dart-sdk/runtime/vm/stub_code_x64.cc
Erik Corry 1d9ff70a08 [VM] Pick more compact instruction encodings on x64
Several tricks here:
* When zeroing registers we can use xorl instead of xorq because the 'l'
  variant will zero the top bits.
* test and 'and' instructions with immediate arguments can use 8-bit and 32 bit
  variants more heavily.
* mov reg, immediate can use more compact encodings when sign-extension is not
  needed.

Performance is better than +1% when measured on Dart2JS.

R=vegorov@google.com

Intel optimization manual says: "Assembly/Compiler Coding Rule 64. (H impact, M
generality) Use the 32-bit versions of instructions in 64-bit mode to reduce
code size unless the 64-bit version is necessary to access 64-bit data or
additional registers."
Bug:
Change-Id: I2a989315c45f8d8ebab719653fbfa2b18ebb77c9
Reviewed-on: https://dart-review.googlesource.com/23400
Commit-Queue: Erik Corry <erikcorry@google.com>
Reviewed-by: Vyacheslav Egorov <vegorov@google.com>
2017-11-24 10:53:17 +00:00

2264 lines
82 KiB
C++

// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/heap.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/resolver.h"
#include "vm/scavenger.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/tags.h"
#define __ assembler->
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool,
use_slow_path,
false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(bool, trace_optimized_ic_calls);
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of last argument in argument array.
// RSP + 8*R10 : address of first argument in argument array.
// RSP + 8*R10 + 8 : address of return value.
// RBX : address of the runtime function to call.
// R10 : number of arguments to the call.
// Must preserve callee saved registers R12 and R13.
void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) {
const intptr_t thread_offset = NativeArguments::thread_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), RBP);
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(RAX, Immediate(VMTag::kDartTagId));
__ cmpq(RAX, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing VM code.
__ movq(Assembler::VMTagAddress(), RBX);
// Reserve space for arguments and align frame before entering C++ world.
__ subq(RSP, Immediate(sizeof(NativeArguments)));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call runtime.
__ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs.
// There are no runtime calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
__ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments.
// Compute argv.
__ leaq(RAX, Address(RBP, R10, TIMES_8, kParamEndSlotFromFp * kWordSize));
__ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments.
__ addq(RAX, Immediate(1 * kWordSize)); // Retval is next to 1st argument.
__ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments.
#if defined(_WIN64)
ASSERT(sizeof(NativeArguments) > CallingConventions::kRegisterTransferLimit);
__ movq(CallingConventions::kArg1Reg, RSP);
#endif
__ CallCFunction(RBX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0));
__ LeaveStubFrame();
__ ret();
}
// Input parameters:
// RSP : points to return address.
// RDI : stop message (const char*).
// Must preserve all registers.
void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) {
__ EnterCallRuntimeFrame(0);
// Call the runtime leaf function. RDI already contains the parameter.
#if defined(_WIN64)
__ movq(CallingConventions::kArg1Reg, RDI);
#endif
__ CallRuntime(kPrintStopMessageRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ ret();
}
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of return value.
// RAX : address of first argument in argument array.
// RBX : address of the native function to call.
// R10 : argc_tag including number of arguments and function kind.
static void GenerateCallNativeWithWrapperStub(Assembler* assembler,
Address wrapper_address) {
const intptr_t native_args_struct_offset = 0;
const intptr_t thread_offset =
NativeArguments::thread_offset() + native_args_struct_offset;
const intptr_t argc_tag_offset =
NativeArguments::argc_tag_offset() + native_args_struct_offset;
const intptr_t argv_offset =
NativeArguments::argv_offset() + native_args_struct_offset;
const intptr_t retval_offset =
NativeArguments::retval_offset() + native_args_struct_offset;
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), RBP);
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(R8, Immediate(VMTag::kDartTagId));
__ cmpq(R8, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ movq(Assembler::VMTagAddress(), RBX);
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// RDI) and align frame before entering the C++ world.
__ subq(RSP, Immediate(sizeof(NativeArguments)));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call native function.
__ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs.
__ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments.
__ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments.
__ leaq(RAX, Address(RBP, 2 * kWordSize)); // Compute return value addr.
__ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments.
// Pass the pointer to the NativeArguments.
__ movq(CallingConventions::kArg1Reg, RSP);
// Pass pointer to function entrypoint.
__ movq(CallingConventions::kArg2Reg, RBX);
__ movq(RAX, wrapper_address);
__ CallCFunction(RAX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0));
__ LeaveStubFrame();
__ ret();
}
void StubCode::GenerateCallNoScopeNativeStub(Assembler* assembler) {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR, Thread::no_scope_native_wrapper_entry_point_offset()));
}
void StubCode::GenerateCallAutoScopeNativeStub(Assembler* assembler) {
GenerateCallNativeWithWrapperStub(
assembler,
Address(THR, Thread::auto_scope_native_wrapper_entry_point_offset()));
}
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of return value.
// RAX : address of first argument in argument array.
// RBX : address of the native function to call.
// R10 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallBootstrapNativeStub(Assembler* assembler) {
const intptr_t native_args_struct_offset = 0;
const intptr_t thread_offset =
NativeArguments::thread_offset() + native_args_struct_offset;
const intptr_t argc_tag_offset =
NativeArguments::argc_tag_offset() + native_args_struct_offset;
const intptr_t argv_offset =
NativeArguments::argv_offset() + native_args_struct_offset;
const intptr_t retval_offset =
NativeArguments::retval_offset() + native_args_struct_offset;
__ EnterStubFrame();
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), RBP);
#if defined(DEBUG)
{
Label ok;
// Check that we are always entering from Dart code.
__ movq(R8, Immediate(VMTag::kDartTagId));
__ cmpq(R8, Assembler::VMTagAddress());
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Not coming from Dart code.");
__ Bind(&ok);
}
#endif
// Mark that the thread is executing native code.
__ movq(Assembler::VMTagAddress(), RBX);
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// RDI) and align frame before entering the C++ world.
__ subq(RSP, Immediate(sizeof(NativeArguments)));
if (OS::ActivationFrameAlignment() > 1) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call native function.
__ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs.
__ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments.
__ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments.
__ leaq(RAX, Address(RBP, 2 * kWordSize)); // Compute return value addr.
__ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments.
// Pass the pointer to the NativeArguments.
__ movq(CallingConventions::kArg1Reg, RSP);
__ CallCFunction(RBX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Reset exit frame information in Isolate structure.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0));
__ LeaveStubFrame();
__ ret();
}
// Input parameters:
// R10: arguments descriptor array.
void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ CallRuntime(kPatchStaticCallRuntimeEntry, 0);
__ popq(CODE_REG); // Get Code object result.
__ popq(R10); // Restore arguments descriptor array.
// Remove the stub frame as we are about to jump to the dart function.
__ LeaveStubFrame();
__ movq(RBX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jmp(RBX);
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// R10: arguments descriptor array.
void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) {
// Load code pointer to this stub from the thread:
// The one that is passed in, is not correct - it points to the code object
// that needs to be replaced.
__ movq(CODE_REG, Address(THR, Thread::fix_callers_target_code_offset()));
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ CallRuntime(kFixCallersTargetRuntimeEntry, 0);
__ popq(CODE_REG); // Get Code object.
__ popq(R10); // Restore arguments descriptor array.
__ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ LeaveStubFrame();
__ jmp(RAX);
__ int3();
}
// Called from object allocate instruction when the allocation stub has been
// disabled.
void StubCode::GenerateFixAllocationStubTargetStub(Assembler* assembler) {
// Load code pointer to this stub from the thread:
// The one that is passed in, is not correct - it points to the code object
// that needs to be replaced.
__ movq(CODE_REG, Address(THR, Thread::fix_allocation_stub_code_offset()));
__ EnterStubFrame();
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0);
__ popq(CODE_REG); // Get Code object.
__ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ LeaveStubFrame();
__ jmp(RAX);
__ int3();
}
// Input parameters:
// R10: smi-tagged argument count, may be zero.
// RBP[kParamEndSlotFromFp + 1]: last argument.
static void PushArgumentsArray(Assembler* assembler) {
__ LoadObject(R12, Object::null_object());
// Allocate array to store arguments of caller.
__ movq(RBX, R12); // Null element type for raw Array.
__ Call(*StubCode::AllocateArray_entry());
__ SmiUntag(R10);
// RAX: newly allocated array.
// R10: length of the array (was preserved by the stub).
__ pushq(RAX); // Array is in RAX and on top of stack.
__ leaq(R12, Address(RBP, R10, TIMES_8, kParamEndSlotFromFp * kWordSize));
__ leaq(RBX, FieldAddress(RAX, Array::data_offset()));
// R12: address of first argument on stack.
// RBX: address of first argument in array.
Label loop, loop_condition;
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ jmp(&loop_condition, kJumpLength);
__ Bind(&loop);
__ movq(RDI, Address(R12, 0));
// Generational barrier is needed, array is not necessarily in new space.
__ StoreIntoObject(RAX, Address(RBX, 0), RDI);
__ addq(RBX, Immediate(kWordSize));
__ subq(R12, Immediate(kWordSize));
__ Bind(&loop_condition);
__ decq(R10);
__ j(POSITIVE, &loop, Assembler::kNearJump);
}
// Used by eager and lazy deoptimization. Preserve result in RAX if necessary.
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterDartFrame(0, PP, kNoRegister) below:
// +------------------+
// | Saved PP | <- PP
// +------------------+
// | PC marker | <- TOS
// +------------------+
// | Saved FP | <- FP of stub
// +------------------+
// | return-address | (deoptimization point)
// +------------------+
// | Saved CODE_REG |
// +------------------+
// | ... | <- SP of optimized frame
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
DeoptStubKind kind) {
// DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ EnterStubFrame();
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_result_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - RAX);
const intptr_t saved_exception_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - RAX);
const intptr_t saved_stacktrace_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - RDX);
// Result in RAX is preserved as part of pushing all registers below.
// Push registers in their enumeration order: lowest register number at
// lowest address.
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) {
if (i == CODE_REG) {
// Save the original value of CODE_REG pushed before invoking this stub
// instead of the value used to call this stub.
__ pushq(Address(RBP, 2 * kWordSize));
} else {
__ pushq(static_cast<Register>(i));
}
}
__ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize));
intptr_t offset = 0;
for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
__ movups(Address(RSP, offset), xmm_reg);
offset += kFpuRegisterSize;
}
// Pass address of saved registers block.
__ movq(CallingConventions::kArg1Reg, RSP);
bool is_lazy =
(kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow);
__ movq(CallingConventions::kArg2Reg, Immediate(is_lazy ? 1 : 0));
__ ReserveAlignedFrameSpace(0); // Ensure stack is aligned before the call.
__ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2);
// Result (RAX) is stack-size (FP - SP) in bytes.
if (kind == kLazyDeoptFromReturn) {
// Restore result into RBX temporarily.
__ movq(RBX, Address(RBP, saved_result_slot_from_fp * kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore result into RBX temporarily.
__ movq(RBX, Address(RBP, saved_exception_slot_from_fp * kWordSize));
__ movq(RDX, Address(RBP, saved_stacktrace_slot_from_fp * kWordSize));
}
// There is a Dart Frame on the stack. We must restore PP and leave frame.
__ RestoreCodePointer();
__ LeaveStubFrame();
__ popq(RCX); // Preserve return address.
__ movq(RSP, RBP); // Discard optimized frame.
__ subq(RSP, RAX); // Reserve space for deoptimized frame.
__ pushq(RCX); // Restore return address.
// DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ EnterStubFrame();
if (kind == kLazyDeoptFromReturn) {
__ pushq(RBX); // Preserve result as first local.
} else if (kind == kLazyDeoptFromThrow) {
__ pushq(RBX); // Preserve exception as first local.
__ pushq(RDX); // Preserve stacktrace as second local.
}
__ ReserveAlignedFrameSpace(0);
// Pass last FP as a parameter.
__ movq(CallingConventions::kArg1Reg, RBP);
__ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1);
if (kind == kLazyDeoptFromReturn) {
// Restore result into RBX.
__ movq(RBX, Address(RBP, kFirstLocalSlotFromFp * kWordSize));
} else if (kind == kLazyDeoptFromThrow) {
// Restore exception into RBX.
__ movq(RBX, Address(RBP, kFirstLocalSlotFromFp * kWordSize));
// Restore stacktrace into RDX.
__ movq(RDX, Address(RBP, (kFirstLocalSlotFromFp - 1) * kWordSize));
}
// Code above cannot cause GC.
// There is a Dart Frame on the stack. We must restore PP and leave frame.
__ RestoreCodePointer();
__ LeaveStubFrame();
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
// Enter stub frame with loading PP. The caller's PP is not materialized yet.
__ EnterStubFrame();
if (kind == kLazyDeoptFromReturn) {
__ pushq(RBX); // Preserve result, it will be GC-d here.
} else if (kind == kLazyDeoptFromThrow) {
__ pushq(RBX); // Preserve exception.
__ pushq(RDX); // Preserve stacktrace.
}
__ pushq(Immediate(Smi::RawValue(0))); // Space for the result.
__ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0);
// Result tells stub how many bytes to remove from the expression stack
// of the bottom-most frame. They were used as materialization arguments.
__ popq(RBX);
__ SmiUntag(RBX);
if (kind == kLazyDeoptFromReturn) {
__ popq(RAX); // Restore result.
} else if (kind == kLazyDeoptFromThrow) {
__ popq(RDX); // Restore stacktrace.
__ popq(RAX); // Restore exception.
}
__ LeaveStubFrame();
__ popq(RCX); // Pop return address.
__ addq(RSP, RBX); // Remove materialization arguments.
__ pushq(RCX); // Push return address.
// The caller is responsible for emitting the return instruction.
}
// RAX: result, must be preserved
void StubCode::GenerateDeoptimizeLazyFromReturnStub(Assembler* assembler) {
// Push zap value instead of CODE_REG for lazy deopt.
__ pushq(Immediate(kZapCodeReg));
// Return address for "call" to deopt stub.
__ pushq(Immediate(kZapReturnAddress));
__ movq(CODE_REG, Address(THR, Thread::lazy_deopt_from_return_stub_offset()));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn);
__ ret();
}
// RAX: exception, must be preserved
// RDX: stacktrace, must be preserved
void StubCode::GenerateDeoptimizeLazyFromThrowStub(Assembler* assembler) {
// Push zap value instead of CODE_REG for lazy deopt.
__ pushq(Immediate(kZapCodeReg));
// Return address for "call" to deopt stub.
__ pushq(Immediate(kZapReturnAddress));
__ movq(CODE_REG, Address(THR, Thread::lazy_deopt_from_throw_stub_offset()));
GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow);
__ ret();
}
void StubCode::GenerateDeoptimizeStub(Assembler* assembler) {
GenerateDeoptimizationSequence(assembler, kEagerDeopt);
__ ret();
}
static void GenerateDispatcherCode(Assembler* assembler,
Label* call_target_function) {
__ Comment("NoSuchMethodDispatch");
// When lazily generated invocation dispatchers are disabled, the
// miss-handler may return null.
__ CompareObject(RAX, Object::null_object());
__ j(NOT_EQUAL, call_target_function);
__ EnterStubFrame();
// Load the receiver.
__ movq(RDI, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ movq(RAX, Address(RBP, RDI, TIMES_HALF_WORD_SIZE,
kParamEndSlotFromFp * kWordSize));
__ pushq(Immediate(0)); // Setup space on stack for result.
__ pushq(RAX); // Receiver.
__ pushq(RBX); // ICData/MegamorphicCache.
__ pushq(R10); // Arguments descriptor array.
// Adjust arguments count.
__ cmpq(FieldAddress(R10, ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
__ movq(R10, RDI);
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addq(R10, Immediate(Smi::RawValue(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// R10: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
const intptr_t kNumArgs = 4;
__ CallRuntime(kInvokeNoSuchMethodDispatcherRuntimeEntry, kNumArgs);
__ Drop(4);
__ popq(RAX); // Return value.
__ LeaveStubFrame();
__ ret();
}
void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver into RAX. The argument count in the arguments
// descriptor in R10 is a smi.
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// Three words (saved pp, saved fp, stub's pc marker)
// in the stack above the return address.
__ movq(RAX,
Address(RSP, RAX, TIMES_4, kSavedAboveReturnAddress * kWordSize));
// Preserve IC data and arguments descriptor.
__ pushq(RBX);
__ pushq(R10);
// Space for the result of the runtime call.
__ pushq(Immediate(0));
__ pushq(RAX); // Receiver.
__ pushq(RBX); // IC data.
__ pushq(R10); // Arguments descriptor.
__ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3);
// Discard arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX); // Return value from the runtime call (function).
__ popq(R10); // Restore arguments descriptor.
__ popq(RBX); // Restore IC data.
__ RestoreCodePointer();
__ LeaveStubFrame();
if (!FLAG_lazy_dispatchers) {
Label call_target_function;
GenerateDispatcherCode(assembler, &call_target_function);
__ Bind(&call_target_function);
}
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, Function::entry_point_offset()));
__ jmp(RCX);
}
// Called for inline allocation of arrays.
// Input parameters:
// R10 : Array length as Smi.
// RBX : array element type (either NULL or an instantiated type).
// NOTE: R10 cannot be clobbered here as the caller relies on it being saved.
// The newly allocated object is returned in RAX.
void StubCode::GenerateAllocateArrayStub(Assembler* assembler) {
Label slow_case;
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)).
__ movq(RDI, R10); // Array Length.
// Check that length is a positive Smi.
__ testq(RDI, Immediate(kSmiTagMask));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(NOT_ZERO, &slow_case);
}
__ cmpq(RDI, Immediate(0));
__ j(LESS, &slow_case);
// Check for maximum allowed length.
const Immediate& max_len = Immediate(
reinterpret_cast<int64_t>(Smi::New(Array::kMaxNewSpaceElements)));
__ cmpq(RDI, max_len);
__ j(GREATER, &slow_case);
// Check for allocation tracing.
NOT_IN_PRODUCT(
__ MaybeTraceAllocation(kArrayCid, &slow_case, Assembler::kFarJump));
const intptr_t fixed_size_plus_alignment_padding =
sizeof(RawArray) + kObjectAlignment - 1;
// RDI is a Smi.
__ leaq(RDI, Address(RDI, TIMES_4, fixed_size_plus_alignment_padding));
ASSERT(kSmiTagShift == 1);
__ andq(RDI, Immediate(-kObjectAlignment));
const intptr_t cid = kArrayCid;
NOT_IN_PRODUCT(Heap::Space space = Heap::kNew);
__ movq(RAX, Address(THR, Thread::top_offset()));
// RDI: allocation size.
__ movq(RCX, RAX);
__ addq(RCX, RDI);
__ j(CARRY, &slow_case);
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// RCX: potential next object start.
// RDI: allocation size.
__ cmpq(RCX, Address(THR, Thread::end_offset()));
__ j(ABOVE_EQUAL, &slow_case);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ movq(Address(THR, Thread::top_offset()), RCX);
__ addq(RAX, Immediate(kHeapObjectTag));
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, RDI, space));
// Initialize the tags.
// RAX: new object start as a tagged pointer.
// RDI: allocation size.
{
Label size_tag_overflow, done;
__ cmpq(RDI, Immediate(RawObject::SizeTag::kMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shlq(RDI, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&size_tag_overflow);
__ LoadImmediate(RDI, Immediate(0));
__ Bind(&done);
// Get the class index and insert it into the tags.
__ orq(RDI, Immediate(RawObject::ClassIdTag::encode(cid)));
__ movq(FieldAddress(RAX, Array::tags_offset()), RDI); // Tags.
}
// RAX: new object start as a tagged pointer.
// Store the type argument field.
// No generational barrier needed, since we store into a new object.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, Array::type_arguments_offset()), RBX);
// Set the length field.
__ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, Array::length_offset()),
R10);
// Initialize all array elements to raw_null.
// RAX: new object start as a tagged pointer.
// RCX: new object end address.
// RDI: iterator which initially points to the start of the variable
// data area to be initialized.
__ LoadObject(R12, Object::null_object());
__ leaq(RDI, FieldAddress(RAX, sizeof(RawArray)));
Label done;
Label init_loop;
__ Bind(&init_loop);
__ cmpq(RDI, RCX);
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(ABOVE_EQUAL, &done, kJumpLength);
// No generational barrier needed, since we are storing null.
__ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12);
__ addq(RDI, Immediate(kWordSize));
__ jmp(&init_loop, kJumpLength);
__ Bind(&done);
__ ret(); // returns the newly allocated object in RAX.
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
__ pushq(Immediate(0));
__ pushq(R10); // Array length as Smi.
__ pushq(RBX); // Element type.
__ CallRuntime(kAllocateArrayRuntimeEntry, 2);
__ popq(RAX); // Pop element type argument.
__ popq(R10); // Pop array length argument.
__ popq(RAX); // Pop return value from return slot.
__ LeaveStubFrame();
__ ret();
}
// Called when invoking Dart code from C++ (VM code).
// Input parameters:
// RSP : points to return address.
// RDI : target code
// RSI : arguments descriptor array.
// RDX : arguments array.
// RCX : current thread.
void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
// Save frame pointer coming in.
__ EnterFrame(0);
const Register kTargetCodeReg = CallingConventions::kArg1Reg;
const Register kArgDescReg = CallingConventions::kArg2Reg;
const Register kArgsReg = CallingConventions::kArg3Reg;
const Register kThreadReg = CallingConventions::kArg4Reg;
// Push code object to PC marker slot.
__ pushq(Address(kThreadReg, Thread::invoke_dart_code_stub_offset()));
// At this point, the stack looks like:
// | stub code object
// | saved RBP | <-- RBP
// | saved PC (return to DartEntry::InvokeFunction) |
const intptr_t kInitialOffset = 2;
// Save arguments descriptor array.
const intptr_t kArgumentsDescOffset = -(kInitialOffset)*kWordSize;
__ pushq(kArgDescReg);
// Save C++ ABI callee-saved registers.
__ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters,
CallingConventions::kCalleeSaveXmmRegisters);
// If any additional (or fewer) values are pushed, the offsets in
// kExitLinkSlotFromEntryFp will need to be changed.
// Set up THR, which caches the current thread in Dart code.
if (THR != kThreadReg) {
__ movq(THR, kThreadReg);
}
// Save the current VMTag on the stack.
__ movq(RAX, Assembler::VMTagAddress());
__ pushq(RAX);
// Mark that the thread is executing Dart code.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Save top resource and top exit frame info. Use RAX as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ movq(RAX, Address(THR, Thread::top_resource_offset()));
__ pushq(RAX);
__ movq(Address(THR, Thread::top_resource_offset()), Immediate(0));
__ movq(RAX, Address(THR, Thread::top_exit_frame_info_offset()));
// The constant kExitLinkSlotFromEntryFp must be kept in sync with the
// code below.
__ pushq(RAX);
#if defined(DEBUG)
{
Label ok;
__ leaq(RAX, Address(RBP, kExitLinkSlotFromEntryFp * kWordSize));
__ cmpq(RAX, RSP);
__ j(EQUAL, &ok);
__ Stop("kExitLinkSlotFromEntryFp mismatch");
__ Bind(&ok);
}
#endif
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0));
// Load arguments descriptor array into R10, which is passed to Dart code.
__ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle));
// Push arguments. At this point we only need to preserve kTargetCodeReg.
ASSERT(kTargetCodeReg != RDX);
// No need to check for type args, disallowed by DartEntry::InvokeFunction.
// Load number of arguments into RBX.
__ movq(RBX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ SmiUntag(RBX);
// Compute address of 'arguments array' data area into RDX.
__ movq(RDX, Address(kArgsReg, VMHandles::kOffsetOfRawPtrInHandle));
__ leaq(RDX, FieldAddress(RDX, Array::data_offset()));
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ j(ZERO, &done_push_arguments, Assembler::kNearJump);
__ LoadImmediate(RAX, Immediate(0));
__ Bind(&push_arguments);
__ pushq(Address(RDX, RAX, TIMES_8, 0));
__ incq(RAX);
__ cmpq(RAX, RBX);
__ j(LESS, &push_arguments, Assembler::kNearJump);
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
__ xorq(PP, PP); // GC-safe value into PP.
__ movq(CODE_REG,
Address(kTargetCodeReg, VMHandles::kOffsetOfRawPtrInHandle));
__ movq(kTargetCodeReg, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ call(kTargetCodeReg); // R10 is the arguments descriptor array.
// Read the saved arguments descriptor array to obtain the number of passed
// arguments.
__ movq(kArgDescReg, Address(RBP, kArgumentsDescOffset));
__ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle));
__ movq(RDX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// Get rid of arguments pushed on the stack.
__ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi.
// Restore the saved top exit frame info and top resource back into the
// Isolate structure.
__ popq(Address(THR, Thread::top_exit_frame_info_offset()));
__ popq(Address(THR, Thread::top_resource_offset()));
// Restore the current VMTag from the stack.
__ popq(Assembler::VMTagAddress());
// Restore C++ ABI callee-saved registers.
__ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters,
CallingConventions::kCalleeSaveXmmRegisters);
__ set_constant_pool_allowed(false);
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
// Called for inline allocation of contexts.
// Input:
// R10: number of context variables.
// Output:
// RAX: new allocated RawContext object.
void StubCode::GenerateAllocateContextStub(Assembler* assembler) {
__ LoadObject(R9, Object::null_object());
if (FLAG_inline_alloc) {
Label slow_case;
// First compute the rounded instance size.
// R10: number of context variables.
intptr_t fixed_size_plus_alignment_padding =
(sizeof(RawContext) + kObjectAlignment - 1);
__ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding));
__ andq(R13, Immediate(-kObjectAlignment));
// Check for allocation tracing.
NOT_IN_PRODUCT(
__ MaybeTraceAllocation(kContextCid, &slow_case, Assembler::kFarJump));
// Now allocate the object.
// R10: number of context variables.
const intptr_t cid = kContextCid;
NOT_IN_PRODUCT(Heap::Space space = Heap::kNew);
__ movq(RAX, Address(THR, Thread::top_offset()));
__ addq(R13, RAX);
// Check if the allocation fits into the remaining space.
// RAX: potential new object.
// R13: potential next object start.
// R10: number of context variables.
__ cmpq(R13, Address(THR, Thread::end_offset()));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// RAX: new object.
// R13: next object start.
// R10: number of context variables.
__ movq(Address(THR, Thread::top_offset()), R13);
// R13: Size of allocation in bytes.
__ subq(R13, RAX);
__ addq(RAX, Immediate(kHeapObjectTag));
// Generate isolate-independent code to allow sharing between isolates.
NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, R13, space));
// Calculate the size tag.
// RAX: new object.
// R10: number of context variables.
{
Label size_tag_overflow, done;
__ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding));
__ andq(R13, Immediate(-kObjectAlignment));
__ cmpq(R13, Immediate(RawObject::SizeTag::kMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shlq(R13, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2));
__ jmp(&done);
__ Bind(&size_tag_overflow);
// Set overflow size tag value.
__ LoadImmediate(R13, Immediate(0));
__ Bind(&done);
// RAX: new object.
// R10: number of context variables.
// R13: size and bit tags.
__ orq(R13, Immediate(RawObject::ClassIdTag::encode(cid)));
__ movq(FieldAddress(RAX, Context::tags_offset()), R13); // Tags.
}
// Setup up number of context variables field.
// RAX: new object.
// R10: number of context variables as integer value (not object).
__ movq(FieldAddress(RAX, Context::num_variables_offset()), R10);
// Setup the parent field.
// RAX: new object.
// R10: number of context variables.
// No generational barrier needed, since we are storing null.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, Context::parent_offset()), R9);
// Initialize the context variables.
// RAX: new object.
// R10: number of context variables.
{
Label loop, entry;
__ leaq(R13, FieldAddress(RAX, Context::variable_offset(0)));
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ jmp(&entry, kJumpLength);
__ Bind(&loop);
__ decq(R10);
// No generational barrier needed, since we are storing null.
__ StoreIntoObjectNoBarrier(RAX, Address(R13, R10, TIMES_8, 0), R9);
__ Bind(&entry);
__ cmpq(R10, Immediate(0));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
}
// Done allocating and initializing the context.
// RAX: new object.
__ ret();
__ Bind(&slow_case);
}
// Create a stub frame.
__ EnterStubFrame();
__ pushq(R9); // Setup space on stack for the return value.
__ SmiTag(R10);
__ pushq(R10); // Push number of context variables.
__ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context.
__ popq(RAX); // Pop number of context variables argument.
__ popq(RAX); // Pop the new context object.
// RAX: new object
// Restore the frame pointer.
__ LeaveStubFrame();
__ ret();
}
// Helper stub to implement Assembler::StoreIntoObject.
// Input parameters:
// RDX: Address being stored
void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) {
// Save registers being destroyed.
__ pushq(RAX);
__ pushq(RCX);
Label add_to_buffer;
// Check whether this object has already been remembered. Skip adding to the
// store buffer if the object is in the store buffer already.
// Spilled: RAX, RCX
// RDX: Address being stored
Label reload;
__ Bind(&reload);
__ movl(RAX, FieldAddress(RDX, Object::tags_offset()));
__ testl(RAX, Immediate(1 << RawObject::kRememberedBit));
__ j(EQUAL, &add_to_buffer, Assembler::kNearJump);
__ popq(RCX);
__ popq(RAX);
__ ret();
// Update the tags that this object has been remembered.
// Note that we use 32 bit operations here to match the size of the
// background sweeper which is also manipulating this 32 bit word.
// RDX: Address being stored
// RAX: Current tag value
__ Bind(&add_to_buffer);
__ movl(RCX, RAX);
__ orl(RCX, Immediate(1 << RawObject::kRememberedBit));
// Compare the tag word with RAX, update to RCX if unchanged.
__ LockCmpxchgl(FieldAddress(RDX, Object::tags_offset()), RCX);
__ j(NOT_EQUAL, &reload);
// Load the StoreBuffer block out of the thread. Then load top_ out of the
// StoreBufferBlock and add the address to the pointers_.
// RDX: Address being stored
__ movq(RAX, Address(THR, Thread::store_buffer_block_offset()));
__ movl(RCX, Address(RAX, StoreBufferBlock::top_offset()));
__ movq(Address(RAX, RCX, TIMES_8, StoreBufferBlock::pointers_offset()), RDX);
// Increment top_ and check for overflow.
// RCX: top_
// RAX: StoreBufferBlock
Label L;
__ incq(RCX);
__ movl(Address(RAX, StoreBufferBlock::top_offset()), RCX);
__ cmpl(RCX, Immediate(StoreBufferBlock::kSize));
// Restore values.
__ popq(RCX);
__ popq(RAX);
__ j(EQUAL, &L, Assembler::kNearJump);
__ ret();
// Handle overflow: Call the runtime leaf function.
__ Bind(&L);
// Setup frame, push callee-saved registers.
__ EnterCallRuntimeFrame(0);
__ movq(CallingConventions::kArg1Reg, THR);
__ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ ret();
}
// Called for inline allocation of objects.
// Input parameters:
// RSP + 8 : type arguments object (only if class is parameterized).
// RSP : points to return address.
void StubCode::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
const intptr_t kObjectTypeArgumentsOffset = 1 * kWordSize;
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized = cls.NumTypeArguments() > 0;
ASSERT(!is_cls_parameterized ||
(cls.type_arguments_field_offset() != Class::kNoTypeArguments));
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12; // In words.
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size > 0);
__ LoadObject(R9, Object::null_object());
if (is_cls_parameterized) {
__ movq(RDX, Address(RSP, kObjectTypeArgumentsOffset));
// RDX: instantiated type arguments.
}
Isolate* isolate = Isolate::Current();
if (FLAG_inline_alloc && Heap::IsAllocatableInNewSpace(instance_size) &&
!cls.TraceAllocation(isolate)) {
Label slow_case;
// Allocate the object and update top to point to
// next object start and initialize the allocated object.
// RDX: instantiated type arguments (if is_cls_parameterized).
NOT_IN_PRODUCT(Heap::Space space = Heap::kNew);
__ movq(RAX, Address(THR, Thread::top_offset()));
__ leaq(RBX, Address(RAX, instance_size));
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// RBX: potential next object start.
__ cmpq(RBX, Address(THR, Thread::end_offset()));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
__ movq(Address(THR, Thread::top_offset()), RBX);
NOT_IN_PRODUCT(__ UpdateAllocationStats(cls.id(), space));
// RAX: new object start (untagged).
// RBX: next object start.
// RDX: new object type arguments (if is_cls_parameterized).
// Set the tags.
uint32_t tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
// 64 bit store also zeros the identity hash field.
__ movq(Address(RAX, Instance::tags_offset()), Immediate(tags));
__ addq(RAX, Immediate(kHeapObjectTag));
// Initialize the remaining words of the object.
// RAX: new object (tagged).
// RBX: next object start.
// RDX: new object type arguments (if is_cls_parameterized).
// R9: raw null.
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = Instance::NextFieldOffset();
current_offset < instance_size; current_offset += kWordSize) {
__ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, current_offset), R9);
}
} else {
__ leaq(RCX, FieldAddress(RAX, Instance::NextFieldOffset()));
// Loop until the whole object is initialized.
// RAX: new object (tagged).
// RBX: next object start.
// RCX: next word to be initialized.
// RDX: new object type arguments (if is_cls_parameterized).
Label init_loop;
Label done;
__ Bind(&init_loop);
__ cmpq(RCX, RBX);
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(ABOVE_EQUAL, &done, kJumpLength);
__ StoreIntoObjectNoBarrier(RAX, Address(RCX, 0), R9);
__ addq(RCX, Immediate(kWordSize));
__ jmp(&init_loop, Assembler::kNearJump);
__ Bind(&done);
}
if (is_cls_parameterized) {
// RAX: new object (tagged).
// RDX: new object type arguments.
// Set the type arguments in the new object.
intptr_t offset = cls.type_arguments_field_offset();
__ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, offset), RDX);
}
// Done allocating and initializing the instance.
// RAX: new object (tagged).
__ ret();
__ Bind(&slow_case);
}
// If is_cls_parameterized:
// RDX: new object type arguments.
// Create a stub frame.
__ EnterStubFrame(); // Uses PP to access class object.
__ pushq(R9); // Setup space on stack for return value.
__ PushObject(cls); // Push class of object to be allocated.
if (is_cls_parameterized) {
__ pushq(RDX); // Push type arguments of object to be allocated.
} else {
__ pushq(R9); // Push null type arguments.
}
__ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object.
__ popq(RAX); // Pop argument (type arguments of object).
__ popq(RAX); // Pop argument (class of object).
__ popq(RAX); // Pop result (newly allocated object).
// RAX: new object
// Restore the frame pointer.
__ LeaveStubFrame();
__ ret();
}
// Called for invoking "dynamic noSuchMethod(Invocation invocation)" function
// from the entry code of a dart function after an error in passed argument
// name or number is detected.
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of last argument.
// R10 : arguments descriptor array.
void StubCode::GenerateCallClosureNoSuchMethodStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ movq(R13, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ movq(RAX, Address(RBP, R13, TIMES_4, kParamEndSlotFromFp * kWordSize));
__ pushq(Immediate(0)); // Result slot.
__ pushq(RAX); // Receiver.
__ pushq(R10); // Arguments descriptor array.
// Adjust arguments count.
__ cmpq(FieldAddress(R10, ArgumentsDescriptor::type_args_len_offset()),
Immediate(0));
__ movq(R10, R13);
Label args_count_ok;
__ j(EQUAL, &args_count_ok, Assembler::kNearJump);
__ addq(R10, Immediate(Smi::RawValue(1))); // Include the type arguments.
__ Bind(&args_count_ok);
// R10: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
const intptr_t kNumArgs = 3;
__ CallRuntime(kInvokeClosureNoSuchMethodRuntimeEntry, kNumArgs);
// noSuchMethod on closures always throws an error, so it will never return.
__ int3();
}
// Cannot use function object from ICData as it may be the inlined
// function and not the top-scope function.
void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) {
Register ic_reg = RBX;
Register func_reg = RDI;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ pushq(func_reg); // Preserve
__ pushq(ic_reg); // Preserve.
__ pushq(ic_reg); // Argument.
__ pushq(func_reg); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry, 2);
__ popq(RAX); // Discard argument;
__ popq(RAX); // Discard argument;
__ popq(ic_reg); // Restore.
__ popq(func_reg); // Restore.
__ LeaveStubFrame();
}
__ incl(FieldAddress(func_reg, Function::usage_counter_offset()));
}
// Loads function into 'temp_reg', preserves 'ic_reg'.
void StubCode::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
if (FLAG_optimization_counter_threshold >= 0) {
Register ic_reg = RBX;
Register func_reg = temp_reg;
ASSERT(ic_reg != func_reg);
__ Comment("Increment function counter");
__ movq(func_reg, FieldAddress(ic_reg, ICData::owner_offset()));
__ incl(FieldAddress(func_reg, Function::usage_counter_offset()));
}
}
// Note: RBX must be preserved.
// Attempt a quick Smi operation for known operations ('kind'). The ICData
// must have been primed with a Smi/Smi check that will be used for counting
// the invocations.
static void EmitFastSmiOp(Assembler* assembler,
Token::Kind kind,
intptr_t num_args,
Label* not_smi_or_overflow) {
__ Comment("Fast Smi op");
ASSERT(num_args == 2);
__ movq(RCX, Address(RSP, +1 * kWordSize)); // Right
__ movq(RAX, Address(RSP, +2 * kWordSize)); // Left.
__ movq(R13, RCX);
__ orq(R13, RAX);
__ testq(R13, Immediate(kSmiTagMask));
__ j(NOT_ZERO, not_smi_or_overflow);
switch (kind) {
case Token::kADD: {
__ addq(RAX, RCX);
__ j(OVERFLOW, not_smi_or_overflow);
break;
}
case Token::kSUB: {
__ subq(RAX, RCX);
__ j(OVERFLOW, not_smi_or_overflow);
break;
}
case Token::kEQ: {
Label done, is_true;
__ cmpq(RAX, RCX);
__ j(EQUAL, &is_true, Assembler::kNearJump);
__ LoadObject(RAX, Bool::False());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_true);
__ LoadObject(RAX, Bool::True());
__ Bind(&done);
break;
}
default:
UNIMPLEMENTED();
}
// RBX: IC data object (preserved).
__ movq(R13, FieldAddress(RBX, ICData::ic_data_offset()));
// R13: ic_data_array with check entries: classes and target functions.
__ leaq(R13, FieldAddress(R13, Array::data_offset()));
// R13: points directly to the first ic data array element.
#if defined(DEBUG)
// Check that first entry is for Smi/Smi.
Label error, ok;
const Immediate& imm_smi_cid =
Immediate(reinterpret_cast<intptr_t>(Smi::New(kSmiCid)));
__ cmpq(Address(R13, 0 * kWordSize), imm_smi_cid);
__ j(NOT_EQUAL, &error, Assembler::kNearJump);
__ cmpq(Address(R13, 1 * kWordSize), imm_smi_cid);
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Bind(&error);
__ Stop("Incorrect IC data");
__ Bind(&ok);
#endif
if (FLAG_optimization_counter_threshold >= 0) {
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
// Update counter, ignore overflow.
__ addq(Address(R13, count_offset), Immediate(Smi::RawValue(1)));
}
__ ret();
}
// Generate inline cache check for 'num_args'.
// RBX: Inline cache data object.
// TOS(0): return address
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCode::GenerateNArgsCheckInlineCacheStub(
Assembler* assembler,
intptr_t num_args,
const RuntimeEntry& handle_ic_miss,
Token::Kind kind,
bool optimized) {
ASSERT(num_args == 1 || num_args == 2);
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == num_args.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ movl(RCX, FieldAddress(RBX, ICData::state_bits_offset()));
ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andq(RCX, Immediate(ICData::NumArgsTestedMask()));
__ cmpq(RCX, Immediate(num_args));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
#if !defined(PRODUCT)
Label stepping, done_stepping;
if (!optimized) {
__ Comment("Check single stepping");
__ LoadIsolate(RAX);
__ cmpb(Address(RAX, Isolate::single_step_offset()), Immediate(0));
__ j(NOT_EQUAL, &stepping);
__ Bind(&done_stepping);
}
#endif
Label not_smi_or_overflow;
if (kind != Token::kILLEGAL) {
EmitFastSmiOp(assembler, kind, num_args, &not_smi_or_overflow);
}
__ Bind(&not_smi_or_overflow);
__ Comment("Extract ICData initial values and receiver cid");
// Load arguments descriptor into R10.
__ movq(R10, FieldAddress(RBX, ICData::arguments_descriptor_offset()));
// Loop that checks if there is an IC data match.
Label loop, found, miss;
// RBX: IC data object (preserved).
__ movq(R13, FieldAddress(RBX, ICData::ic_data_offset()));
// R13: ic_data_array with check entries: classes and target functions.
__ leaq(R13, FieldAddress(R13, Array::data_offset()));
// R13: points directly to the first ic data array element.
// Get argument count as Smi into RCX.
__ movq(RCX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// Load first argument into R9.
__ movq(R9, Address(RSP, RCX, TIMES_4, 0));
__ LoadTaggedClassIdMayBeSmi(RAX, R9);
// RAX: first argument class ID as Smi.
if (num_args == 2) {
// Load second argument into R9.
__ movq(R9, Address(RSP, RCX, TIMES_4, -kWordSize));
__ LoadTaggedClassIdMayBeSmi(RCX, R9);
// RCX: second argument class ID (smi).
}
__ Comment("ICData loop");
// We unroll the generic one that is generated once more than the others.
const bool optimize = kind == Token::kILLEGAL;
const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ Bind(&loop);
for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) {
Label update;
__ movq(R9, Address(R13, 0));
__ cmpq(RAX, R9); // Class id match?
if (num_args == 2) {
__ j(NOT_EQUAL, &update); // Continue.
__ movq(R9, Address(R13, kWordSize));
// R9: next class ID to check (smi).
__ cmpq(RCX, R9); // Class id match?
}
__ j(EQUAL, &found); // Break.
__ Bind(&update);
const intptr_t entry_size =
ICData::TestEntryLengthFor(num_args) * kWordSize;
__ addq(R13, Immediate(entry_size)); // Next entry.
__ cmpq(R9, Immediate(Smi::RawValue(kIllegalCid))); // Done?
if (unroll == 0) {
__ j(NOT_EQUAL, &loop);
} else {
__ j(EQUAL, &miss);
}
}
__ Bind(&miss);
__ Comment("IC miss");
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi.
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(RBX); // Preserve IC data object.
__ pushq(Immediate(0)); // Result slot.
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ movq(RCX, Address(RAX, -kWordSize * i));
__ pushq(RCX);
}
__ pushq(RBX); // Pass IC data object.
__ CallRuntime(handle_ic_miss, num_args + 1);
// Remove the call arguments pushed earlier, including the IC data object.
for (intptr_t i = 0; i < num_args + 1; i++) {
__ popq(RAX);
}
__ popq(RAX); // Pop returned function object into RAX.
__ popq(RBX); // Restore IC data array.
__ popq(R10); // Restore arguments descriptor array.
__ RestoreCodePointer();
__ LeaveStubFrame();
Label call_target_function;
if (!FLAG_lazy_dispatchers) {
GenerateDispatcherCode(assembler, &call_target_function);
} else {
__ jmp(&call_target_function);
}
__ Bind(&found);
// R13: Pointer to an IC data check group.
__ movq(RAX, Address(R13, target_offset));
if (FLAG_optimization_counter_threshold >= 0) {
__ Comment("Update caller's counter");
// Ignore overflow.
__ addq(Address(R13, count_offset), Immediate(Smi::RawValue(1)));
}
__ Comment("Call target");
__ Bind(&call_target_function);
// RAX: Target function.
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, Function::entry_point_offset()));
__ jmp(RCX);
#if !defined(PRODUCT)
if (!optimized) {
__ Bind(&stepping);
__ EnterStubFrame();
__ pushq(RBX);
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ popq(RBX);
__ RestoreCodePointer();
__ LeaveStubFrame();
__ jmp(&done_stepping);
}
#endif
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RBX: Inline cache data object.
// TOS(0): Return address.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL);
}
void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(assembler, 2,
kInlineCacheMissHandlerTwoArgsRuntimeEntry,
Token::kILLEGAL);
}
void StubCode::GenerateSmiAddInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD);
}
void StubCode::GenerateSmiSubInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kSUB);
}
void StubCode::GenerateSmiEqualInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ);
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RDI: function which counter needs to be incremented.
// RBX: Inline cache data object.
// TOS(0): Return address.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 1,
kInlineCacheMissHandlerOneArgRuntimeEntry,
Token::kILLEGAL, true /* optimized */);
}
void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 2,
kInlineCacheMissHandlerTwoArgsRuntimeEntry,
Token::kILLEGAL, true /* optimized */);
}
// Intermediary stub between a static call and its target. ICData contains
// the target function and the call count.
// RBX: ICData
void StubCode::GenerateZeroArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
#if defined(DEBUG)
{
Label ok;
// Check that the IC data array has NumArgsTested() == 0.
// 'NumArgsTested' is stored in the least significant bits of 'state_bits'.
__ movl(RCX, FieldAddress(RBX, ICData::state_bits_offset()));
ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed.
__ andq(RCX, Immediate(ICData::NumArgsTestedMask()));
__ cmpq(RCX, Immediate(0));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect IC data for unoptimized static call");
__ Bind(&ok);
}
#endif // DEBUG
#if !defined(PRODUCT)
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(RAX);
__ movzxb(RAX, Address(RAX, Isolate::single_step_offset()));
__ cmpq(RAX, Immediate(0));
#if defined(DEBUG)
static const bool kJumpLength = Assembler::kFarJump;
#else
static const bool kJumpLength = Assembler::kNearJump;
#endif // DEBUG
__ j(NOT_EQUAL, &stepping, kJumpLength);
__ Bind(&done_stepping);
#endif
// RBX: IC data object (preserved).
__ movq(R12, FieldAddress(RBX, ICData::ic_data_offset()));
// R12: ic_data_array with entries: target functions and count.
__ leaq(R12, FieldAddress(R12, Array::data_offset()));
// R12: points directly to the first ic data array element.
const intptr_t target_offset = ICData::TargetIndexFor(0) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(0) * kWordSize;
if (FLAG_optimization_counter_threshold >= 0) {
// Increment count for this call, ignore overflow.
__ addq(Address(R12, count_offset), Immediate(Smi::RawValue(1)));
}
// Load arguments descriptor into R10.
__ movq(R10, FieldAddress(RBX, ICData::arguments_descriptor_offset()));
// Get function and call it, if possible.
__ movq(RAX, Address(R12, target_offset));
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, Function::entry_point_offset()));
__ jmp(RCX);
#if !defined(PRODUCT)
__ Bind(&stepping);
__ EnterStubFrame();
__ pushq(RBX); // Preserve IC data object.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ popq(RBX);
__ RestoreCodePointer();
__ LeaveStubFrame();
__ jmp(&done_stepping, Assembler::kNearJump);
#endif
}
void StubCode::GenerateOneArgUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL);
}
void StubCode::GenerateTwoArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL);
}
// Stub for compiling a function and jumping to the compiled code.
// RCX: IC-Data (for methods).
// R10: Arguments descriptor.
// RAX: Function.
void StubCode::GenerateLazyCompileStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(RBX); // Preserve IC data object.
__ pushq(RAX); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ popq(RAX); // Restore function.
__ popq(RBX); // Restore IC data array.
__ popq(R10); // Restore arguments descriptor array.
__ LeaveStubFrame();
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ movq(RAX, FieldAddress(RAX, Function::entry_point_offset()));
__ jmp(RAX);
}
// RBX: Contains an ICData.
// TOS(0): return address (Dart code).
void StubCode::GenerateICCallBreakpointStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(RBX); // Preserve IC data.
__ pushq(Immediate(0)); // Result slot.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popq(CODE_REG); // Original stub.
__ popq(RBX); // Restore IC data.
__ LeaveStubFrame();
__ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jmp(RAX); // Jump to original stub.
}
// TOS(0): return address (Dart code).
void StubCode::GenerateRuntimeCallBreakpointStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(Immediate(0)); // Result slot.
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ popq(CODE_REG); // Original stub.
__ LeaveStubFrame();
__ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jmp(RAX); // Jump to original stub.
}
// Called only from unoptimized code.
void StubCode::GenerateDebugStepCheckStub(Assembler* assembler) {
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(RAX);
__ movzxb(RAX, Address(RAX, Isolate::single_step_offset()));
__ cmpq(RAX, Immediate(0));
__ j(NOT_EQUAL, &stepping, Assembler::kNearJump);
__ Bind(&done_stepping);
__ ret();
__ Bind(&stepping);
__ EnterStubFrame();
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ LeaveStubFrame();
__ jmp(&done_stepping, Assembler::kNearJump);
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: function type arguments (only if n == 4, can be raw_null).
// TOS + 2: instantiator type arguments (only if n == 4, can be raw_null).
// TOS + 3: instance.
// TOS + 4: SubtypeTestCache.
// Result in RCX: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
ASSERT((n == 1) || (n == 2) || (n == 4));
const intptr_t kFunctionTypeArgumentsInBytes = 1 * kWordSize;
const intptr_t kInstantiatorTypeArgumentsInBytes = 2 * kWordSize;
const intptr_t kInstanceOffsetInBytes = 3 * kWordSize;
const intptr_t kCacheOffsetInBytes = 4 * kWordSize;
__ movq(RAX, Address(RSP, kInstanceOffsetInBytes));
__ LoadObject(R9, Object::null_object());
if (n > 1) {
__ LoadClass(R10, RAX);
// Compute instance type arguments into R13.
Label has_no_type_arguments;
__ movq(R13, R9);
__ movl(RDI,
FieldAddress(R10,
Class::type_arguments_field_offset_in_words_offset()));
__ cmpl(RDI, Immediate(Class::kNoTypeArguments));
__ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump);
__ movq(R13, FieldAddress(RAX, RDI, TIMES_8, 0));
__ Bind(&has_no_type_arguments);
}
__ LoadClassId(R10, RAX);
// RAX: instance, R10: instance class id.
// R13: instance type arguments or null, used only if n > 1.
__ movq(RDX, Address(RSP, kCacheOffsetInBytes));
// RDX: SubtypeTestCache.
__ movq(RDX, FieldAddress(RDX, SubtypeTestCache::cache_offset()));
__ addq(RDX, Immediate(Array::data_offset() - kHeapObjectTag));
// RDX: Entry start.
// R10: instance class id.
// R13: instance type arguments (still null if closure).
Label loop, found, not_found, next_iteration;
__ SmiTag(R10);
__ cmpq(R10, Immediate(Smi::RawValue(kClosureCid)));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
__ movq(R13, FieldAddress(RAX, Closure::function_type_arguments_offset()));
__ cmpq(R13, R9); // Cache cannot be used for generic closures.
__ j(NOT_EQUAL, &not_found, Assembler::kNearJump);
__ movq(R13,
FieldAddress(RAX, Closure::instantiator_type_arguments_offset()));
__ movq(R10, FieldAddress(RAX, Closure::function_offset()));
// R10: instance class id as Smi or function.
__ Bind(&loop);
__ movq(RDI, Address(RDX, kWordSize *
SubtypeTestCache::kInstanceClassIdOrFunction));
__ cmpq(RDI, R9);
__ j(EQUAL, &not_found, Assembler::kNearJump);
__ cmpq(RDI, R10);
if (n == 1) {
__ j(EQUAL, &found, Assembler::kNearJump);
} else {
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ movq(RDI,
Address(RDX, kWordSize * SubtypeTestCache::kInstanceTypeArguments));
__ cmpq(RDI, R13);
if (n == 2) {
__ j(EQUAL, &found, Assembler::kNearJump);
} else {
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ movq(RDI,
Address(RDX, kWordSize *
SubtypeTestCache::kInstantiatorTypeArguments));
__ cmpq(RDI, Address(RSP, kInstantiatorTypeArgumentsInBytes));
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ movq(RDI, Address(RDX, kWordSize *
SubtypeTestCache::kFunctionTypeArguments));
__ cmpq(RDI, Address(RSP, kFunctionTypeArgumentsInBytes));
__ j(EQUAL, &found, Assembler::kNearJump);
}
}
__ Bind(&next_iteration);
__ addq(RDX, Immediate(kWordSize * SubtypeTestCache::kTestEntryLength));
__ jmp(&loop, Assembler::kNearJump);
// Fall through to not found.
__ Bind(&not_found);
__ movq(RCX, R9);
__ ret();
__ Bind(&found);
__ movq(RCX, Address(RDX, kWordSize * SubtypeTestCache::kTestResult));
__ ret();
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: raw_null.
// TOS + 2: raw_null.
// TOS + 3: instance.
// TOS + 4: SubtypeTestCache.
// Result in RCX: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 1);
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: raw_null.
// TOS + 2: raw_null.
// TOS + 3: instance.
// TOS + 4: SubtypeTestCache.
// Result in RCX: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 2);
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: function type arguments (can be raw_null).
// TOS + 2: instantiator type arguments (can be raw_null).
// TOS + 3: instance.
// TOS + 4: SubtypeTestCache.
// Result in RCX: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype4TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 4);
}
// Return the current stack pointer address, used to stack alignment
// checks.
// TOS + 0: return address
// Result in RAX.
void StubCode::GenerateGetCStackPointerStub(Assembler* assembler) {
__ leaq(RAX, Address(RSP, kWordSize));
__ ret();
}
// Jump to a frame on the call stack.
// TOS + 0: return address
// Arg1: program counter
// Arg2: stack pointer
// Arg3: frame_pointer
// Arg4: thread
// No Result.
void StubCode::GenerateJumpToFrameStub(Assembler* assembler) {
__ movq(THR, CallingConventions::kArg4Reg);
__ movq(RBP, CallingConventions::kArg3Reg);
__ movq(RSP, CallingConventions::kArg2Reg);
// Set the tag.
__ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId));
// Clear top exit frame.
__ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0));
// Restore the pool pointer.
__ RestoreCodePointer();
__ LoadPoolPointer(PP);
__ jmp(CallingConventions::kArg1Reg); // Jump to program counter.
}
// Run an exception handler. Execution comes from JumpToFrame stub.
//
// The arguments are stored in the Thread object.
// No result.
void StubCode::GenerateRunExceptionHandlerStub(Assembler* assembler) {
ASSERT(kExceptionObjectReg == RAX);
ASSERT(kStackTraceObjectReg == RDX);
__ movq(CallingConventions::kArg1Reg,
Address(THR, Thread::resume_pc_offset()));
// Load the exception from the current thread.
Address exception_addr(THR, Thread::active_exception_offset());
__ movq(kExceptionObjectReg, exception_addr);
__ movq(exception_addr, Immediate(0));
// Load the stacktrace from the current thread.
Address stacktrace_addr(THR, Thread::active_stacktrace_offset());
__ movq(kStackTraceObjectReg, stacktrace_addr);
__ movq(stacktrace_addr, Immediate(0));
__ jmp(CallingConventions::kArg1Reg); // Jump to continuation point.
}
// Deoptimize a frame on the call stack before rewinding.
// The arguments are stored in the Thread object.
// No result.
void StubCode::GenerateDeoptForRewindStub(Assembler* assembler) {
// Push zap value instead of CODE_REG.
__ pushq(Immediate(kZapCodeReg));
// Push the deopt pc.
__ pushq(Address(THR, Thread::resume_pc_offset()));
GenerateDeoptimizationSequence(assembler, kEagerDeopt);
// After we have deoptimized, jump to the correct frame.
__ EnterStubFrame();
__ CallRuntime(kRewindPostDeoptRuntimeEntry, 0);
__ LeaveStubFrame();
__ int3();
}
// Calls to the runtime to optimize the given function.
// RDI: function to be reoptimized.
// R10: argument descriptor (preserved).
void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(R10); // Preserve args descriptor.
__ pushq(Immediate(0)); // Result slot.
__ pushq(RDI); // Arg0: function to optimize
__ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1);
__ popq(RAX); // Discard argument.
__ popq(RAX); // Get Code object.
__ popq(R10); // Restore argument descriptor.
__ LeaveStubFrame();
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ movq(RCX, FieldAddress(RAX, Function::entry_point_offset()));
__ jmp(RCX);
__ int3();
}
// Does identical check (object references are equal or not equal) with special
// checks for boxed numbers.
// Left and right are pushed on stack.
// Return ZF set.
// Note: A Mint cannot contain a value that would fit in Smi, a Bigint
// cannot contain a value that fits in Mint or Smi.
static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler,
const Register left,
const Register right) {
Label reference_compare, done, check_mint, check_bigint;
// If any of the arguments is Smi do reference compare.
__ testq(left, Immediate(kSmiTagMask));
__ j(ZERO, &reference_compare);
__ testq(right, Immediate(kSmiTagMask));
__ j(ZERO, &reference_compare);
// Value compare for two doubles.
__ CompareClassId(left, kDoubleCid);
__ j(NOT_EQUAL, &check_mint, Assembler::kNearJump);
__ CompareClassId(right, kDoubleCid);
__ j(NOT_EQUAL, &done, Assembler::kFarJump);
// Double values bitwise compare.
__ movq(left, FieldAddress(left, Double::value_offset()));
__ cmpq(left, FieldAddress(right, Double::value_offset()));
__ jmp(&done, Assembler::kFarJump);
__ Bind(&check_mint);
__ CompareClassId(left, kMintCid);
__ j(NOT_EQUAL, &check_bigint, Assembler::kNearJump);
__ CompareClassId(right, kMintCid);
__ j(NOT_EQUAL, &done, Assembler::kFarJump);
__ movq(left, FieldAddress(left, Mint::value_offset()));
__ cmpq(left, FieldAddress(right, Mint::value_offset()));
__ jmp(&done, Assembler::kFarJump);
__ Bind(&check_bigint);
__ CompareClassId(left, kBigintCid);
__ j(NOT_EQUAL, &reference_compare, Assembler::kFarJump);
__ CompareClassId(right, kBigintCid);
__ j(NOT_EQUAL, &done, Assembler::kFarJump);
__ EnterStubFrame();
__ ReserveAlignedFrameSpace(0);
__ movq(CallingConventions::kArg1Reg, left);
__ movq(CallingConventions::kArg2Reg, right);
__ CallRuntime(kBigintCompareRuntimeEntry, 2);
// Result in RAX, 0 means equal.
__ LeaveStubFrame();
__ cmpq(RAX, Immediate(0));
__ jmp(&done);
__ Bind(&reference_compare);
__ cmpq(left, right);
__ Bind(&done);
}
// Called only from unoptimized code. All relevant registers have been saved.
// TOS + 0: return address
// TOS + 1: right argument.
// TOS + 2: left argument.
// Returns ZF set.
void StubCode::GenerateUnoptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
#if !defined(PRODUCT)
// Check single stepping.
Label stepping, done_stepping;
__ LoadIsolate(RAX);
__ movzxb(RAX, Address(RAX, Isolate::single_step_offset()));
__ cmpq(RAX, Immediate(0));
__ j(NOT_EQUAL, &stepping);
__ Bind(&done_stepping);
#endif
const Register left = RAX;
const Register right = RDX;
__ movq(left, Address(RSP, 2 * kWordSize));
__ movq(right, Address(RSP, 1 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right);
__ ret();
#if !defined(PRODUCT)
__ Bind(&stepping);
__ EnterStubFrame();
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ RestoreCodePointer();
__ LeaveStubFrame();
__ jmp(&done_stepping);
#endif
}
// Called from optimized code only.
// TOS + 0: return address
// TOS + 1: right argument.
// TOS + 2: left argument.
// Returns ZF set.
void StubCode::GenerateOptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
const Register left = RAX;
const Register right = RDX;
__ movq(left, Address(RSP, 2 * kWordSize));
__ movq(right, Address(RSP, 1 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right);
__ ret();
}
// Called from megamorphic calls.
// RDI: receiver
// RBX: MegamorphicCache (preserved)
// Passed to target:
// CODE_REG: target Code
// R10: arguments descriptor
void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) {
// Jump if receiver is a smi.
Label smi_case;
__ testq(RDI, Immediate(kSmiTagMask));
// Jump out of line for smi case.
__ j(ZERO, &smi_case, Assembler::kNearJump);
// Loads the cid of the object.
__ LoadClassId(RAX, RDI);
Label cid_loaded;
__ Bind(&cid_loaded);
__ movq(R9, FieldAddress(RBX, MegamorphicCache::mask_offset()));
__ movq(RDI, FieldAddress(RBX, MegamorphicCache::buckets_offset()));
// R9: mask as a smi.
// RDI: cache buckets array.
// Tag cid as a smi.
__ addq(RAX, RAX);
// Compute the table index.
ASSERT(MegamorphicCache::kSpreadFactor == 7);
// Use leaq and subq multiply with 7 == 8 - 1.
__ leaq(RCX, Address(RAX, TIMES_8, 0));
__ subq(RCX, RAX);
Label loop;
__ Bind(&loop);
__ andq(RCX, R9);
const intptr_t base = Array::data_offset();
// RCX is smi tagged, but table entries are two words, so TIMES_8.
Label probe_failed;
__ cmpq(RAX, FieldAddress(RDI, RCX, TIMES_8, base));
__ j(NOT_EQUAL, &probe_failed, Assembler::kNearJump);
Label load_target;
__ Bind(&load_target);
// Call the target found in the cache. For a class id match, this is a
// proper target for the given name and arguments descriptor. If the
// illegal class id was found, the target is a cache miss handler that can
// be invoked as a normal Dart function.
__ movq(RAX, FieldAddress(RDI, RCX, TIMES_8, base + kWordSize));
__ movq(R10,
FieldAddress(RBX, MegamorphicCache::arguments_descriptor_offset()));
__ movq(RCX, FieldAddress(RAX, Function::entry_point_offset()));
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ jmp(RCX);
// Probe failed, check if it is a miss.
__ Bind(&probe_failed);
__ cmpq(FieldAddress(RDI, RCX, TIMES_8, base),
Immediate(Smi::RawValue(kIllegalCid)));
__ j(ZERO, &load_target, Assembler::kNearJump);
// Try next entry in the table.
__ AddImmediate(RCX, Immediate(Smi::RawValue(1)));
__ jmp(&loop);
// Load cid for the Smi case.
__ Bind(&smi_case);
__ movq(RAX, Immediate(kSmiCid));
__ jmp(&cid_loaded);
}
// Called from switchable IC calls.
// RDI: receiver
// RBX: ICData (preserved)
// Passed to target:
// CODE_REG: target Code object
// R10: arguments descriptor
void StubCode::GenerateICCallThroughFunctionStub(Assembler* assembler) {
Label loop, found, miss;
__ movq(R13, FieldAddress(RBX, ICData::ic_data_offset()));
__ movq(R10, FieldAddress(RBX, ICData::arguments_descriptor_offset()));
__ leaq(R13, FieldAddress(R13, Array::data_offset()));
// R13: first IC entry
__ LoadTaggedClassIdMayBeSmi(RAX, RDI);
// RAX: receiver cid as Smi
__ Bind(&loop);
__ movq(R9, Address(R13, 0));
__ cmpq(RAX, R9);
__ j(EQUAL, &found, Assembler::kNearJump);
ASSERT(Smi::RawValue(kIllegalCid) == 0);
__ testq(R9, R9);
__ j(ZERO, &miss, Assembler::kNearJump);
const intptr_t entry_length = ICData::TestEntryLengthFor(1) * kWordSize;
__ addq(R13, Immediate(entry_length)); // Next entry.
__ jmp(&loop);
__ Bind(&found);
const intptr_t target_offset = ICData::TargetIndexFor(1) * kWordSize;
__ movq(RAX, Address(R13, target_offset));
__ movq(RCX, FieldAddress(RAX, Function::entry_point_offset()));
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ jmp(RCX);
__ Bind(&miss);
__ LoadIsolate(RAX);
__ movq(CODE_REG, Address(RAX, Isolate::ic_miss_code_offset()));
__ movq(RCX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jmp(RCX);
}
void StubCode::GenerateICCallThroughCodeStub(Assembler* assembler) {
Label loop, found, miss;
__ movq(R13, FieldAddress(RBX, ICData::ic_data_offset()));
__ movq(R10, FieldAddress(RBX, ICData::arguments_descriptor_offset()));
__ leaq(R13, FieldAddress(R13, Array::data_offset()));
// R13: first IC entry
__ LoadTaggedClassIdMayBeSmi(RAX, RDI);
// RAX: receiver cid as Smi
__ Bind(&loop);
__ movq(R9, Address(R13, 0));
__ cmpq(RAX, R9);
__ j(EQUAL, &found, Assembler::kNearJump);
ASSERT(Smi::RawValue(kIllegalCid) == 0);
__ testq(R9, R9);
__ j(ZERO, &miss, Assembler::kNearJump);
const intptr_t entry_length = ICData::TestEntryLengthFor(1) * kWordSize;
__ addq(R13, Immediate(entry_length)); // Next entry.
__ jmp(&loop);
__ Bind(&found);
const intptr_t code_offset = ICData::CodeIndexFor(1) * kWordSize;
const intptr_t entry_offset = ICData::EntryPointIndexFor(1) * kWordSize;
__ movq(RCX, Address(R13, entry_offset));
__ movq(CODE_REG, Address(R13, code_offset));
__ jmp(RCX);
__ Bind(&miss);
__ LoadIsolate(RAX);
__ movq(CODE_REG, Address(RAX, Isolate::ic_miss_code_offset()));
__ movq(RCX, FieldAddress(CODE_REG, Code::entry_point_offset()));
__ jmp(RCX);
}
// RDI: receiver
// RBX: UnlinkedCall
void StubCode::GenerateUnlinkedCallStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(RDI); // Preserve receiver.
__ pushq(Immediate(0)); // Result slot.
__ pushq(RDI); // Arg0: Receiver
__ pushq(RBX); // Arg1: UnlinkedCall
__ CallRuntime(kUnlinkedCallRuntimeEntry, 2);
__ popq(RBX);
__ popq(RBX);
__ popq(RBX); // result = IC
__ popq(RDI); // Restore receiver.
__ LeaveStubFrame();
__ movq(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset()));
__ movq(RCX, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ jmp(RCX);
}
// Called from switchable IC calls.
// RDI: receiver
// RBX: SingleTargetCache
// Passed to target::
// CODE_REG: target Code object
void StubCode::GenerateSingleTargetCallStub(Assembler* assembler) {
Label miss;
__ LoadClassIdMayBeSmi(RAX, RDI);
__ movzxw(R9, FieldAddress(RBX, SingleTargetCache::lower_limit_offset()));
__ movzxw(R10, FieldAddress(RBX, SingleTargetCache::upper_limit_offset()));
__ cmpq(RAX, R9);
__ j(LESS, &miss, Assembler::kNearJump);
__ cmpq(RAX, R10);
__ j(GREATER, &miss, Assembler::kNearJump);
__ movq(RCX, FieldAddress(RBX, SingleTargetCache::entry_point_offset()));
__ movq(CODE_REG, FieldAddress(RBX, SingleTargetCache::target_offset()));
__ jmp(RCX);
__ Bind(&miss);
__ EnterStubFrame();
__ pushq(RDI); // Preserve receiver.
__ pushq(Immediate(0)); // Result slot.
__ pushq(RDI); // Arg0: Receiver
__ CallRuntime(kSingleTargetMissRuntimeEntry, 1);
__ popq(RBX);
__ popq(RBX); // result = IC
__ popq(RDI); // Restore receiver.
__ LeaveStubFrame();
__ movq(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset()));
__ movq(RCX, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ jmp(RCX);
}
// Called from the monomorphic checked entry.
// RDI: receiver
void StubCode::GenerateMonomorphicMissStub(Assembler* assembler) {
__ movq(CODE_REG, Address(THR, Thread::monomorphic_miss_stub_offset()));
__ EnterStubFrame();
__ pushq(RDI); // Preserve receiver.
__ pushq(Immediate(0)); // Result slot.
__ pushq(RDI); // Arg0: Receiver
__ CallRuntime(kMonomorphicMissRuntimeEntry, 1);
__ popq(RBX);
__ popq(RBX); // result = IC
__ popq(RDI); // Restore receiver.
__ LeaveStubFrame();
__ movq(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset()));
__ movq(RCX, FieldAddress(CODE_REG, Code::checked_entry_point_offset()));
__ jmp(RCX);
}
void StubCode::GenerateFrameAwaitingMaterializationStub(Assembler* assembler) {
__ int3();
}
void StubCode::GenerateAsynchronousGapMarkerStub(Assembler* assembler) {
__ int3();
}
} // namespace dart
#endif // defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)