dart-sdk/runtime/vm/clustered_snapshot.h
Ryan Macnak d366f9619a [vm] Toward deterministic builds.
- Remove random build-id.
 - Replace build time in embedded version string with commit time.
 - Remove timestamps from Observatory tarball.
 - Zero-initialize skipped bytes in snapshot streams.
 - Fix uninitialized fields in PatchClass, Script and Library.
 - Disable (under flag) random identity hashes and concurrent GC.

Bug: https://github.com/dart-lang/sdk/issues/31427
Change-Id: I3e95de679c8372841cd27ca60df78d9b00ffbfe1
Reviewed-on: https://dart-review.googlesource.com/22901
Commit-Queue: Ryan Macnak <rmacnak@google.com>
Reviewed-by: Zach Anderson <zra@google.com>
2017-11-23 00:07:56 +00:00

461 lines
14 KiB
C++

// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_CLUSTERED_SNAPSHOT_H_
#define RUNTIME_VM_CLUSTERED_SNAPSHOT_H_
#include "platform/assert.h"
#include "vm/allocation.h"
#include "vm/bitfield.h"
#include "vm/datastream.h"
#include "vm/globals.h"
#include "vm/growable_array.h"
#include "vm/hash_map.h"
#include "vm/heap.h"
#include "vm/object.h"
#include "vm/snapshot.h"
#include "vm/version.h"
#if defined(DEBUG)
#define SNAPSHOT_BACKTRACE
#endif
namespace dart {
// Forward declarations.
class Serializer;
class Deserializer;
class ObjectStore;
class ImageWriter;
class ImageReader;
// For full snapshots, we use a clustered snapshot format that trades longer
// serialization time for faster deserialization time and smaller snapshots.
// Objects are clustered by class to allow writing type information once per
// class instead once per object, and to allow filling the objects in a tight
// loop. The snapshot has two major sections: the first describes how to
// allocate the objects and the second describes how to initialize them.
// Deserialization starts by allocating a reference array large enough to hold
// the base objects (objects already available to both the serializer and
// deserializer) and the objects written in the snapshot. The allocation section
// is then read for each cluster, filling the reference array. Then the
// initialization/fill secton is read for each cluster, using the indices into
// the reference array to fill pointers. At this point, every object has been
// touched exactly once and in order, making this approach very cache friendly.
// Finally, each cluster is given an opportunity to perform some fix-ups that
// require the graph has been fully loaded, such as rehashing, though most
// clusters do not require fixups.
class SerializationCluster : public ZoneAllocated {
public:
explicit SerializationCluster(const char* name)
: name_(name), size_(0), num_objects_(0) {}
virtual ~SerializationCluster() {}
// Add [object] to the cluster and push its outgoing references.
virtual void Trace(Serializer* serializer, RawObject* object) = 0;
// Write the cluster type and information needed to allocate the cluster's
// objects. For fixed sized objects, this is just the object count. For
// variable sized objects, this is the object count and length of each object.
virtual void WriteAlloc(Serializer* serializer) = 0;
// Write the byte and reference data of the cluster's objects.
virtual void WriteFill(Serializer* serializer) = 0;
void WriteAndMeasureAlloc(Serializer* serializer);
void WriteAndMeasureFill(Serializer* serializer);
const char* name() const { return name_; }
intptr_t size() const { return size_; }
intptr_t num_objects() const { return num_objects_; }
protected:
const char* name_;
intptr_t size_;
intptr_t num_objects_;
};
class DeserializationCluster : public ZoneAllocated {
public:
DeserializationCluster() : start_index_(-1), stop_index_(-1) {}
virtual ~DeserializationCluster() {}
// Allocate memory for all objects in the cluster and write their addresses
// into the ref array. Do not touch this memory.
virtual void ReadAlloc(Deserializer* deserializer) = 0;
// Initialize the cluster's objects. Do not touch the memory of other objects.
virtual void ReadFill(Deserializer* deserializer) = 0;
// Complete any action that requires the full graph to be deserialized, such
// as rehashing.
virtual void PostLoad(const Array& refs, Snapshot::Kind kind, Zone* zone) {}
protected:
// The range of the ref array that belongs to this cluster.
intptr_t start_index_;
intptr_t stop_index_;
};
class SmiObjectIdPair {
public:
SmiObjectIdPair() : smi_(NULL), id_(0) {}
RawSmi* smi_;
intptr_t id_;
bool operator==(const SmiObjectIdPair& other) const {
return (smi_ == other.smi_) && (id_ == other.id_);
}
};
class SmiObjectIdPairTrait {
public:
typedef RawSmi* Key;
typedef intptr_t Value;
typedef SmiObjectIdPair Pair;
static Key KeyOf(Pair kv) { return kv.smi_; }
static Value ValueOf(Pair kv) { return kv.id_; }
static inline intptr_t Hashcode(Key key) { return Smi::Value(key); }
static inline bool IsKeyEqual(Pair kv, Key key) { return kv.smi_ == key; }
};
typedef DirectChainedHashMap<SmiObjectIdPairTrait> SmiObjectIdMap;
class Serializer : public StackResource {
public:
Serializer(Thread* thread,
Snapshot::Kind kind,
uint8_t** buffer,
ReAlloc alloc,
intptr_t initial_size,
ImageWriter* image_writer_);
~Serializer();
intptr_t WriteVMSnapshot(const Array& symbols,
ZoneGrowableArray<Object*>* seed_objects,
ZoneGrowableArray<Code*>* seed_code);
void WriteIsolateSnapshot(intptr_t num_base_objects,
ObjectStore* object_store);
void AddVMIsolateBaseObjects();
void AddBaseObject(RawObject* base_object) {
AssignRef(base_object);
num_base_objects_++;
}
void AssignRef(RawObject* object) {
ASSERT(next_ref_index_ != 0);
if (object->IsHeapObject()) {
// The object id weak table holds image offsets for Instructions instead
// of ref indices.
ASSERT(!object->IsInstructions());
heap_->SetObjectId(object, next_ref_index_);
ASSERT(heap_->GetObjectId(object) == next_ref_index_);
} else {
RawSmi* smi = Smi::RawCast(object);
SmiObjectIdPair* existing_pair = smi_ids_.Lookup(smi);
if (existing_pair != NULL) {
ASSERT(existing_pair->id_ == 1);
existing_pair->id_ = next_ref_index_;
} else {
SmiObjectIdPair new_pair;
new_pair.smi_ = smi;
new_pair.id_ = next_ref_index_;
smi_ids_.Insert(new_pair);
}
}
next_ref_index_++;
}
void Push(RawObject* object);
void AddUntracedRef() { num_written_objects_++; }
void Trace(RawObject* object);
void UnexpectedObject(RawObject* object, const char* message);
#if defined(SNAPSHOT_BACKTRACE)
RawObject* ParentOf(const Object& object);
#endif
SerializationCluster* NewClusterForClass(intptr_t cid);
void ReserveHeader() {
// Make room for recording snapshot buffer size.
stream_.SetPosition(Snapshot::kHeaderSize);
}
void FillHeader(Snapshot::Kind kind) {
int64_t* data = reinterpret_cast<int64_t*>(stream_.buffer());
data[Snapshot::kLengthIndex] = stream_.bytes_written();
data[Snapshot::kSnapshotFlagIndex] = kind;
}
void WriteVersionAndFeatures();
void Serialize();
WriteStream* stream() { return &stream_; }
intptr_t bytes_written() { return stream_.bytes_written(); }
// Writes raw data to the stream (basic type).
// sizeof(T) must be in {1,2,4,8}.
template <typename T>
void Write(T value) {
WriteStream::Raw<sizeof(T), T>::Write(&stream_, value);
}
void WriteBytes(const uint8_t* addr, intptr_t len) {
stream_.WriteBytes(addr, len);
}
void WriteRef(RawObject* object) {
if (!object->IsHeapObject()) {
RawSmi* smi = Smi::RawCast(object);
intptr_t id = smi_ids_.Lookup(smi)->id_;
if (id == 0) {
FATAL("Missing ref");
}
Write<int32_t>(id);
return;
}
// The object id weak table holds image offsets for Instructions instead
// of ref indices.
ASSERT(!object->IsInstructions());
intptr_t id = heap_->GetObjectId(object);
if (id == 0) {
if (object->IsCode() && !Snapshot::IncludesCode(kind_)) {
WriteRef(Object::null());
return;
}
if (object->IsSendPort()) {
// TODO(rmacnak): Do a better job of resetting fields in precompilation
// and assert this is unreachable.
WriteRef(Object::null());
return;
}
FATAL("Missing ref");
}
Write<int32_t>(id);
}
void WriteTokenPosition(TokenPosition pos) {
Write<int32_t>(pos.SnapshotEncode());
}
void WriteCid(intptr_t cid) {
COMPILE_ASSERT(RawObject::kClassIdTagSize <= 32);
Write<int32_t>(cid);
}
int32_t GetTextOffset(RawInstructions* instr, RawCode* code) const;
int32_t GetDataOffset(RawObject* object) const;
intptr_t GetDataSize() const;
intptr_t GetTextSize() const;
Snapshot::Kind kind() const { return kind_; }
intptr_t next_ref_index() const { return next_ref_index_; }
private:
Heap* heap_;
Zone* zone_;
Snapshot::Kind kind_;
WriteStream stream_;
ImageWriter* image_writer_;
SerializationCluster** clusters_by_cid_;
GrowableArray<RawObject*> stack_;
intptr_t num_cids_;
intptr_t num_base_objects_;
intptr_t num_written_objects_;
intptr_t next_ref_index_;
SmiObjectIdMap smi_ids_;
#if defined(SNAPSHOT_BACKTRACE)
RawObject* current_parent_;
GrowableArray<Object*> parent_pairs_;
#endif
DISALLOW_IMPLICIT_CONSTRUCTORS(Serializer);
};
class Deserializer : public StackResource {
public:
Deserializer(Thread* thread,
Snapshot::Kind kind,
const uint8_t* buffer,
intptr_t size,
const uint8_t* instructions_buffer,
const uint8_t* data_buffer);
~Deserializer();
void ReadIsolateSnapshot(ObjectStore* object_store);
void ReadVMSnapshot();
void AddVMIsolateBaseObjects();
static void InitializeHeader(RawObject* raw,
intptr_t cid,
intptr_t size,
bool is_vm_isolate,
bool is_canonical = false);
// Reads raw data (for basic types).
// sizeof(T) must be in {1,2,4,8}.
template <typename T>
T Read() {
return ReadStream::Raw<sizeof(T), T>::Read(&stream_);
}
void ReadBytes(uint8_t* addr, intptr_t len) { stream_.ReadBytes(addr, len); }
const uint8_t* CurrentBufferAddress() const {
return stream_.AddressOfCurrentPosition();
}
void Advance(intptr_t value) { stream_.Advance(value); }
intptr_t PendingBytes() const { return stream_.PendingBytes(); }
void AddBaseObject(RawObject* base_object) { AssignRef(base_object); }
void AssignRef(RawObject* object) {
ASSERT(next_ref_index_ <= num_objects_);
refs_->ptr()->data()[next_ref_index_] = object;
next_ref_index_++;
}
RawObject* Ref(intptr_t index) const {
ASSERT(index > 0);
ASSERT(index <= num_objects_);
return refs_->ptr()->data()[index];
}
RawObject* ReadRef() {
int32_t index = Read<int32_t>();
return Ref(index);
}
TokenPosition ReadTokenPosition() {
return TokenPosition::SnapshotDecode(Read<int32_t>());
}
intptr_t ReadCid() {
COMPILE_ASSERT(RawObject::kClassIdTagSize <= 32);
return Read<int32_t>();
}
RawInstructions* GetInstructionsAt(int32_t offset) const;
RawObject* GetObjectAt(int32_t offset) const;
RawApiError* VerifyVersionAndFeatures(Isolate* isolate);
void Prepare();
void Deserialize();
DeserializationCluster* ReadCluster();
intptr_t next_index() const { return next_ref_index_; }
Heap* heap() const { return heap_; }
Snapshot::Kind kind() const { return kind_; }
private:
Heap* heap_;
Zone* zone_;
Snapshot::Kind kind_;
ReadStream stream_;
ImageReader* image_reader_;
intptr_t num_base_objects_;
intptr_t num_objects_;
intptr_t num_clusters_;
RawArray* refs_;
intptr_t next_ref_index_;
DeserializationCluster** clusters_;
};
class FullSnapshotWriter {
public:
static const intptr_t kInitialSize = 64 * KB;
FullSnapshotWriter(Snapshot::Kind kind,
uint8_t** vm_snapshot_data_buffer,
uint8_t** isolate_snapshot_data_buffer,
ReAlloc alloc,
ImageWriter* vm_image_writer,
ImageWriter* iso_image_writer);
~FullSnapshotWriter();
uint8_t** vm_snapshot_data_buffer() const { return vm_snapshot_data_buffer_; }
uint8_t** isolate_snapshot_data_buffer() const {
return isolate_snapshot_data_buffer_;
}
Thread* thread() const { return thread_; }
Zone* zone() const { return thread_->zone(); }
Isolate* isolate() const { return thread_->isolate(); }
Heap* heap() const { return isolate()->heap(); }
// Writes a full snapshot of the Isolate.
void WriteFullSnapshot();
intptr_t VmIsolateSnapshotSize() const { return vm_isolate_snapshot_size_; }
intptr_t IsolateSnapshotSize() const { return isolate_snapshot_size_; }
private:
// Writes a snapshot of the VM Isolate.
intptr_t WriteVMSnapshot();
// Writes a full snapshot of a regular Dart Isolate.
void WriteIsolateSnapshot(intptr_t num_base_objects);
Thread* thread_;
Snapshot::Kind kind_;
uint8_t** vm_snapshot_data_buffer_;
uint8_t** isolate_snapshot_data_buffer_;
ReAlloc alloc_;
intptr_t vm_isolate_snapshot_size_;
intptr_t isolate_snapshot_size_;
ForwardList* forward_list_;
ImageWriter* vm_image_writer_;
ImageWriter* isolate_image_writer_;
ZoneGrowableArray<Object*>* seed_objects_;
ZoneGrowableArray<Code*>* seed_code_;
Array& saved_symbol_table_;
Array& new_vm_symbol_table_;
// Stats for benchmarking.
intptr_t clustered_vm_size_;
intptr_t clustered_isolate_size_;
intptr_t mapped_data_size_;
intptr_t mapped_text_size_;
DISALLOW_COPY_AND_ASSIGN(FullSnapshotWriter);
};
class FullSnapshotReader {
public:
FullSnapshotReader(const Snapshot* snapshot,
const uint8_t* instructions_buffer,
Thread* thread);
~FullSnapshotReader() {}
RawApiError* ReadVMSnapshot();
RawApiError* ReadIsolateSnapshot();
private:
Snapshot::Kind kind_;
Thread* thread_;
const uint8_t* buffer_;
intptr_t size_;
const uint8_t* instructions_buffer_;
const uint8_t* data_buffer_;
DISALLOW_COPY_AND_ASSIGN(FullSnapshotReader);
};
} // namespace dart
#endif // RUNTIME_VM_CLUSTERED_SNAPSHOT_H_