dart-sdk/runtime/bin/thread_fuchsia.cc
Ryan Macnak 63e6041ca9 [vm] Update to variadic FATAL.
TEST=ci
Change-Id: Ic6bc784605e10760bb28ea6df34242336a33b4d0
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/286947
Reviewed-by: Alexander Aprelev <aam@google.com>
Commit-Queue: Ryan Macnak <rmacnak@google.com>
2023-03-06 22:06:59 +00:00

284 lines
8.7 KiB
C++

// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h"
#if defined(DART_HOST_OS_FUCHSIA) && !defined(DART_USE_ABSL)
#include "bin/thread.h"
#include "bin/thread_fuchsia.h"
#include <errno.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <zircon/status.h>
#include <zircon/syscalls.h>
#include <zircon/threads.h>
#include <zircon/types.h>
#include "platform/assert.h"
#include "platform/utils.h"
namespace dart {
namespace bin {
#define VALIDATE_PTHREAD_RESULT(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_buf[kBufferSize]; \
FATAL("pthread error: %d (%s)", result, \
Utils::StrError(result, error_buf, kBufferSize)); \
}
#ifdef DEBUG
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) { \
const int kBufferSize = 1024; \
char error_buf[kBufferSize]; \
fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", __FILE__, __LINE__, \
result, Utils::StrError(result, error_buf, kBufferSize)); \
return result; \
}
#else
#define RETURN_ON_PTHREAD_FAILURE(result) \
if (result != 0) { \
return result; \
}
#endif
static void ComputeTimeSpecMicros(struct timespec* ts, int64_t micros) {
int64_t secs = micros / kMicrosecondsPerSecond;
int64_t nanos =
(micros - (secs * kMicrosecondsPerSecond)) * kNanosecondsPerMicrosecond;
int result = clock_gettime(CLOCK_MONOTONIC, ts);
ASSERT(result == 0);
ts->tv_sec += secs;
ts->tv_nsec += nanos;
if (ts->tv_nsec >= kNanosecondsPerSecond) {
ts->tv_sec += 1;
ts->tv_nsec -= kNanosecondsPerSecond;
}
}
class ThreadStartData {
public:
ThreadStartData(const char* name,
Thread::ThreadStartFunction function,
uword parameter)
: name_(name), function_(function), parameter_(parameter) {}
const char* name() const { return name_; }
Thread::ThreadStartFunction function() const { return function_; }
uword parameter() const { return parameter_; }
private:
const char* name_;
Thread::ThreadStartFunction function_;
uword parameter_;
DISALLOW_COPY_AND_ASSIGN(ThreadStartData);
};
// Dispatch to the thread start function provided by the caller. This trampoline
// is used to ensure that the thread is properly destroyed if the thread just
// exits.
static void* ThreadStart(void* data_ptr) {
ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr);
const char* name = data->name();
Thread::ThreadStartFunction function = data->function();
uword parameter = data->parameter();
delete data;
// Set the thread name.
char truncated_name[ZX_MAX_NAME_LEN];
snprintf(truncated_name, ZX_MAX_NAME_LEN, "%s", name);
zx_handle_t thread_handle = thrd_get_zx_handle(thrd_current());
zx_object_set_property(thread_handle, ZX_PROP_NAME, truncated_name,
ZX_MAX_NAME_LEN);
// Call the supplied thread start function handing it its parameters.
function(parameter);
return NULL;
}
int Thread::Start(const char* name,
ThreadStartFunction function,
uword parameter) {
pthread_attr_t attr;
int result = pthread_attr_init(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_setstacksize(&attr, Thread::GetMaxStackSize());
RETURN_ON_PTHREAD_FAILURE(result);
ThreadStartData* data = new ThreadStartData(name, function, parameter);
pthread_t tid;
result = pthread_create(&tid, &attr, ThreadStart, data);
RETURN_ON_PTHREAD_FAILURE(result);
result = pthread_attr_destroy(&attr);
RETURN_ON_PTHREAD_FAILURE(result);
return 0;
}
const ThreadId Thread::kInvalidThreadId = static_cast<ThreadId>(0);
intptr_t Thread::GetMaxStackSize() {
const int kStackSize = (128 * kWordSize * KB);
return kStackSize;
}
ThreadId Thread::GetCurrentThreadId() {
return pthread_self();
}
bool Thread::Compare(ThreadId a, ThreadId b) {
return (pthread_equal(a, b) != 0);
}
Mutex::Mutex() {
pthread_mutexattr_t attr;
int result = pthread_mutexattr_init(&attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &attr);
// Verify that creating a pthread_mutex succeeded.
VALIDATE_PTHREAD_RESULT(result);
result = pthread_mutexattr_destroy(&attr);
VALIDATE_PTHREAD_RESULT(result);
}
Mutex::~Mutex() {
int result = pthread_mutex_destroy(data_.mutex());
// Verify that the pthread_mutex was destroyed.
VALIDATE_PTHREAD_RESULT(result);
}
void Mutex::Lock() {
int result = pthread_mutex_lock(data_.mutex());
// Specifically check for dead lock to help debugging.
ASSERT(result != EDEADLK);
ASSERT(result == 0); // Verify no other errors.
// TODO(iposva): Do we need to track lock owners?
}
bool Mutex::TryLock() {
int result = pthread_mutex_trylock(data_.mutex());
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
// TODO(iposva): Do we need to track lock owners?
return true;
}
void Mutex::Unlock() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_mutex_unlock(data_.mutex());
// Specifically check for wrong thread unlocking to aid debugging.
ASSERT(result != EPERM);
ASSERT(result == 0); // Verify no other errors.
}
Monitor::Monitor() {
pthread_mutexattr_t mutex_attr;
int result = pthread_mutexattr_init(&mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
#if defined(DEBUG)
result = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK);
VALIDATE_PTHREAD_RESULT(result);
#endif // defined(DEBUG)
result = pthread_mutex_init(data_.mutex(), &mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_mutexattr_destroy(&mutex_attr);
VALIDATE_PTHREAD_RESULT(result);
pthread_condattr_t cond_attr;
result = pthread_condattr_init(&cond_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_init(data_.cond(), &cond_attr);
VALIDATE_PTHREAD_RESULT(result);
result = pthread_condattr_destroy(&cond_attr);
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::~Monitor() {
int result = pthread_mutex_destroy(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
result = pthread_cond_destroy(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void Monitor::Enter() {
int result = pthread_mutex_lock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
// TODO(iposva): Do we need to track lock owners?
}
void Monitor::Exit() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_mutex_unlock(data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
}
Monitor::WaitResult Monitor::Wait(int64_t millis) {
return WaitMicros(millis * kMicrosecondsPerMillisecond);
}
Monitor::WaitResult Monitor::WaitMicros(int64_t micros) {
// TODO(iposva): Do we need to track lock owners?
Monitor::WaitResult retval = kNotified;
if (micros == kNoTimeout) {
// Wait forever.
int result = pthread_cond_wait(data_.cond(), data_.mutex());
VALIDATE_PTHREAD_RESULT(result);
} else {
struct timespec ts;
ComputeTimeSpecMicros(&ts, micros);
int result = pthread_cond_timedwait(data_.cond(), data_.mutex(), &ts);
ASSERT((result == 0) || (result == ETIMEDOUT));
if (result == ETIMEDOUT) {
retval = kTimedOut;
}
}
return retval;
}
void Monitor::Notify() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_cond_signal(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
void Monitor::NotifyAll() {
// TODO(iposva): Do we need to track lock owners?
int result = pthread_cond_broadcast(data_.cond());
VALIDATE_PTHREAD_RESULT(result);
}
} // namespace bin
} // namespace dart
#endif // defined(DART_HOST_OS_FUCHSIA) && !defined(DART_USE_ABSL)