dart-sdk/runtime/vm/regexp_assembler_ir.h
Alexander Aprelev ce427ac14f Revert "Revert "Introduce StaticCallNode::kNoRebind and use that in implicit closures.""
This reverts commit ade37f931e.

This re-lands RebindRule change with fixes for the "-mdebug--hot-reload" test failures.

Original commit is reverted in patch set 1.
Fixes are in following patch sets.

Bug:
Change-Id: I49375af9b891323fe05c670d77cbf880964aae54
Reviewed-on: https://dart-review.googlesource.com/9361
Reviewed-by: Vyacheslav Egorov <vegorov@google.com>
Commit-Queue: Alexander Aprelev <aam@google.com>
2017-09-28 19:43:32 +00:00

447 lines
18 KiB
C++

// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_REGEXP_ASSEMBLER_IR_H_
#define RUNTIME_VM_REGEXP_ASSEMBLER_IR_H_
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/backend/il.h"
#include "vm/object.h"
#include "vm/regexp_assembler.h"
namespace dart {
class IRRegExpMacroAssembler : public RegExpMacroAssembler {
public:
// Type of input string to generate code for.
enum Mode { ASCII = 1, UC16 = 2 };
// Result of calling generated native RegExp code.
// RETRY: Something significant changed during execution, and the matching
// should be retried from scratch.
// EXCEPTION: Something failed during execution. If no exception has been
// thrown, it's an internal out-of-memory, and the caller should
// throw the exception.
// FAILURE: Matching failed.
// SUCCESS: Matching succeeded, and the output array has been filled with
// capture positions.
enum Result { RETRY = -2, EXCEPTION = -1, FAILURE = 0, SUCCESS = 1 };
IRRegExpMacroAssembler(intptr_t specialization_cid,
intptr_t capture_count,
const ParsedFunction* parsed_function,
const ZoneGrowableArray<const ICData*>& ic_data_array,
intptr_t osr_id,
Zone* zone);
virtual ~IRRegExpMacroAssembler();
virtual bool CanReadUnaligned();
static RawArray* Execute(const RegExp& regexp,
const String& input,
const Smi& start_offset,
bool sticky,
Zone* zone);
virtual bool IsClosed() const { return (current_instruction_ == NULL); }
virtual intptr_t stack_limit_slack();
virtual void AdvanceCurrentPosition(intptr_t by);
virtual void AdvanceRegister(intptr_t reg, intptr_t by);
virtual void Backtrack();
virtual void BindBlock(BlockLabel* label);
virtual void CheckAtStart(BlockLabel* on_at_start);
virtual void CheckCharacter(uint32_t c, BlockLabel* on_equal);
virtual void CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
BlockLabel* on_equal);
virtual void CheckCharacterGT(uint16_t limit, BlockLabel* on_greater);
virtual void CheckCharacterLT(uint16_t limit, BlockLabel* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(BlockLabel* on_tos_equals_current_position);
virtual void CheckNotAtStart(BlockLabel* on_not_at_start);
virtual void CheckNotBackReference(intptr_t start_reg,
BlockLabel* on_no_match);
virtual void CheckNotBackReferenceIgnoreCase(intptr_t start_reg,
BlockLabel* on_no_match);
virtual void CheckNotCharacter(uint32_t c, BlockLabel* on_not_equal);
virtual void CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
BlockLabel* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uint16_t c,
uint16_t minus,
uint16_t mask,
BlockLabel* on_not_equal);
virtual void CheckCharacterInRange(uint16_t from,
uint16_t to,
BlockLabel* on_in_range);
virtual void CheckCharacterNotInRange(uint16_t from,
uint16_t to,
BlockLabel* on_not_in_range);
virtual void CheckBitInTable(const TypedData& table, BlockLabel* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(intptr_t cp_offset, BlockLabel* on_outside_input);
virtual bool CheckSpecialCharacterClass(uint16_t type,
BlockLabel* on_no_match);
virtual void Fail();
virtual void IfRegisterGE(intptr_t reg,
intptr_t comparand,
BlockLabel* if_ge);
virtual void IfRegisterLT(intptr_t reg,
intptr_t comparand,
BlockLabel* if_lt);
virtual void IfRegisterEqPos(intptr_t reg, BlockLabel* if_eq);
virtual IrregexpImplementation Implementation();
virtual void GoTo(BlockLabel* to);
virtual void LoadCurrentCharacter(intptr_t cp_offset,
BlockLabel* on_end_of_input,
bool check_bounds = true,
intptr_t characters = 1);
virtual void PopCurrentPosition();
virtual void PopRegister(intptr_t register_index);
virtual void Print(const char* str);
virtual void PushBacktrack(BlockLabel* label);
virtual void PushCurrentPosition();
virtual void PushRegister(intptr_t register_index);
virtual void ReadCurrentPositionFromRegister(intptr_t reg);
virtual void ReadStackPointerFromRegister(intptr_t reg);
virtual void SetCurrentPositionFromEnd(intptr_t by);
virtual void SetRegister(intptr_t register_index, intptr_t to);
virtual bool Succeed();
virtual void WriteCurrentPositionToRegister(intptr_t reg, intptr_t cp_offset);
virtual void ClearRegisters(intptr_t reg_from, intptr_t reg_to);
virtual void WriteStackPointerToRegister(intptr_t reg);
virtual void PrintBlocks();
IndirectGotoInstr* backtrack_goto() const { return backtrack_goto_; }
GraphEntryInstr* graph_entry() const { return entry_block_; }
intptr_t num_stack_locals() const { return local_id_.Count(); }
intptr_t num_blocks() const { return block_id_.Count(); }
// Generate a dispatch block implementing backtracking. Must be done after
// graph construction.
void GenerateBacktrackBlock();
// Allocate the actual registers array once its size is known. Must be done
// after graph construction.
void FinalizeRegistersArray();
private:
intptr_t GetNextDeoptId() const { return thread_->GetNextDeoptId(); }
// Generate the contents of preset blocks. The entry block is the entry point
// of the generated code.
void GenerateEntryBlock();
// Copies capture indices into the result area and returns true.
void GenerateSuccessBlock();
// Returns false.
void GenerateExitBlock();
enum ComparisonKind {
kEQ,
kNE,
kLT,
kGT,
kLTE,
kGTE,
};
struct InstanceCallDescriptor {
// Standard (i.e. most non-Smi) functions.
explicit InstanceCallDescriptor(const String& name)
: name(name), token_kind(Token::kILLEGAL), checked_argument_count(1) {}
InstanceCallDescriptor(const String& name,
Token::Kind token_kind,
intptr_t checked_argument_count)
: name(name),
token_kind(token_kind),
checked_argument_count(checked_argument_count) {}
// Special cases for Smi and indexing functions.
static InstanceCallDescriptor FromToken(Token::Kind token_kind) {
switch (token_kind) {
case Token::kEQ:
return InstanceCallDescriptor(Symbols::EqualOperator(), token_kind,
2);
case Token::kADD:
return InstanceCallDescriptor(Symbols::Plus(), token_kind, 2);
case Token::kSUB:
return InstanceCallDescriptor(Symbols::Minus(), token_kind, 2);
case Token::kBIT_OR:
return InstanceCallDescriptor(Symbols::BitOr(), token_kind, 2);
case Token::kBIT_AND:
return InstanceCallDescriptor(Symbols::BitAnd(), token_kind, 2);
case Token::kLT:
return InstanceCallDescriptor(Symbols::LAngleBracket(), token_kind,
2);
case Token::kLTE:
return InstanceCallDescriptor(Symbols::LessEqualOperator(),
token_kind, 2);
case Token::kGT:
return InstanceCallDescriptor(Symbols::RAngleBracket(), token_kind,
2);
case Token::kGTE:
return InstanceCallDescriptor(Symbols::GreaterEqualOperator(),
token_kind, 2);
case Token::kNEGATE:
return InstanceCallDescriptor(Symbols::UnaryMinus(), token_kind, 1);
case Token::kINDEX:
return InstanceCallDescriptor(Symbols::IndexToken(), token_kind, 2);
case Token::kASSIGN_INDEX:
return InstanceCallDescriptor(Symbols::AssignIndexToken(), token_kind,
2);
default:
UNREACHABLE();
}
UNREACHABLE();
return InstanceCallDescriptor(Symbols::Empty());
}
const String& name;
Token::Kind token_kind;
intptr_t checked_argument_count;
};
LocalVariable* Local(const String& name);
LocalVariable* Parameter(const String& name, intptr_t index) const;
ConstantInstr* Int64Constant(int64_t value) const;
ConstantInstr* Uint64Constant(uint64_t value) const;
ConstantInstr* BoolConstant(bool value) const;
ConstantInstr* StringConstant(const char* value) const;
// The word character map static member of the RegExp class.
// Byte map of one byte characters with a 0xff if the character is a word
// character (digit, letter or underscore) and 0x00 otherwise.
// Used by generated RegExp code.
ConstantInstr* WordCharacterMapConstant() const;
ComparisonInstr* Comparison(ComparisonKind kind,
PushArgumentInstr* lhs,
PushArgumentInstr* rhs);
ComparisonInstr* Comparison(ComparisonKind kind,
Definition* lhs,
Definition* rhs);
InstanceCallInstr* InstanceCall(const InstanceCallDescriptor& desc,
PushArgumentInstr* arg1) const;
InstanceCallInstr* InstanceCall(const InstanceCallDescriptor& desc,
PushArgumentInstr* arg1,
PushArgumentInstr* arg2) const;
InstanceCallInstr* InstanceCall(const InstanceCallDescriptor& desc,
PushArgumentInstr* arg1,
PushArgumentInstr* arg2,
PushArgumentInstr* arg3) const;
InstanceCallInstr* InstanceCall(
const InstanceCallDescriptor& desc,
ZoneGrowableArray<PushArgumentInstr*>* arguments) const;
StaticCallInstr* StaticCall(const Function& function,
ICData::RebindRule rebind_rule) const;
StaticCallInstr* StaticCall(const Function& function,
PushArgumentInstr* arg1,
ICData::RebindRule rebind_rule) const;
StaticCallInstr* StaticCall(const Function& function,
PushArgumentInstr* arg1,
PushArgumentInstr* arg2,
ICData::RebindRule rebind_rule) const;
StaticCallInstr* StaticCall(const Function& function,
ZoneGrowableArray<PushArgumentInstr*>* arguments,
ICData::RebindRule rebind_rule) const;
// Creates a new block consisting simply of a goto to dst.
TargetEntryInstr* TargetWithJoinGoto(JoinEntryInstr* dst);
IndirectEntryInstr* IndirectWithJoinGoto(JoinEntryInstr* dst);
// Adds, respectively subtracts lhs and rhs and returns the result.
Definition* Add(PushArgumentInstr* lhs, PushArgumentInstr* rhs);
Definition* Sub(PushArgumentInstr* lhs, PushArgumentInstr* rhs);
LoadLocalInstr* LoadLocal(LocalVariable* local) const;
void StoreLocal(LocalVariable* local, Value* value);
PushArgumentInstr* PushArgument(Value* value);
PushArgumentInstr* PushLocal(LocalVariable* local);
PushArgumentInstr* PushRegisterIndex(intptr_t reg);
Value* LoadRegister(intptr_t reg);
void StoreRegister(intptr_t reg, intptr_t value);
void StoreRegister(PushArgumentInstr* registers,
PushArgumentInstr* index,
PushArgumentInstr* value);
// Load a number of characters at the given offset from the
// current position, into the current-character register.
void LoadCurrentCharacterUnchecked(intptr_t cp_offset,
intptr_t character_count);
// Returns the character within the passed string at the specified index.
Value* CharacterAt(LocalVariable* index);
// Load a number of characters starting from index in the pattern string.
Value* LoadCodeUnitsAt(LocalVariable* index, intptr_t character_count);
// Check whether preemption has been requested. Also serves as an OSR entry.
void CheckPreemption(bool is_backtrack);
// Byte size of chars in the string to match (decided by the Mode argument)
inline intptr_t char_size() { return static_cast<int>(mode_); }
// Equivalent to a conditional branch to the label, unless the label
// is NULL, in which case it is a conditional Backtrack.
void BranchOrBacktrack(ComparisonInstr* comparison,
BlockLabel* true_successor);
// Set up all local variables and parameters.
void InitializeLocals();
// Allocates a new local, and returns the appropriate id for placing it
// on the stack.
intptr_t GetNextLocalIndex();
// We never have any copied parameters.
intptr_t num_copied_params() const { return 0; }
// Return the position register at the specified index, creating it if
// necessary. Note that the number of such registers can exceed the amount
// required by the number of output captures.
LocalVariable* position_register(intptr_t index);
void set_current_instruction(Instruction* instruction);
// The following functions are responsible for appending instructions
// to the current instruction in various ways. The most simple one
// is AppendInstruction, which simply appends an instruction and performs
// bookkeeping.
void AppendInstruction(Instruction* instruction);
// Similar to AppendInstruction, but closes the current block by
// setting current_instruction_ to NULL.
void CloseBlockWith(Instruction* instruction);
// Appends definition and allocates a temp index for the result.
Value* Bind(Definition* definition);
// Loads and binds a local variable.
Value* BindLoadLocal(const LocalVariable& local);
// Appends the definition.
void Do(Definition* definition);
// Closes the current block with a jump to the specified block.
void GoTo(JoinEntryInstr* to);
// Accessors for our local stack_.
void PushStack(Definition* definition);
Definition* PopStack();
Definition* PeekStack();
void CheckStackLimit();
void GrowStack();
// Prints the specified argument. Used for debugging.
void Print(PushArgumentInstr* argument);
// A utility class tracking ids of various objects such as blocks, temps, etc.
class IdAllocator : public ValueObject {
public:
explicit IdAllocator(intptr_t first_id = 0) : next_id(first_id) {}
intptr_t Count() const { return next_id; }
intptr_t Alloc(intptr_t count = 1) {
ASSERT(count >= 0);
intptr_t current_id = next_id;
next_id += count;
return current_id;
}
void Dealloc(intptr_t count = 1) {
ASSERT(count <= next_id);
next_id -= count;
}
private:
intptr_t next_id;
};
Thread* thread_;
// Which mode to generate code for (ASCII or UC16).
Mode mode_;
// Which specific string class to generate code for.
intptr_t specialization_cid_;
// Block entries used internally.
GraphEntryInstr* entry_block_;
JoinEntryInstr* start_block_;
JoinEntryInstr* success_block_;
JoinEntryInstr* exit_block_;
// Shared backtracking block.
JoinEntryInstr* backtrack_block_;
// Single indirect goto instruction which performs all backtracking.
IndirectGotoInstr* backtrack_goto_;
const ParsedFunction* parsed_function_;
const ZoneGrowableArray<const ICData*>& ic_data_array_;
// All created blocks are contained within this set. Used for printing
// the generated code.
GrowableArray<BlockEntryInstr*> blocks_;
// The current instruction to link to when new code is emitted.
Instruction* current_instruction_;
// A list, acting as the runtime stack for both backtrack locations and
// stored positions within the string.
LocalVariable* stack_;
LocalVariable* stack_pointer_;
// Stores the current character within the string.
LocalVariable* current_character_;
// Stores the current location within the string as a negative offset
// from the end of the string.
LocalVariable* current_position_;
// The string being processed, passed as a function parameter.
LocalVariable* string_param_;
// Stores the length of string_param_.
LocalVariable* string_param_length_;
// The start index within the string, passed as a function parameter.
LocalVariable* start_index_param_;
// An assortment of utility variables.
LocalVariable* capture_length_;
LocalVariable* match_start_index_;
LocalVariable* capture_start_index_;
LocalVariable* match_end_index_;
LocalVariable* char_in_capture_;
LocalVariable* char_in_match_;
LocalVariable* index_temp_;
LocalVariable* result_;
// Stored positions containing group bounds. Generated as needed.
LocalVariable* registers_;
intptr_t registers_count_;
const intptr_t saved_registers_count_;
// The actual array objects used for the stack and registers.
Array& stack_array_cell_;
TypedData& registers_array_;
IdAllocator block_id_;
IdAllocator temp_id_;
IdAllocator arg_id_;
IdAllocator local_id_;
IdAllocator indirect_id_;
};
} // namespace dart
#endif // RUNTIME_VM_REGEXP_ASSEMBLER_IR_H_