShift |
|
|
static_cast<int32_t>(opcode) << kShiftShift |
|
|
static_cast<int32_t>(rm);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitShiftRegister(Condition cond,
|
|
Shift opcode,
|
|
Register rd,
|
|
Register rm,
|
|
ShifterOperand so) {
|
|
ASSERT(cond != kNoCondition);
|
|
ASSERT(so.type() == 0);
|
|
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
|
|
static_cast<int32_t>(MOV) << kOpcodeShift |
|
|
static_cast<int32_t>(rd) << kRdShift |
|
|
so.encoding() << kShiftRegisterShift |
|
|
static_cast<int32_t>(opcode) << kShiftShift |
|
|
B4 |
|
|
static_cast<int32_t>(rm);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::and_(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), AND, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::eor(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), EOR, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::sub(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), SUB, 0, rn, rd, so);
|
|
}
|
|
|
|
void Assembler::rsb(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), RSB, 0, rn, rd, so);
|
|
}
|
|
|
|
void Assembler::rsbs(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), RSB, 1, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::add(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), ADD, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::adds(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), ADD, 1, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::subs(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), SUB, 1, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::adc(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), ADC, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::sbc(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), SBC, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::rsc(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), RSC, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::tst(Register rn, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), TST, 1, rn, R0, so);
|
|
}
|
|
|
|
|
|
void Assembler::teq(Register rn, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), TEQ, 1, rn, R0, so);
|
|
}
|
|
|
|
|
|
void Assembler::cmp(Register rn, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), CMP, 1, rn, R0, so);
|
|
}
|
|
|
|
|
|
void Assembler::cmn(Register rn, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), CMN, 1, rn, R0, so);
|
|
}
|
|
|
|
|
|
void Assembler::orr(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), ORR, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::orrs(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), ORR, 1, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::mov(Register rd, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), MOV, 0, R0, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::movs(Register rd, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), MOV, 1, R0, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::bic(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), BIC, 0, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::bics(Register rd, Register rn, ShifterOperand so,
|
|
Condition cond) {
|
|
EmitType01(cond, so.type(), BIC, 1, rn, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::mvn(Register rd, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), MVN, 0, R0, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::mvns(Register rd, ShifterOperand so, Condition cond) {
|
|
EmitType01(cond, so.type(), MVN, 1, R0, rd, so);
|
|
}
|
|
|
|
|
|
void Assembler::clz(Register rd, Register rm, Condition cond) {
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(rm != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
ASSERT(rd != PC);
|
|
ASSERT(rm != PC);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B24 | B22 | B21 | (0xf << 16) |
|
|
(static_cast<int32_t>(rd) << kRdShift) |
|
|
(0xf << 8) | B4 | static_cast<int32_t>(rm);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::movw(Register rd, uint16_t imm16, Condition cond) {
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
|
|
B25 | B24 | ((imm16 >> 12) << 16) |
|
|
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::movt(Register rd, uint16_t imm16, Condition cond) {
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
|
|
B25 | B24 | B22 | ((imm16 >> 12) << 16) |
|
|
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitMulOp(Condition cond, int32_t opcode,
|
|
Register rd, Register rn,
|
|
Register rm, Register rs) {
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(rn != kNoRegister);
|
|
ASSERT(rm != kNoRegister);
|
|
ASSERT(rs != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = opcode |
|
|
(static_cast<int32_t>(cond) << kConditionShift) |
|
|
(static_cast<int32_t>(rn) << kRnShift) |
|
|
(static_cast<int32_t>(rd) << kRdShift) |
|
|
(static_cast<int32_t>(rs) << kRsShift) |
|
|
B7 | B4 |
|
|
(static_cast<int32_t>(rm) << kRmShift);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::mul(Register rd, Register rn,
|
|
Register rm, Condition cond) {
|
|
// Assembler registers rd, rn, rm are encoded as rn, rm, rs.
|
|
EmitMulOp(cond, 0, R0, rd, rn, rm);
|
|
}
|
|
|
|
|
|
// Like mul, but sets condition flags.
|
|
void Assembler::muls(Register rd, Register rn,
|
|
Register rm, Condition cond) {
|
|
EmitMulOp(cond, B20, R0, rd, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::mla(Register rd, Register rn,
|
|
Register rm, Register ra, Condition cond) {
|
|
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
|
|
EmitMulOp(cond, B21, ra, rd, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::mls(Register rd, Register rn,
|
|
Register rm, Register ra, Condition cond) {
|
|
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
|
|
EmitMulOp(cond, B22 | B21, ra, rd, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::smull(Register rd_lo, Register rd_hi,
|
|
Register rn, Register rm, Condition cond) {
|
|
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
|
|
EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::umull(Register rd_lo, Register rd_hi,
|
|
Register rn, Register rm, Condition cond) {
|
|
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
|
|
EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::smlal(Register rd_lo, Register rd_hi,
|
|
Register rn, Register rm, Condition cond) {
|
|
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
|
|
EmitMulOp(cond, B23 | B22 | B21, rd_lo, rd_hi, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::umlal(Register rd_lo, Register rd_hi,
|
|
Register rn, Register rm, Condition cond) {
|
|
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
|
|
EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::EmitDivOp(Condition cond, int32_t opcode,
|
|
Register rd, Register rn, Register rm) {
|
|
ASSERT(CPUFeatures::integer_division_supported());
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(rn != kNoRegister);
|
|
ASSERT(rm != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = opcode |
|
|
(static_cast<int32_t>(cond) << kConditionShift) |
|
|
(static_cast<int32_t>(rn) << kDivRnShift) |
|
|
(static_cast<int32_t>(rd) << kDivRdShift) |
|
|
B26 | B25 | B24 | B20 | B4 |
|
|
(static_cast<int32_t>(rm) << kDivRmShift);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) {
|
|
EmitDivOp(cond, 0, rd, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) {
|
|
EmitDivOp(cond, B21 , rd, rn, rm);
|
|
}
|
|
|
|
|
|
void Assembler::ldr(Register rd, Address ad, Condition cond) {
|
|
EmitMemOp(cond, true, false, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::str(Register rd, Address ad, Condition cond) {
|
|
EmitMemOp(cond, false, false, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::ldrb(Register rd, Address ad, Condition cond) {
|
|
EmitMemOp(cond, true, true, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::strb(Register rd, Address ad, Condition cond) {
|
|
EmitMemOp(cond, false, true, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::ldrh(Register rd, Address ad, Condition cond) {
|
|
EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::strh(Register rd, Address ad, Condition cond) {
|
|
EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::ldrsb(Register rd, Address ad, Condition cond) {
|
|
EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::ldrsh(Register rd, Address ad, Condition cond) {
|
|
EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::ldrd(Register rd, Address ad, Condition cond) {
|
|
ASSERT((rd % 2) == 0);
|
|
EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::strd(Register rd, Address ad, Condition cond) {
|
|
ASSERT((rd % 2) == 0);
|
|
EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, ad);
|
|
}
|
|
|
|
|
|
void Assembler::ldm(BlockAddressMode am, Register base, RegList regs,
|
|
Condition cond) {
|
|
ASSERT(regs != 0);
|
|
EmitMultiMemOp(cond, am, true, base, regs);
|
|
}
|
|
|
|
|
|
void Assembler::stm(BlockAddressMode am, Register base, RegList regs,
|
|
Condition cond) {
|
|
ASSERT(regs != 0);
|
|
EmitMultiMemOp(cond, am, false, base, regs);
|
|
}
|
|
|
|
|
|
void Assembler::ldrex(Register rt, Register rn, Condition cond) {
|
|
ASSERT(rn != kNoRegister);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B24 |
|
|
B23 |
|
|
L |
|
|
(static_cast<int32_t>(rn) << kLdExRnShift) |
|
|
(static_cast<int32_t>(rt) << kLdExRtShift) |
|
|
B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) {
|
|
ASSERT(rn != kNoRegister);
|
|
ASSERT(rd != kNoRegister);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B24 |
|
|
B23 |
|
|
(static_cast<int32_t>(rn) << kStrExRnShift) |
|
|
(static_cast<int32_t>(rd) << kStrExRdShift) |
|
|
B11 | B10 | B9 | B8 | B7 | B4 |
|
|
(static_cast<int32_t>(rt) << kStrExRtShift);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::clrex() {
|
|
int32_t encoding = (kSpecialCondition << kConditionShift) |
|
|
B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::nop(Condition cond) {
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B25 | B24 | B21 | (0xf << 12);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) {
|
|
ASSERT(sn != kNoSRegister);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(rt != SP);
|
|
ASSERT(rt != PC);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 |
|
|
((static_cast<int32_t>(sn) >> 1)*B16) |
|
|
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
|
|
((static_cast<int32_t>(sn) & 1)*B7) | B4;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) {
|
|
ASSERT(sn != kNoSRegister);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(rt != SP);
|
|
ASSERT(rt != PC);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 | B20 |
|
|
((static_cast<int32_t>(sn) >> 1)*B16) |
|
|
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
|
|
((static_cast<int32_t>(sn) & 1)*B7) | B4;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovsrr(SRegister sm, Register rt, Register rt2,
|
|
Condition cond) {
|
|
ASSERT(sm != kNoSRegister);
|
|
ASSERT(sm != S31);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(rt != SP);
|
|
ASSERT(rt != PC);
|
|
ASSERT(rt2 != kNoRegister);
|
|
ASSERT(rt2 != SP);
|
|
ASSERT(rt2 != PC);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B22 |
|
|
(static_cast<int32_t>(rt2)*B16) |
|
|
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
|
|
((static_cast<int32_t>(sm) & 1)*B5) | B4 |
|
|
(static_cast<int32_t>(sm) >> 1);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovrrs(Register rt, Register rt2, SRegister sm,
|
|
Condition cond) {
|
|
ASSERT(sm != kNoSRegister);
|
|
ASSERT(sm != S31);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(rt != SP);
|
|
ASSERT(rt != PC);
|
|
ASSERT(rt2 != kNoRegister);
|
|
ASSERT(rt2 != SP);
|
|
ASSERT(rt2 != PC);
|
|
ASSERT(rt != rt2);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B22 | B20 |
|
|
(static_cast<int32_t>(rt2)*B16) |
|
|
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
|
|
((static_cast<int32_t>(sm) & 1)*B5) | B4 |
|
|
(static_cast<int32_t>(sm) >> 1);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovdrr(DRegister dm, Register rt, Register rt2,
|
|
Condition cond) {
|
|
ASSERT(dm != kNoDRegister);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(rt != SP);
|
|
ASSERT(rt != PC);
|
|
ASSERT(rt2 != kNoRegister);
|
|
ASSERT(rt2 != SP);
|
|
ASSERT(rt2 != PC);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B22 |
|
|
(static_cast<int32_t>(rt2)*B16) |
|
|
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
|
|
((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
|
|
(static_cast<int32_t>(dm) & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovrrd(Register rt, Register rt2, DRegister dm,
|
|
Condition cond) {
|
|
ASSERT(dm != kNoDRegister);
|
|
ASSERT(rt != kNoRegister);
|
|
ASSERT(rt != SP);
|
|
ASSERT(rt != PC);
|
|
ASSERT(rt2 != kNoRegister);
|
|
ASSERT(rt2 != SP);
|
|
ASSERT(rt2 != PC);
|
|
ASSERT(rt != rt2);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B22 | B20 |
|
|
(static_cast<int32_t>(rt2)*B16) |
|
|
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
|
|
((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
|
|
(static_cast<int32_t>(dm) & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vldrs(SRegister sd, Address ad, Condition cond) {
|
|
ASSERT(sd != kNoSRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B24 | B20 |
|
|
((static_cast<int32_t>(sd) & 1)*B22) |
|
|
((static_cast<int32_t>(sd) >> 1)*B12) |
|
|
B11 | B9 | ad.vencoding();
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vstrs(SRegister sd, Address ad, Condition cond) {
|
|
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
|
|
ASSERT(sd != kNoSRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B24 |
|
|
((static_cast<int32_t>(sd) & 1)*B22) |
|
|
((static_cast<int32_t>(sd) >> 1)*B12) |
|
|
B11 | B9 | ad.vencoding();
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vldrd(DRegister dd, Address ad, Condition cond) {
|
|
ASSERT(dd != kNoDRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B24 | B20 |
|
|
((static_cast<int32_t>(dd) >> 4)*B22) |
|
|
((static_cast<int32_t>(dd) & 0xf)*B12) |
|
|
B11 | B9 | B8 | ad.vencoding();
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vstrd(DRegister dd, Address ad, Condition cond) {
|
|
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
|
|
ASSERT(dd != kNoDRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B24 |
|
|
((static_cast<int32_t>(dd) >> 4)*B22) |
|
|
((static_cast<int32_t>(dd) & 0xf)*B12) |
|
|
B11 | B9 | B8 | ad.vencoding();
|
|
Emit(encoding);
|
|
}
|
|
|
|
void Assembler::EmitMultiVSMemOp(Condition cond,
|
|
BlockAddressMode am,
|
|
bool load,
|
|
Register base,
|
|
SRegister start,
|
|
uint32_t count) {
|
|
ASSERT(base != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
ASSERT(start != kNoSRegister);
|
|
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters);
|
|
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B11 | B9 |
|
|
am |
|
|
(load ? L : 0) |
|
|
(static_cast<int32_t>(base) << kRnShift) |
|
|
((static_cast<int32_t>(start) & 0x1) ? D : 0) |
|
|
((static_cast<int32_t>(start) >> 1) << 12) |
|
|
count;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitMultiVDMemOp(Condition cond,
|
|
BlockAddressMode am,
|
|
bool load,
|
|
Register base,
|
|
DRegister start,
|
|
int32_t count) {
|
|
ASSERT(base != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
ASSERT(start != kNoDRegister);
|
|
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters);
|
|
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B11 | B9 | B8 |
|
|
am |
|
|
(load ? L : 0) |
|
|
(static_cast<int32_t>(base) << kRnShift) |
|
|
((static_cast<int32_t>(start) & 0x10) ? D : 0) |
|
|
((static_cast<int32_t>(start) & 0xf) << 12) |
|
|
(count << 1);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vldms(BlockAddressMode am, Register base,
|
|
SRegister first, SRegister last, Condition cond) {
|
|
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
|
|
ASSERT(last > first);
|
|
EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1);
|
|
}
|
|
|
|
|
|
void Assembler::vstms(BlockAddressMode am, Register base,
|
|
SRegister first, SRegister last, Condition cond) {
|
|
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
|
|
ASSERT(last > first);
|
|
EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1);
|
|
}
|
|
|
|
|
|
void Assembler::vldmd(BlockAddressMode am, Register base,
|
|
DRegister first, intptr_t count, Condition cond) {
|
|
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
|
|
ASSERT(count <= 16);
|
|
ASSERT(first + count <= kNumberOfDRegisters);
|
|
EmitMultiVDMemOp(cond, am, true, base, first, count);
|
|
}
|
|
|
|
|
|
void Assembler::vstmd(BlockAddressMode am, Register base,
|
|
DRegister first, intptr_t count, Condition cond) {
|
|
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
|
|
ASSERT(count <= 16);
|
|
ASSERT(first + count <= kNumberOfDRegisters);
|
|
EmitMultiVDMemOp(cond, am, false, base, first, count);
|
|
}
|
|
|
|
|
|
void Assembler::EmitVFPsss(Condition cond, int32_t opcode,
|
|
SRegister sd, SRegister sn, SRegister sm) {
|
|
ASSERT(sd != kNoSRegister);
|
|
ASSERT(sn != kNoSRegister);
|
|
ASSERT(sm != kNoSRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 | B11 | B9 | opcode |
|
|
((static_cast<int32_t>(sd) & 1)*B22) |
|
|
((static_cast<int32_t>(sn) >> 1)*B16) |
|
|
((static_cast<int32_t>(sd) >> 1)*B12) |
|
|
((static_cast<int32_t>(sn) & 1)*B7) |
|
|
((static_cast<int32_t>(sm) & 1)*B5) |
|
|
(static_cast<int32_t>(sm) >> 1);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitVFPddd(Condition cond, int32_t opcode,
|
|
DRegister dd, DRegister dn, DRegister dm) {
|
|
ASSERT(dd != kNoDRegister);
|
|
ASSERT(dn != kNoDRegister);
|
|
ASSERT(dm != kNoDRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 | B11 | B9 | B8 | opcode |
|
|
((static_cast<int32_t>(dd) >> 4)*B22) |
|
|
((static_cast<int32_t>(dn) & 0xf)*B16) |
|
|
((static_cast<int32_t>(dd) & 0xf)*B12) |
|
|
((static_cast<int32_t>(dn) >> 4)*B7) |
|
|
((static_cast<int32_t>(dm) >> 4)*B5) |
|
|
(static_cast<int32_t>(dm) & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
|
|
EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
|
|
}
|
|
|
|
|
|
bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) {
|
|
uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
|
|
if (((imm32 & ((1 << 19) - 1)) == 0) &&
|
|
((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
|
|
(((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) {
|
|
uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
|
|
((imm32 >> 19) & ((1 << 6) -1));
|
|
EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf),
|
|
sd, S0, S0);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) {
|
|
uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
|
|
if (((imm64 & ((1LL << 48) - 1)) == 0) &&
|
|
((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
|
|
(((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) {
|
|
uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
|
|
((imm64 >> 48) & ((1 << 6) -1));
|
|
EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf),
|
|
dd, D0, D0);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void Assembler::vadds(SRegister sd, SRegister sn, SRegister sm,
|
|
Condition cond) {
|
|
EmitVFPsss(cond, B21 | B20, sd, sn, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm,
|
|
Condition cond) {
|
|
EmitVFPddd(cond, B21 | B20, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm,
|
|
Condition cond) {
|
|
EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm,
|
|
Condition cond) {
|
|
EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm,
|
|
Condition cond) {
|
|
EmitVFPsss(cond, B21, sd, sn, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm,
|
|
Condition cond) {
|
|
EmitVFPddd(cond, B21, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm,
|
|
Condition cond) {
|
|
EmitVFPsss(cond, 0, sd, sn, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm,
|
|
Condition cond) {
|
|
EmitVFPddd(cond, 0, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm,
|
|
Condition cond) {
|
|
EmitVFPsss(cond, B6, sd, sn, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm,
|
|
Condition cond) {
|
|
EmitVFPddd(cond, B6, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm,
|
|
Condition cond) {
|
|
EmitVFPsss(cond, B23, sd, sn, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm,
|
|
Condition cond) {
|
|
EmitVFPddd(cond, B23, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
|
|
EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
|
|
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
|
|
}
|
|
|
|
void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
|
|
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
|
|
}
|
|
|
|
|
|
void Assembler::EmitVFPsd(Condition cond, int32_t opcode,
|
|
SRegister sd, DRegister dm) {
|
|
ASSERT(sd != kNoSRegister);
|
|
ASSERT(dm != kNoDRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 | B11 | B9 | opcode |
|
|
((static_cast<int32_t>(sd) & 1)*B22) |
|
|
((static_cast<int32_t>(sd) >> 1)*B12) |
|
|
((static_cast<int32_t>(dm) >> 4)*B5) |
|
|
(static_cast<int32_t>(dm) & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitVFPds(Condition cond, int32_t opcode,
|
|
DRegister dd, SRegister sm) {
|
|
ASSERT(dd != kNoDRegister);
|
|
ASSERT(sm != kNoSRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 | B11 | B9 | opcode |
|
|
((static_cast<int32_t>(dd) >> 4)*B22) |
|
|
((static_cast<int32_t>(dd) & 0xf)*B12) |
|
|
((static_cast<int32_t>(sm) & 1)*B5) |
|
|
(static_cast<int32_t>(sm) >> 1);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
|
|
EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
|
|
EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
|
|
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
|
|
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
|
|
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
|
|
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
|
|
}
|
|
|
|
|
|
void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
|
|
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vcmpsz(SRegister sd, Condition cond) {
|
|
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
|
|
}
|
|
|
|
|
|
void Assembler::vcmpdz(DRegister dd, Condition cond) {
|
|
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
|
|
}
|
|
|
|
|
|
void Assembler::vmstat(Condition cond) { // VMRS APSR_nzcv, FPSCR
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 |
|
|
(static_cast<int32_t>(PC)*B12) |
|
|
B11 | B9 | B4;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
static inline int ShiftOfOperandSize(OperandSize size) {
|
|
switch (size) {
|
|
case kByte:
|
|
case kUnsignedByte:
|
|
return 0;
|
|
case kHalfword:
|
|
case kUnsignedHalfword:
|
|
return 1;
|
|
case kWord:
|
|
case kUnsignedWord:
|
|
return 2;
|
|
case kWordPair:
|
|
return 3;
|
|
case kSWord:
|
|
case kDWord:
|
|
return 0;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return -1;
|
|
}
|
|
|
|
|
|
void Assembler::EmitSIMDqqq(int32_t opcode, OperandSize size,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
int sz = ShiftOfOperandSize(size);
|
|
int32_t encoding =
|
|
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) |
|
|
B25 | B6 |
|
|
opcode | ((sz & 0x3) * B20) |
|
|
((static_cast<int32_t>(qd * 2) >> 4)*B22) |
|
|
((static_cast<int32_t>(qn * 2) & 0xf)*B16) |
|
|
((static_cast<int32_t>(qd * 2) & 0xf)*B12) |
|
|
((static_cast<int32_t>(qn * 2) >> 4)*B7) |
|
|
((static_cast<int32_t>(qm * 2) >> 4)*B5) |
|
|
(static_cast<int32_t>(qm * 2) & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::EmitSIMDddd(int32_t opcode, OperandSize size,
|
|
DRegister dd, DRegister dn, DRegister dm) {
|
|
int sz = ShiftOfOperandSize(size);
|
|
int32_t encoding =
|
|
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) |
|
|
B25 |
|
|
opcode | ((sz & 0x3) * B20) |
|
|
((static_cast<int32_t>(dd) >> 4)*B22) |
|
|
((static_cast<int32_t>(dn) & 0xf)*B16) |
|
|
((static_cast<int32_t>(dd) & 0xf)*B12) |
|
|
((static_cast<int32_t>(dn) >> 4)*B7) |
|
|
((static_cast<int32_t>(dm) >> 4)*B5) |
|
|
(static_cast<int32_t>(dm) & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::vmovq(QRegister qd, QRegister qm) {
|
|
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vaddqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B11, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vsubqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B11, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vmulqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vabsqs(QRegister qd, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord,
|
|
qd, Q0, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vnegqs(QRegister qd, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord,
|
|
qd, Q0, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vrecpeqs(QRegister qd, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord,
|
|
qd, Q0, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vrsqrteqs(QRegister qd, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7,
|
|
kSWord, qd, Q0, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) {
|
|
ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair));
|
|
int code = 0;
|
|
|
|
switch (sz) {
|
|
case kByte:
|
|
case kUnsignedByte: {
|
|
ASSERT((idx >= 0) && (idx < 8));
|
|
code = 1 | (idx << 1);
|
|
break;
|
|
}
|
|
case kHalfword:
|
|
case kUnsignedHalfword: {
|
|
ASSERT((idx >= 0) && (idx < 4));
|
|
code = 2 | (idx << 2);
|
|
break;
|
|
}
|
|
case kWord:
|
|
case kUnsignedWord: {
|
|
ASSERT((idx >= 0) && (idx < 2));
|
|
code = 4 | (idx << 3);
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
|
|
EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair,
|
|
static_cast<DRegister>(qd * 2),
|
|
static_cast<DRegister>(code & 0xf),
|
|
dm);
|
|
}
|
|
|
|
|
|
void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) {
|
|
ASSERT((len >= 1) && (len <= 4));
|
|
EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm);
|
|
}
|
|
|
|
|
|
void Assembler::vzipqw(QRegister qd, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vceqqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vcgeqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vcugeqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vcgtqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B9 | B8, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vcugtqi(OperandSize sz,
|
|
QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm);
|
|
}
|
|
|
|
|
|
void Assembler::svc(uint32_t imm24, Condition cond) {
|
|
ASSERT(cond != kNoCondition);
|
|
ASSERT(imm24 < (1 << 24));
|
|
int32_t encoding = (cond << kConditionShift) | B27 | B26 | B25 | B24 | imm24;
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::bkpt(uint16_t imm16) {
|
|
// bkpt requires that the cond field is AL.
|
|
int32_t encoding = (AL << kConditionShift) | B24 | B21 |
|
|
((imm16 >> 4) << 8) | B6 | B5 | B4 | (imm16 & 0xf);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::b(Label* label, Condition cond) {
|
|
EmitBranch(cond, label, false);
|
|
}
|
|
|
|
|
|
void Assembler::bl(Label* label, Condition cond) {
|
|
EmitBranch(cond, label, true);
|
|
}
|
|
|
|
|
|
void Assembler::bx(Register rm, Condition cond) {
|
|
ASSERT(rm != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B24 | B21 | (0xfff << 8) | B4 |
|
|
(static_cast<int32_t>(rm) << kRmShift);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::blx(Register rm, Condition cond) {
|
|
ASSERT(rm != kNoRegister);
|
|
ASSERT(cond != kNoCondition);
|
|
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
|
|
B24 | B21 | (0xfff << 8) | B5 | B4 |
|
|
(static_cast<int32_t>(rm) << kRmShift);
|
|
Emit(encoding);
|
|
}
|
|
|
|
|
|
void Assembler::MarkExceptionHandler(Label* label) {
|
|
EmitType01(AL, 1, TST, 1, PC, R0, ShifterOperand(0));
|
|
Label l;
|
|
b(&l);
|
|
EmitBranch(AL, label, false);
|
|
Bind(&l);
|
|
}
|
|
|
|
|
|
void Assembler::Drop(intptr_t stack_elements) {
|
|
ASSERT(stack_elements >= 0);
|
|
if (stack_elements > 0) {
|
|
AddImmediate(SP, SP, stack_elements * kWordSize);
|
|
}
|
|
}
|
|
|
|
|
|
// Uses a code sequence that can easily be decoded.
|
|
void Assembler::LoadWordFromPoolOffset(Register rd,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
ASSERT(rd != PP);
|
|
int32_t offset_mask = 0;
|
|
if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) {
|
|
ldr(rd, Address(PP, offset), cond);
|
|
} else {
|
|
int32_t offset_hi = offset & ~offset_mask; // signed
|
|
uint32_t offset_lo = offset & offset_mask; // unsigned
|
|
// Inline a simplified version of AddImmediate(rd, PP, offset_hi).
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(offset_hi, &shifter_op)) {
|
|
add(rd, PP, shifter_op, cond);
|
|
} else {
|
|
movw(rd, Utils::Low16Bits(offset_hi));
|
|
const uint16_t value_high = Utils::High16Bits(offset_hi);
|
|
if (value_high != 0) {
|
|
movt(rd, value_high, cond);
|
|
}
|
|
add(rd, PP, ShifterOperand(LR), cond);
|
|
}
|
|
ldr(rd, Address(rd, offset_lo), cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LoadPoolPointer() {
|
|
const intptr_t object_pool_pc_dist =
|
|
Instructions::HeaderSize() - Instructions::object_pool_offset() +
|
|
CodeSize() + Instr::kPCReadOffset;
|
|
LoadFromOffset(kWord, PP, PC, -object_pool_pc_dist);
|
|
}
|
|
|
|
|
|
void Assembler::LoadObject(Register rd, const Object& object, Condition cond) {
|
|
// Smis and VM heap objects are never relocated; do not use object pool.
|
|
if (object.IsSmi()) {
|
|
LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond);
|
|
} else if (object.InVMHeap()) {
|
|
// Make sure that class CallPattern is able to decode this load immediate.
|
|
const int32_t object_raw = reinterpret_cast<int32_t>(object.raw());
|
|
movw(rd, Utils::Low16Bits(object_raw), cond);
|
|
const uint16_t value_high = Utils::High16Bits(object_raw);
|
|
if (value_high != 0) {
|
|
movt(rd, value_high, cond);
|
|
}
|
|
} else {
|
|
// Make sure that class CallPattern is able to decode this load from the
|
|
// object pool.
|
|
const int32_t offset =
|
|
Array::data_offset() + 4*AddObject(object) - kHeapObjectTag;
|
|
LoadWordFromPoolOffset(rd, offset, cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::PushObject(const Object& object) {
|
|
LoadObject(IP, object);
|
|
Push(IP);
|
|
}
|
|
|
|
|
|
void Assembler::CompareObject(Register rn, const Object& object) {
|
|
ASSERT(rn != IP);
|
|
if (object.IsSmi()) {
|
|
CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw()));
|
|
} else {
|
|
LoadObject(IP, object);
|
|
cmp(rn, ShifterOperand(IP));
|
|
}
|
|
}
|
|
|
|
|
|
// Preserves object and value registers.
|
|
void Assembler::StoreIntoObjectFilterNoSmi(Register object,
|
|
Register value,
|
|
Label* no_update) {
|
|
COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) &&
|
|
(kOldObjectAlignmentOffset == 0), young_alignment);
|
|
|
|
// Write-barrier triggers if the value is in the new space (has bit set) and
|
|
// the object is in the old space (has bit cleared).
|
|
// To check that, we compute value & ~object and skip the write barrier
|
|
// if the bit is not set. We can't destroy the object.
|
|
bic(IP, value, ShifterOperand(object));
|
|
tst(IP, ShifterOperand(kNewObjectAlignmentOffset));
|
|
b(no_update, EQ);
|
|
}
|
|
|
|
|
|
// Preserves object and value registers.
|
|
void Assembler::StoreIntoObjectFilter(Register object,
|
|
Register value,
|
|
Label* no_update) {
|
|
// For the value we are only interested in the new/old bit and the tag bit.
|
|
// And the new bit with the tag bit. The resulting bit will be 0 for a Smi.
|
|
and_(IP, value, ShifterOperand(value, LSL, kObjectAlignmentLog2 - 1));
|
|
// And the result with the negated space bit of the object.
|
|
bic(IP, IP, ShifterOperand(object));
|
|
tst(IP, ShifterOperand(kNewObjectAlignmentOffset));
|
|
b(no_update, EQ);
|
|
}
|
|
|
|
|
|
void Assembler::StoreIntoObject(Register object,
|
|
const Address& dest,
|
|
Register value,
|
|
bool can_value_be_smi) {
|
|
ASSERT(object != value);
|
|
str(value, dest);
|
|
Label done;
|
|
if (can_value_be_smi) {
|
|
StoreIntoObjectFilter(object, value, &done);
|
|
} else {
|
|
StoreIntoObjectFilterNoSmi(object, value, &done);
|
|
}
|
|
// A store buffer update is required.
|
|
RegList regs = (1 << LR);
|
|
if (value != R0) {
|
|
regs |= (1 << R0); // Preserve R0.
|
|
}
|
|
PushList(regs);
|
|
if (object != R0) {
|
|
mov(R0, ShifterOperand(object));
|
|
}
|
|
BranchLink(&StubCode::UpdateStoreBufferLabel());
|
|
PopList(regs);
|
|
Bind(&done);
|
|
}
|
|
|
|
|
|
void Assembler::StoreIntoObjectNoBarrier(Register object,
|
|
const Address& dest,
|
|
Register value) {
|
|
str(value, dest);
|
|
#if defined(DEBUG)
|
|
Label done;
|
|
StoreIntoObjectFilter(object, value, &done);
|
|
Stop("Store buffer update is required");
|
|
Bind(&done);
|
|
#endif // defined(DEBUG)
|
|
// No store buffer update.
|
|
}
|
|
|
|
|
|
void Assembler::StoreIntoObjectNoBarrier(Register object,
|
|
const Address& dest,
|
|
const Object& value) {
|
|
ASSERT(value.IsSmi() || value.InVMHeap() ||
|
|
(value.IsOld() && value.IsNotTemporaryScopedHandle()));
|
|
// No store buffer update.
|
|
LoadObject(IP, value);
|
|
str(IP, dest);
|
|
}
|
|
|
|
|
|
void Assembler::LoadClassId(Register result, Register object) {
|
|
ASSERT(RawObject::kClassIdTagBit == 16);
|
|
ASSERT(RawObject::kClassIdTagSize == 16);
|
|
const intptr_t class_id_offset = Object::tags_offset() +
|
|
RawObject::kClassIdTagBit / kBitsPerByte;
|
|
ldrh(result, FieldAddress(object, class_id_offset));
|
|
}
|
|
|
|
|
|
void Assembler::LoadClassById(Register result, Register class_id) {
|
|
ASSERT(result != class_id);
|
|
ldr(result, FieldAddress(CTX, Context::isolate_offset()));
|
|
const intptr_t table_offset_in_isolate =
|
|
Isolate::class_table_offset() + ClassTable::table_offset();
|
|
LoadFromOffset(kWord, result, result, table_offset_in_isolate);
|
|
ldr(result, Address(result, class_id, LSL, 2));
|
|
}
|
|
|
|
|
|
void Assembler::LoadClass(Register result, Register object, Register scratch) {
|
|
ASSERT(scratch != result);
|
|
LoadClassId(scratch, object);
|
|
|
|
ldr(result, FieldAddress(CTX, Context::isolate_offset()));
|
|
const intptr_t table_offset_in_isolate =
|
|
Isolate::class_table_offset() + ClassTable::table_offset();
|
|
LoadFromOffset(kWord, result, result, table_offset_in_isolate);
|
|
ldr(result, Address(result, scratch, LSL, 2));
|
|
}
|
|
|
|
|
|
void Assembler::CompareClassId(Register object,
|
|
intptr_t class_id,
|
|
Register scratch) {
|
|
LoadClassId(scratch, object);
|
|
CompareImmediate(scratch, class_id);
|
|
}
|
|
|
|
|
|
static bool CanEncodeBranchOffset(int32_t offset) {
|
|
ASSERT(Utils::IsAligned(offset, 4));
|
|
return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset);
|
|
}
|
|
|
|
|
|
int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) {
|
|
// The offset is off by 8 due to the way the ARM CPUs read PC.
|
|
offset -= Instr::kPCReadOffset;
|
|
|
|
if (!CanEncodeBranchOffset(offset)) {
|
|
ASSERT(!use_far_branches());
|
|
Isolate::Current()->long_jump_base()->Jump(
|
|
1, Object::branch_offset_error());
|
|
}
|
|
|
|
// Properly preserve only the bits supported in the instruction.
|
|
offset >>= 2;
|
|
offset &= kBranchOffsetMask;
|
|
return (inst & ~kBranchOffsetMask) | offset;
|
|
}
|
|
|
|
|
|
int Assembler::DecodeBranchOffset(int32_t inst) {
|
|
// Sign-extend, left-shift by 2, then add 8.
|
|
return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset);
|
|
}
|
|
|
|
|
|
static int32_t DecodeLoadImmediate(int32_t movt, int32_t movw) {
|
|
int32_t offset = 0;
|
|
offset |= (movt & 0xf0000) << 12;
|
|
offset |= (movt & 0xfff) << 16;
|
|
offset |= (movw & 0xf0000) >> 4;
|
|
offset |= movw & 0xfff;
|
|
return offset;
|
|
}
|
|
|
|
|
|
class PatchFarBranch : public AssemblerFixup {
|
|
public:
|
|
PatchFarBranch() {}
|
|
|
|
void Process(const MemoryRegion& region, intptr_t position) {
|
|
const int32_t movw = region.Load<int32_t>(position);
|
|
const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize);
|
|
const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize);
|
|
|
|
if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high
|
|
((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low
|
|
const int32_t offset = DecodeLoadImmediate(movt, movw);
|
|
const int32_t dest = region.start() + offset;
|
|
const uint16_t dest_high = Utils::High16Bits(dest);
|
|
const uint16_t dest_low = Utils::Low16Bits(dest);
|
|
const int32_t patched_movt =
|
|
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
|
|
const int32_t patched_movw =
|
|
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
|
|
|
|
region.Store<int32_t>(position, patched_movw);
|
|
region.Store<int32_t>(position + Instr::kInstrSize, patched_movt);
|
|
return;
|
|
}
|
|
|
|
// If the offset loading instructions aren't there, we must have replaced
|
|
// the far branch with a near one, and so these instructions should be NOPs.
|
|
ASSERT((movt == Instr::kNopInstruction) &&
|
|
(bx == Instr::kNopInstruction));
|
|
}
|
|
};
|
|
|
|
|
|
void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) {
|
|
const uint16_t low = Utils::Low16Bits(offset);
|
|
const uint16_t high = Utils::High16Bits(offset);
|
|
buffer_.EmitFixup(new PatchFarBranch());
|
|
movw(IP, low);
|
|
movt(IP, high);
|
|
if (link) {
|
|
blx(IP, cond);
|
|
} else {
|
|
bx(IP, cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::EmitBranch(Condition cond, Label* label, bool link) {
|
|
if (label->IsBound()) {
|
|
const int32_t dest = label->Position() - buffer_.Size();
|
|
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
|
|
EmitFarBranch(cond, label->Position(), link);
|
|
} else {
|
|
EmitType5(cond, dest, link);
|
|
}
|
|
} else {
|
|
const intptr_t position = buffer_.Size();
|
|
if (use_far_branches()) {
|
|
const int32_t dest = label->position_;
|
|
EmitFarBranch(cond, dest, link);
|
|
} else {
|
|
// Use the offset field of the branch instruction for linking the sites.
|
|
EmitType5(cond, label->position_, link);
|
|
}
|
|
label->LinkTo(position);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Bind(Label* label) {
|
|
ASSERT(!label->IsBound());
|
|
intptr_t bound_pc = buffer_.Size();
|
|
while (label->IsLinked()) {
|
|
const int32_t position = label->Position();
|
|
int32_t dest = bound_pc - position;
|
|
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
|
|
// Far branches are enabled and we can't encode the branch offset.
|
|
|
|
// Grab instructions that load the offset.
|
|
const int32_t movw =
|
|
buffer_.Load<int32_t>(position);
|
|
const int32_t movt =
|
|
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
|
|
|
|
// Change from relative to the branch to relative to the assembler buffer.
|
|
dest = buffer_.Size();
|
|
const uint16_t dest_high = Utils::High16Bits(dest);
|
|
const uint16_t dest_low = Utils::Low16Bits(dest);
|
|
const int32_t patched_movt =
|
|
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
|
|
const int32_t patched_movw =
|
|
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
|
|
|
|
// Rewrite the instructions.
|
|
buffer_.Store<int32_t>(position, patched_movw);
|
|
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt);
|
|
label->position_ = DecodeLoadImmediate(movt, movw);
|
|
} else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
|
|
// Far branches are enabled, but we can encode the branch offset.
|
|
|
|
// Grab instructions that load the offset, and the branch.
|
|
const int32_t movw =
|
|
buffer_.Load<int32_t>(position);
|
|
const int32_t movt =
|
|
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
|
|
const int32_t branch =
|
|
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
|
|
|
|
// Grab the branch condition, and encode the link bit.
|
|
const int32_t cond = branch & 0xf0000000;
|
|
const int32_t link = (branch & 0x20) << 19;
|
|
|
|
// Encode the branch and the offset.
|
|
const int32_t new_branch = cond | link | 0x0a000000;
|
|
const int32_t encoded = EncodeBranchOffset(dest, new_branch);
|
|
|
|
// Write the encoded branch instruction followed by two nops.
|
|
buffer_.Store<int32_t>(position, encoded);
|
|
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
|
|
Instr::kNopInstruction);
|
|
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
|
|
Instr::kNopInstruction);
|
|
|
|
label->position_ = DecodeLoadImmediate(movt, movw);
|
|
} else {
|
|
int32_t next = buffer_.Load<int32_t>(position);
|
|
int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
|
|
buffer_.Store<int32_t>(position, encoded);
|
|
label->position_ = Assembler::DecodeBranchOffset(next);
|
|
}
|
|
}
|
|
label->BindTo(bound_pc);
|
|
}
|
|
|
|
|
|
bool Address::CanHoldLoadOffset(OperandSize type,
|
|
int32_t offset,
|
|
int32_t* offset_mask) {
|
|
switch (type) {
|
|
case kByte:
|
|
case kHalfword:
|
|
case kUnsignedHalfword:
|
|
case kWordPair: {
|
|
*offset_mask = 0xff;
|
|
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
|
|
}
|
|
case kUnsignedByte:
|
|
case kWord: {
|
|
*offset_mask = 0xfff;
|
|
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
|
|
}
|
|
case kSWord:
|
|
case kDWord: {
|
|
*offset_mask = 0x3fc; // Multiple of 4.
|
|
// VFP addressing mode.
|
|
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
|
|
}
|
|
default: {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Address::CanHoldStoreOffset(OperandSize type,
|
|
int32_t offset,
|
|
int32_t* offset_mask) {
|
|
switch (type) {
|
|
case kHalfword:
|
|
case kWordPair: {
|
|
*offset_mask = 0xff;
|
|
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
|
|
}
|
|
case kByte:
|
|
case kWord: {
|
|
*offset_mask = 0xfff;
|
|
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
|
|
}
|
|
case kSWord:
|
|
case kDWord: {
|
|
*offset_mask = 0x3fc; // Multiple of 4.
|
|
// VFP addressing mode.
|
|
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
|
|
}
|
|
default: {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Push(Register rd, Condition cond) {
|
|
str(rd, Address(SP, -kWordSize, Address::PreIndex), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Pop(Register rd, Condition cond) {
|
|
ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond);
|
|
}
|
|
|
|
|
|
void Assembler::PushList(RegList regs, Condition cond) {
|
|
stm(DB_W, SP, regs, cond);
|
|
}
|
|
|
|
|
|
void Assembler::PopList(RegList regs, Condition cond) {
|
|
ldm(IA_W, SP, regs, cond);
|
|
}
|
|
|
|
|
|
void Assembler::MoveRegister(Register rd, Register rm, Condition cond) {
|
|
if (rd != rm) {
|
|
mov(rd, ShifterOperand(rm), cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Lsl(Register rd, Register rm, uint32_t shift_imm,
|
|
Condition cond) {
|
|
ASSERT(shift_imm != 0); // Do not use Lsl if no shift is wanted.
|
|
mov(rd, ShifterOperand(rm, LSL, shift_imm), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) {
|
|
mov(rd, ShifterOperand(rm, LSL, rs), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Lsr(Register rd, Register rm, uint32_t shift_imm,
|
|
Condition cond) {
|
|
ASSERT(shift_imm != 0); // Do not use Lsr if no shift is wanted.
|
|
if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax.
|
|
mov(rd, ShifterOperand(rm, LSR, shift_imm), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) {
|
|
mov(rd, ShifterOperand(rm, LSR, rs), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Asr(Register rd, Register rm, uint32_t shift_imm,
|
|
Condition cond) {
|
|
ASSERT(shift_imm != 0); // Do not use Asr if no shift is wanted.
|
|
if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax.
|
|
mov(rd, ShifterOperand(rm, ASR, shift_imm), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) {
|
|
mov(rd, ShifterOperand(rm, ASR, rs), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Ror(Register rd, Register rm, uint32_t shift_imm,
|
|
Condition cond) {
|
|
ASSERT(shift_imm != 0); // Use Rrx instruction.
|
|
mov(rd, ShifterOperand(rm, ROR, shift_imm), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) {
|
|
mov(rd, ShifterOperand(rm, ROR, rs), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Rrx(Register rd, Register rm, Condition cond) {
|
|
mov(rd, ShifterOperand(rm, ROR, 0), cond);
|
|
}
|
|
|
|
|
|
void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) {
|
|
ASSERT(qm != QTMP);
|
|
ASSERT(qd != QTMP);
|
|
|
|
// Reciprocal estimate.
|
|
vrecpeqs(qd, qm);
|
|
// 2 Newton-Raphson steps.
|
|
vrecpsqs(QTMP, qm, qd);
|
|
vmulqs(qd, qd, QTMP);
|
|
vrecpsqs(QTMP, qm, qd);
|
|
vmulqs(qd, qd, QTMP);
|
|
}
|
|
|
|
|
|
void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) {
|
|
ASSERT(qm != QTMP);
|
|
ASSERT(qd != QTMP);
|
|
|
|
// Reciprocal square root estimate.
|
|
vrsqrteqs(qd, qm);
|
|
// 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2.
|
|
// First step.
|
|
vmulqs(QTMP, qd, qd); // QTMP <- xn^2
|
|
vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2.
|
|
vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP
|
|
// Second step.
|
|
vmulqs(QTMP, qd, qd);
|
|
vrsqrtsqs(QTMP, qm, QTMP);
|
|
vmulqs(qd, qd, QTMP);
|
|
}
|
|
|
|
|
|
void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) {
|
|
ASSERT(temp != QTMP);
|
|
ASSERT(qm != QTMP);
|
|
ASSERT(qd != QTMP);
|
|
|
|
if (temp != kNoQRegister) {
|
|
vmovq(temp, qm);
|
|
qm = temp;
|
|
}
|
|
|
|
VreciprocalSqrtqs(qd, qm);
|
|
vmovq(qm, qd);
|
|
Vreciprocalqs(qd, qm);
|
|
}
|
|
|
|
|
|
void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) {
|
|
ASSERT(qd != QTMP);
|
|
ASSERT(qn != QTMP);
|
|
ASSERT(qm != QTMP);
|
|
|
|
Vreciprocalqs(qd, qm);
|
|
vmulqs(qd, qn, qd);
|
|
}
|
|
|
|
|
|
void Assembler::Branch(const ExternalLabel* label, Condition cond) {
|
|
LoadImmediate(IP, label->address(), cond); // Address is never patched.
|
|
bx(IP, cond);
|
|
}
|
|
|
|
|
|
void Assembler::BranchPatchable(const ExternalLabel* label) {
|
|
// Use a fixed size code sequence, since a function prologue may be patched
|
|
// with this branch sequence.
|
|
// Contrarily to BranchLinkPatchable, BranchPatchable requires an instruction
|
|
// cache flush upon patching.
|
|
movw(IP, Utils::Low16Bits(label->address()));
|
|
movt(IP, Utils::High16Bits(label->address()));
|
|
bx(IP);
|
|
}
|
|
|
|
|
|
void Assembler::BranchLink(const ExternalLabel* label) {
|
|
LoadImmediate(IP, label->address()); // Target address is never patched.
|
|
blx(IP); // Use blx instruction so that the return branch prediction works.
|
|
}
|
|
|
|
|
|
void Assembler::BranchLinkPatchable(const ExternalLabel* label) {
|
|
// Make sure that class CallPattern is able to patch the label referred
|
|
// to by this code sequence.
|
|
// For added code robustness, use 'blx lr' in a patchable sequence and
|
|
// use 'blx ip' in a non-patchable sequence (see other BranchLink flavors).
|
|
const int32_t offset =
|
|
Array::data_offset() + 4*AddExternalLabel(label) - kHeapObjectTag;
|
|
LoadWordFromPoolOffset(LR, offset);
|
|
blx(LR); // Use blx instruction so that the return branch prediction works.
|
|
}
|
|
|
|
|
|
void Assembler::BranchLinkStore(const ExternalLabel* label, Address ad) {
|
|
// TODO(regis): Revisit this code sequence.
|
|
LoadImmediate(IP, label->address()); // Target address is never patched.
|
|
str(PC, ad);
|
|
blx(IP); // Use blx instruction so that the return branch prediction works.
|
|
}
|
|
|
|
|
|
void Assembler::BranchLinkOffset(Register base, int32_t offset) {
|
|
ASSERT(base != PC);
|
|
ASSERT(base != IP);
|
|
LoadFromOffset(kWord, IP, base, offset);
|
|
blx(IP); // Use blx instruction so that the return branch prediction works.
|
|
}
|
|
|
|
|
|
void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) {
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(value, &shifter_op)) {
|
|
mov(rd, shifter_op, cond);
|
|
} else if (ShifterOperand::CanHold(~value, &shifter_op)) {
|
|
mvn(rd, shifter_op, cond);
|
|
} else {
|
|
movw(rd, Utils::Low16Bits(value), cond);
|
|
const uint16_t value_high = Utils::High16Bits(value);
|
|
if (value_high != 0) {
|
|
movt(rd, value_high, cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) {
|
|
if (!vmovs(sd, value, cond)) {
|
|
LoadImmediate(IP, bit_cast<int32_t, float>(value), cond);
|
|
vmovsr(sd, IP, cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LoadDImmediate(DRegister dd,
|
|
double value,
|
|
Register scratch,
|
|
Condition cond) {
|
|
// TODO(regis): Revisit this code sequence.
|
|
ASSERT(scratch != PC);
|
|
ASSERT(scratch != IP);
|
|
if (!vmovd(dd, value, cond)) {
|
|
// A scratch register and IP are needed to load an arbitrary double.
|
|
ASSERT(scratch != kNoRegister);
|
|
int64_t imm64 = bit_cast<int64_t, double>(value);
|
|
LoadImmediate(IP, Utils::Low32Bits(imm64), cond);
|
|
LoadImmediate(scratch, Utils::High32Bits(imm64), cond);
|
|
vmovdrr(dd, IP, scratch, cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LoadFromOffset(OperandSize type,
|
|
Register reg,
|
|
Register base,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
int32_t offset_mask = 0;
|
|
if (!Address::CanHoldLoadOffset(type, offset, &offset_mask)) {
|
|
ASSERT(base != IP);
|
|
AddImmediate(IP, base, offset & ~offset_mask, cond);
|
|
base = IP;
|
|
offset = offset & offset_mask;
|
|
}
|
|
switch (type) {
|
|
case kByte:
|
|
ldrsb(reg, Address(base, offset), cond);
|
|
break;
|
|
case kUnsignedByte:
|
|
ldrb(reg, Address(base, offset), cond);
|
|
break;
|
|
case kHalfword:
|
|
ldrsh(reg, Address(base, offset), cond);
|
|
break;
|
|
case kUnsignedHalfword:
|
|
ldrh(reg, Address(base, offset), cond);
|
|
break;
|
|
case kWord:
|
|
ldr(reg, Address(base, offset), cond);
|
|
break;
|
|
case kWordPair:
|
|
ldrd(reg, Address(base, offset), cond);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::StoreToOffset(OperandSize type,
|
|
Register reg,
|
|
Register base,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
int32_t offset_mask = 0;
|
|
if (!Address::CanHoldStoreOffset(type, offset, &offset_mask)) {
|
|
ASSERT(reg != IP);
|
|
ASSERT(base != IP);
|
|
AddImmediate(IP, base, offset & ~offset_mask, cond);
|
|
base = IP;
|
|
offset = offset & offset_mask;
|
|
}
|
|
switch (type) {
|
|
case kByte:
|
|
strb(reg, Address(base, offset), cond);
|
|
break;
|
|
case kHalfword:
|
|
strh(reg, Address(base, offset), cond);
|
|
break;
|
|
case kWord:
|
|
str(reg, Address(base, offset), cond);
|
|
break;
|
|
case kWordPair:
|
|
strd(reg, Address(base, offset), cond);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LoadSFromOffset(SRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
int32_t offset_mask = 0;
|
|
if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) {
|
|
ASSERT(base != IP);
|
|
AddImmediate(IP, base, offset & ~offset_mask, cond);
|
|
base = IP;
|
|
offset = offset & offset_mask;
|
|
}
|
|
vldrs(reg, Address(base, offset), cond);
|
|
}
|
|
|
|
|
|
void Assembler::StoreSToOffset(SRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
int32_t offset_mask = 0;
|
|
if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) {
|
|
ASSERT(base != IP);
|
|
AddImmediate(IP, base, offset & ~offset_mask, cond);
|
|
base = IP;
|
|
offset = offset & offset_mask;
|
|
}
|
|
vstrs(reg, Address(base, offset), cond);
|
|
}
|
|
|
|
|
|
void Assembler::LoadDFromOffset(DRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
int32_t offset_mask = 0;
|
|
if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) {
|
|
ASSERT(base != IP);
|
|
AddImmediate(IP, base, offset & ~offset_mask, cond);
|
|
base = IP;
|
|
offset = offset & offset_mask;
|
|
}
|
|
vldrd(reg, Address(base, offset), cond);
|
|
}
|
|
|
|
|
|
void Assembler::StoreDToOffset(DRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
Condition cond) {
|
|
int32_t offset_mask = 0;
|
|
if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) {
|
|
ASSERT(base != IP);
|
|
AddImmediate(IP, base, offset & ~offset_mask, cond);
|
|
base = IP;
|
|
offset = offset & offset_mask;
|
|
}
|
|
vstrd(reg, Address(base, offset), cond);
|
|
}
|
|
|
|
|
|
void Assembler::AddImmediate(Register rd, int32_t value, Condition cond) {
|
|
AddImmediate(rd, rd, value, cond);
|
|
}
|
|
|
|
|
|
void Assembler::AddImmediate(Register rd, Register rn, int32_t value,
|
|
Condition cond) {
|
|
if (value == 0) {
|
|
if (rd != rn) {
|
|
mov(rd, ShifterOperand(rn), cond);
|
|
}
|
|
return;
|
|
}
|
|
// We prefer to select the shorter code sequence rather than selecting add for
|
|
// positive values and sub for negatives ones, which would slightly improve
|
|
// the readability of generated code for some constants.
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(value, &shifter_op)) {
|
|
add(rd, rn, shifter_op, cond);
|
|
} else if (ShifterOperand::CanHold(-value, &shifter_op)) {
|
|
sub(rd, rn, shifter_op, cond);
|
|
} else {
|
|
ASSERT(rn != IP);
|
|
if (ShifterOperand::CanHold(~value, &shifter_op)) {
|
|
mvn(IP, shifter_op, cond);
|
|
add(rd, rn, ShifterOperand(IP), cond);
|
|
} else if (ShifterOperand::CanHold(~(-value), &shifter_op)) {
|
|
mvn(IP, shifter_op, cond);
|
|
sub(rd, rn, ShifterOperand(IP), cond);
|
|
} else {
|
|
movw(IP, Utils::Low16Bits(value), cond);
|
|
const uint16_t value_high = Utils::High16Bits(value);
|
|
if (value_high != 0) {
|
|
movt(IP, value_high, cond);
|
|
}
|
|
add(rd, rn, ShifterOperand(IP), cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::AddImmediateSetFlags(Register rd, Register rn, int32_t value,
|
|
Condition cond) {
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(value, &shifter_op)) {
|
|
adds(rd, rn, shifter_op, cond);
|
|
} else if (ShifterOperand::CanHold(-value, &shifter_op)) {
|
|
subs(rd, rn, shifter_op, cond);
|
|
} else {
|
|
ASSERT(rn != IP);
|
|
if (ShifterOperand::CanHold(~value, &shifter_op)) {
|
|
mvn(IP, shifter_op, cond);
|
|
adds(rd, rn, ShifterOperand(IP), cond);
|
|
} else if (ShifterOperand::CanHold(~(-value), &shifter_op)) {
|
|
mvn(IP, shifter_op, cond);
|
|
subs(rd, rn, ShifterOperand(IP), cond);
|
|
} else {
|
|
movw(IP, Utils::Low16Bits(value), cond);
|
|
const uint16_t value_high = Utils::High16Bits(value);
|
|
if (value_high != 0) {
|
|
movt(IP, value_high, cond);
|
|
}
|
|
adds(rd, rn, ShifterOperand(IP), cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::AddImmediateWithCarry(Register rd, Register rn, int32_t value,
|
|
Condition cond) {
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(value, &shifter_op)) {
|
|
adc(rd, rn, shifter_op, cond);
|
|
} else if (ShifterOperand::CanHold(-value - 1, &shifter_op)) {
|
|
sbc(rd, rn, shifter_op, cond);
|
|
} else {
|
|
ASSERT(rn != IP);
|
|
if (ShifterOperand::CanHold(~value, &shifter_op)) {
|
|
mvn(IP, shifter_op, cond);
|
|
adc(rd, rn, ShifterOperand(IP), cond);
|
|
} else if (ShifterOperand::CanHold(~(-value - 1), &shifter_op)) {
|
|
mvn(IP, shifter_op, cond);
|
|
sbc(rd, rn, ShifterOperand(IP), cond);
|
|
} else {
|
|
movw(IP, Utils::Low16Bits(value), cond);
|
|
const uint16_t value_high = Utils::High16Bits(value);
|
|
if (value_high != 0) {
|
|
movt(IP, value_high, cond);
|
|
}
|
|
adc(rd, rn, ShifterOperand(IP), cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::AndImmediate(Register rd, Register rs, int32_t imm,
|
|
Condition cond) {
|
|
ShifterOperand op;
|
|
if (ShifterOperand::CanHold(imm, &op)) {
|
|
and_(rd, rs, ShifterOperand(op), cond);
|
|
} else {
|
|
LoadImmediate(TMP, imm, cond);
|
|
and_(rd, rs, ShifterOperand(TMP), cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) {
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(value, &shifter_op)) {
|
|
cmp(rn, shifter_op, cond);
|
|
} else {
|
|
ASSERT(rn != IP);
|
|
LoadImmediate(IP, value, cond);
|
|
cmp(rn, ShifterOperand(IP), cond);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) {
|
|
ShifterOperand shifter_op;
|
|
if (ShifterOperand::CanHold(imm, &shifter_op)) {
|
|
tst(rn, shifter_op, cond);
|
|
} else {
|
|
LoadImmediate(IP, imm);
|
|
tst(rn, ShifterOperand(IP), cond);
|
|
}
|
|
}
|
|
|
|
void Assembler::IntegerDivide(Register result, Register left, Register right,
|
|
DRegister tmpl, DRegister tmpr) {
|
|
ASSERT(tmpl != tmpr);
|
|
if (CPUFeatures::integer_division_supported()) {
|
|
sdiv(result, left, right);
|
|
} else {
|
|
SRegister stmpl = static_cast<SRegister>(2 * tmpl);
|
|
SRegister stmpr = static_cast<SRegister>(2 * tmpr);
|
|
vmovsr(stmpl, left);
|
|
vcvtdi(tmpl, stmpl); // left is in tmpl.
|
|
vmovsr(stmpr, right);
|
|
vcvtdi(tmpr, stmpr); // right is in tmpr.
|
|
vdivd(tmpr, tmpl, tmpr);
|
|
vcvtid(stmpr, tmpr);
|
|
vmovrs(result, stmpr);
|
|
}
|
|
}
|
|
|
|
|
|
static int NumRegsBelowFP(RegList regs) {
|
|
int count = 0;
|
|
for (int i = 0; i < FP; i++) {
|
|
if ((regs & (1 << i)) != 0) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
void Assembler::EnterFrame(RegList regs, intptr_t frame_size) {
|
|
if (prologue_offset_ == -1) {
|
|
prologue_offset_ = CodeSize();
|
|
}
|
|
PushList(regs);
|
|
if ((regs & (1 << FP)) != 0) {
|
|
// Set FP to the saved previous FP.
|
|
add(FP, SP, ShifterOperand(4 * NumRegsBelowFP(regs)));
|
|
}
|
|
AddImmediate(SP, -frame_size);
|
|
}
|
|
|
|
|
|
void Assembler::LeaveFrame(RegList regs) {
|
|
ASSERT((regs & (1 << PC)) == 0); // Must not pop PC.
|
|
if ((regs & (1 << FP)) != 0) {
|
|
// Use FP to set SP.
|
|
sub(SP, FP, ShifterOperand(4 * NumRegsBelowFP(regs)));
|
|
}
|
|
PopList(regs);
|
|
}
|
|
|
|
|
|
void Assembler::Ret() {
|
|
bx(LR);
|
|
}
|
|
|
|
|
|
void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) {
|
|
// Reserve space for arguments and align frame before entering
|
|
// the C++ world.
|
|
AddImmediate(SP, -frame_space);
|
|
if (OS::ActivationFrameAlignment() > 1) {
|
|
bic(SP, SP, ShifterOperand(OS::ActivationFrameAlignment() - 1));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) {
|
|
// Preserve volatile CPU registers.
|
|
EnterFrame(kDartVolatileCpuRegs | (1 << FP) | (1 << LR), 0);
|
|
|
|
// Preserve all volatile FPU registers.
|
|
DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
|
|
DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
|
|
if ((lastv - firstv + 1) >= 16) {
|
|
DRegister mid = static_cast<DRegister>(firstv + 16);
|
|
vstmd(DB_W, SP, mid, lastv - mid + 1);
|
|
vstmd(DB_W, SP, firstv, 16);
|
|
} else {
|
|
vstmd(DB_W, SP, firstv, lastv - firstv + 1);
|
|
}
|
|
|
|
ReserveAlignedFrameSpace(frame_space);
|
|
}
|
|
|
|
|
|
void Assembler::LeaveCallRuntimeFrame() {
|
|
// SP might have been modified to reserve space for arguments
|
|
// and ensure proper alignment of the stack frame.
|
|
// We need to restore it before restoring registers.
|
|
const intptr_t kPushedRegistersSize =
|
|
kDartVolatileCpuRegCount * kWordSize +
|
|
kDartVolatileFpuRegCount * kFpuRegisterSize;
|
|
AddImmediate(SP, FP, -kPushedRegistersSize);
|
|
|
|
// Restore all volatile FPU registers.
|
|
DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
|
|
DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
|
|
if ((lastv - firstv + 1) >= 16) {
|
|
DRegister mid = static_cast<DRegister>(firstv + 16);
|
|
vldmd(IA_W, SP, firstv, 16);
|
|
vldmd(IA_W, SP, mid, lastv - mid + 1);
|
|
} else {
|
|
vldmd(IA_W, SP, firstv, lastv - firstv + 1);
|
|
}
|
|
|
|
// Restore volatile CPU registers.
|
|
LeaveFrame(kDartVolatileCpuRegs | (1 << FP) | (1 << LR));
|
|
}
|
|
|
|
|
|
void Assembler::CallRuntime(const RuntimeEntry& entry,
|
|
intptr_t argument_count) {
|
|
entry.Call(this, argument_count);
|
|
}
|
|
|
|
|
|
void Assembler::EnterDartFrame(intptr_t frame_size) {
|
|
const intptr_t offset = CodeSize();
|
|
|
|
// Save PC in frame for fast identification of corresponding code.
|
|
// Note that callee-saved registers can be added to the register list.
|
|
EnterFrame((1 << PP) | (1 << FP) | (1 << LR) | (1 << PC), 0);
|
|
|
|
if (offset != 0) {
|
|
// Adjust saved PC for any intrinsic code that could have been generated
|
|
// before a frame is created. Use PP as temp register.
|
|
ldr(PP, Address(FP, 2 * kWordSize));
|
|
AddImmediate(PP, PP, -offset);
|
|
str(PP, Address(FP, 2 * kWordSize));
|
|
}
|
|
|
|
// Setup pool pointer for this dart function.
|
|
LoadPoolPointer();
|
|
|
|
// Reserve space for locals.
|
|
AddImmediate(SP, -frame_size);
|
|
}
|
|
|
|
|
|
// On entry to a function compiled for OSR, the caller's frame pointer, the
|
|
// stack locals, and any copied parameters are already in place. The frame
|
|
// pointer is already set up. The PC marker is not correct for the
|
|
// optimized function and there may be extra space for spill slots to
|
|
// allocate. We must also set up the pool pointer for the function.
|
|
void Assembler::EnterOsrFrame(intptr_t extra_size) {
|
|
const intptr_t offset = CodeSize();
|
|
|
|
Comment("EnterOsrFrame");
|
|
mov(IP, ShifterOperand(PC));
|
|
|
|
AddImmediate(IP, -offset);
|
|
str(IP, Address(FP, kPcMarkerSlotFromFp * kWordSize));
|
|
|
|
// Setup pool pointer for this dart function.
|
|
LoadPoolPointer();
|
|
|
|
AddImmediate(SP, -extra_size);
|
|
}
|
|
|
|
|
|
void Assembler::LeaveDartFrame() {
|
|
LeaveFrame((1 << PP) | (1 << FP) | (1 << LR));
|
|
// Adjust SP for PC pushed in EnterDartFrame.
|
|
AddImmediate(SP, kWordSize);
|
|
}
|
|
|
|
|
|
void Assembler::EnterStubFrame(bool load_pp) {
|
|
// Push 0 as saved PC for stub frames.
|
|
mov(IP, ShifterOperand(LR));
|
|
mov(LR, ShifterOperand(0));
|
|
RegList regs = (1 << PP) | (1 << FP) | (1 << IP) | (1 << LR);
|
|
EnterFrame(regs, 0);
|
|
if (load_pp) {
|
|
// Setup pool pointer for this stub.
|
|
LoadPoolPointer();
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LeaveStubFrame() {
|
|
LeaveFrame((1 << PP) | (1 << FP) | (1 << LR));
|
|
// Adjust SP for null PC pushed in EnterStubFrame.
|
|
AddImmediate(SP, kWordSize);
|
|
}
|
|
|
|
|
|
void Assembler::TryAllocate(const Class& cls,
|
|
Label* failure,
|
|
Register instance_reg) {
|
|
ASSERT(failure != NULL);
|
|
if (FLAG_inline_alloc) {
|
|
Heap* heap = Isolate::Current()->heap();
|
|
const intptr_t instance_size = cls.instance_size();
|
|
LoadImmediate(instance_reg, heap->TopAddress());
|
|
ldr(instance_reg, Address(instance_reg, 0));
|
|
AddImmediate(instance_reg, instance_size);
|
|
|
|
// instance_reg: potential next object start.
|
|
LoadImmediate(IP, heap->EndAddress());
|
|
ldr(IP, Address(IP, 0));
|
|
cmp(IP, ShifterOperand(instance_reg));
|
|
// fail if heap end unsigned less than or equal to instance_reg.
|
|
b(failure, LS);
|
|
|
|
// Successfully allocated the object, now update top to point to
|
|
// next object start and store the class in the class field of object.
|
|
LoadImmediate(IP, heap->TopAddress());
|
|
str(instance_reg, Address(IP, 0));
|
|
|
|
ASSERT(instance_size >= kHeapObjectTag);
|
|
AddImmediate(instance_reg, -instance_size + kHeapObjectTag);
|
|
|
|
uword tags = 0;
|
|
tags = RawObject::SizeTag::update(instance_size, tags);
|
|
ASSERT(cls.id() != kIllegalCid);
|
|
tags = RawObject::ClassIdTag::update(cls.id(), tags);
|
|
LoadImmediate(IP, tags);
|
|
str(IP, FieldAddress(instance_reg, Object::tags_offset()));
|
|
} else {
|
|
b(failure);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Stop(const char* message) {
|
|
if (FLAG_print_stop_message) {
|
|
PushList((1 << R0) | (1 << IP) | (1 << LR)); // Preserve R0, IP, LR.
|
|
LoadImmediate(R0, reinterpret_cast<int32_t>(message));
|
|
// PrintStopMessage() preserves all registers.
|
|
BranchLink(&StubCode::PrintStopMessageLabel()); // Passing message in R0.
|
|
PopList((1 << R0) | (1 << IP) | (1 << LR)); // Restore R0, IP, LR.
|
|
}
|
|
// Emit the message address before the svc instruction, so that we can
|
|
// 'unstop' and continue execution in the simulator or jump to the next
|
|
// instruction in gdb.
|
|
Label stop;
|
|
b(&stop);
|
|
Emit(reinterpret_cast<int32_t>(message));
|
|
Bind(&stop);
|
|
svc(kStopMessageSvcCode);
|
|
}
|
|
|
|
|
|
int32_t Assembler::AddObject(const Object& obj) {
|
|
ASSERT(obj.IsNotTemporaryScopedHandle());
|
|
ASSERT(obj.IsOld());
|
|
if (object_pool_.IsNull()) {
|
|
// The object pool cannot be used in the vm isolate.
|
|
ASSERT(Isolate::Current() != Dart::vm_isolate());
|
|
object_pool_ = GrowableObjectArray::New(Heap::kOld);
|
|
}
|
|
for (intptr_t i = 0; i < object_pool_.Length(); i++) {
|
|
if (object_pool_.At(i) == obj.raw()) {
|
|
return i;
|
|
}
|
|
}
|
|
object_pool_.Add(obj, Heap::kOld);
|
|
return object_pool_.Length() - 1;
|
|
}
|
|
|
|
|
|
int32_t Assembler::AddExternalLabel(const ExternalLabel* label) {
|
|
if (object_pool_.IsNull()) {
|
|
// The object pool cannot be used in the vm isolate.
|
|
ASSERT(Isolate::Current() != Dart::vm_isolate());
|
|
object_pool_ = GrowableObjectArray::New(Heap::kOld);
|
|
}
|
|
const word address = label->address();
|
|
ASSERT(Utils::IsAligned(address, 4));
|
|
// The address is stored in the object array as a RawSmi.
|
|
const Smi& smi = Smi::Handle(Smi::New(address >> kSmiTagShift));
|
|
// Do not reuse an existing entry, since each reference may be patched
|
|
// independently.
|
|
object_pool_.Add(smi, Heap::kOld);
|
|
return object_pool_.Length() - 1;
|
|
}
|
|
|
|
|
|
static const char* cpu_reg_names[kNumberOfCpuRegisters] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "ctx", "pp", "fp", "ip", "sp", "lr", "pc",
|
|
};
|
|
|
|
|
|
const char* Assembler::RegisterName(Register reg) {
|
|
ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters));
|
|
return cpu_reg_names[reg];
|
|
}
|
|
|
|
|
|
static const char* fpu_reg_names[kNumberOfFpuRegisters] = {
|
|
"q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
|
|
#ifdef VFPv3_D32
|
|
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
|
|
#endif
|
|
};
|
|
|
|
|
|
const char* Assembler::FpuRegisterName(FpuRegister reg) {
|
|
ASSERT((0 <= reg) && (reg < kNumberOfFpuRegisters));
|
|
return fpu_reg_names[reg];
|
|
}
|
|
|
|
} // namespace dart
|
|
|
|
#endif // defined TARGET_ARCH_ARM
|