dart-sdk/runtime/lib/mirrors.cc
Régis Crelier 390c80234a [VM generic functions] Properly instantiate generic signatures by providing the
number of free function type parameters.
Add test and mark status files.

Change-Id: I081de7674693c5ac2071a33948d25aadfc65f4ae
Reviewed-on: https://dart-review.googlesource.com/13901
Reviewed-by: Siva Annamalai <asiva@google.com>
Commit-Queue: Régis Crelier <regis@google.com>
2017-10-16 21:57:05 +00:00

2043 lines
80 KiB
C++

// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "lib/mirrors.h"
#include "lib/invocation_mirror.h"
#include "vm/bootstrap_natives.h"
#include "vm/class_finalizer.h"
#include "vm/compiler/frontend/kernel_to_il.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/exceptions.h"
#include "vm/flags.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/port.h"
#include "vm/resolver.h"
#include "vm/symbols.h"
namespace dart {
#if !defined(DART_PRECOMPILED_RUNTIME)
#define PROPAGATE_IF_MALFORMED(type) \
if (type.IsMalformed()) { \
Exceptions::PropagateError(Error::Handle(type.error())); \
}
static RawInstance* CreateMirror(const String& mirror_class_name,
const Array& constructor_arguments) {
const Library& mirrors_lib = Library::Handle(Library::MirrorsLibrary());
const String& constructor_name = Symbols::Dot();
const Object& result = Object::Handle(DartLibraryCalls::InstanceCreate(
mirrors_lib, mirror_class_name, constructor_name, constructor_arguments));
ASSERT(!result.IsError());
return Instance::Cast(result).raw();
}
// Conventions:
// * For throwing a NSM in a class klass we use its runtime type as receiver,
// i.e., klass.RareType().
// * For throwing a NSM in a library, we just pass the null instance as
// receiver.
static void ThrowNoSuchMethod(const Instance& receiver,
const String& function_name,
const Array& arguments,
const Array& argument_names,
const InvocationMirror::Level level,
const InvocationMirror::Kind kind) {
const Smi& invocation_type =
Smi::Handle(Smi::New(InvocationMirror::EncodeType(level, kind)));
const Array& args = Array::Handle(Array::New(6));
args.SetAt(0, receiver);
args.SetAt(1, function_name);
args.SetAt(2, invocation_type);
// TODO(regis): Support invocation of generic functions with type arguments.
args.SetAt(3, Object::null_type_arguments());
args.SetAt(4, arguments);
args.SetAt(5, argument_names);
const Library& libcore = Library::Handle(Library::CoreLibrary());
const Class& NoSuchMethodError =
Class::Handle(libcore.LookupClass(Symbols::NoSuchMethodError()));
const Function& throwNew = Function::Handle(
NoSuchMethodError.LookupFunctionAllowPrivate(Symbols::ThrowNew()));
const Object& result =
Object::Handle(DartEntry::InvokeFunction(throwNew, args));
ASSERT(result.IsError());
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
static void EnsureConstructorsAreCompiled(const Function& func) {
// Only generative constructors can have initializing formals.
if (!func.IsGenerativeConstructor()) return;
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
const Class& cls = Class::Handle(zone, func.Owner());
const Error& error = Error::Handle(zone, cls.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
func.EnsureHasCode();
}
static RawInstance* CreateParameterMirrorList(const Function& func,
const Instance& owner_mirror) {
HANDLESCOPE(Thread::Current());
const intptr_t implicit_param_count = func.NumImplicitParameters();
const intptr_t non_implicit_param_count =
func.NumParameters() - implicit_param_count;
const intptr_t index_of_first_optional_param =
non_implicit_param_count - func.NumOptionalParameters();
const intptr_t index_of_first_named_param =
non_implicit_param_count - func.NumOptionalNamedParameters();
const Array& results = Array::Handle(Array::New(non_implicit_param_count));
const Array& args = Array::Handle(Array::New(9));
Smi& pos = Smi::Handle();
String& name = String::Handle();
Instance& param = Instance::Handle();
Bool& is_final = Bool::Handle();
Object& default_value = Object::Handle();
Object& metadata = Object::Handle();
// We force compilation of constructors to ensure the types of initializing
// formals have been corrected. We do not force the compilation of all types
// of functions because some have no body, e.g. signature functions.
EnsureConstructorsAreCompiled(func);
bool has_extra_parameter_info = true;
if (non_implicit_param_count == 0) {
has_extra_parameter_info = false;
}
if (func.IsImplicitConstructor()) {
// This covers the default constructor and forwarding constructors.
has_extra_parameter_info = false;
}
if (func.IsSignatureFunction() &&
(func.token_pos() == TokenPosition::kNoSource)) {
// Signature functions (except those describing typedefs) get canonicalized,
// hence do not have a token position, and therefore cannot be reparsed.
has_extra_parameter_info = false;
}
Array& param_descriptor = Array::Handle();
if (has_extra_parameter_info) {
// Reparse the function for the following information:
// * The default value of a parameter.
// * Whether a parameters has been declared as final.
// * Any metadata associated with the parameter.
Object& result = Object::Handle();
if (func.kernel_offset() > 0) {
result = kernel::BuildParameterDescriptor(func);
} else {
result = Parser::ParseFunctionParameters(func);
}
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
param_descriptor ^= result.raw();
ASSERT(param_descriptor.Length() ==
(Parser::kParameterEntrySize * non_implicit_param_count));
}
args.SetAt(0, MirrorReference::Handle(MirrorReference::New(func)));
args.SetAt(2, owner_mirror);
if (!has_extra_parameter_info) {
is_final ^= Bool::True().raw();
default_value = Object::null();
metadata = Object::null();
}
for (intptr_t i = 0; i < non_implicit_param_count; i++) {
pos ^= Smi::New(i);
name ^= func.ParameterNameAt(implicit_param_count + i);
if (has_extra_parameter_info) {
is_final ^= param_descriptor.At(i * Parser::kParameterEntrySize +
Parser::kParameterIsFinalOffset);
default_value = param_descriptor.At(i * Parser::kParameterEntrySize +
Parser::kParameterDefaultValueOffset);
metadata = param_descriptor.At(i * Parser::kParameterEntrySize +
Parser::kParameterMetadataOffset);
}
ASSERT(default_value.IsNull() || default_value.IsInstance());
// Arguments 0 (referent) and 2 (owner) are the same for all parameters. See
// above.
args.SetAt(1, name);
args.SetAt(3, pos);
args.SetAt(4, Bool::Get(i >= index_of_first_optional_param));
args.SetAt(5, Bool::Get(i >= index_of_first_named_param));
args.SetAt(6, is_final);
args.SetAt(7, default_value);
args.SetAt(8, metadata);
param ^= CreateMirror(Symbols::_LocalParameterMirror(), args);
results.SetAt(i, param);
}
results.MakeImmutable();
return results.raw();
}
static RawInstance* CreateTypeVariableMirror(const TypeParameter& param,
const Instance& owner_mirror) {
const Array& args = Array::Handle(Array::New(3));
args.SetAt(0, param);
args.SetAt(1, String::Handle(param.name()));
args.SetAt(2, owner_mirror);
return CreateMirror(Symbols::_LocalTypeVariableMirror(), args);
}
// We create a list in native code and let Dart code create the type mirror
// object and the ordered map.
static RawInstance* CreateTypeVariableList(const Class& cls) {
const TypeArguments& args = TypeArguments::Handle(cls.type_parameters());
if (args.IsNull()) {
return Object::empty_array().raw();
}
const Array& result = Array::Handle(Array::New(args.Length() * 2));
TypeParameter& type = TypeParameter::Handle();
String& name = String::Handle();
for (intptr_t i = 0; i < args.Length(); i++) {
type ^= args.TypeAt(i);
ASSERT(type.IsTypeParameter());
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
name ^= type.name();
result.SetAt(2 * i, name);
result.SetAt(2 * i + 1, type);
}
return result.raw();
}
static RawInstance* CreateTypedefMirror(const Class& cls,
const AbstractType& type,
const Bool& is_declaration,
const Instance& owner_mirror) {
const Array& args = Array::Handle(Array::New(6));
args.SetAt(0, MirrorReference::Handle(MirrorReference::New(cls)));
args.SetAt(1, type);
args.SetAt(2, String::Handle(cls.Name()));
args.SetAt(3, Bool::Get(cls.IsGeneric()));
args.SetAt(4, cls.IsGeneric() ? is_declaration : Bool::False());
args.SetAt(5, owner_mirror);
return CreateMirror(Symbols::_LocalTypedefMirror(), args);
}
static RawInstance* CreateFunctionTypeMirror(const AbstractType& type) {
ASSERT(type.IsFunctionType());
const Class& cls = Class::Handle(Type::Cast(type).type_class());
const Function& func = Function::Handle(Type::Cast(type).signature());
const Array& args = Array::Handle(Array::New(3));
args.SetAt(0, MirrorReference::Handle(MirrorReference::New(cls)));
args.SetAt(1, MirrorReference::Handle(MirrorReference::New(func)));
args.SetAt(2, type);
return CreateMirror(Symbols::_LocalFunctionTypeMirror(), args);
}
static RawInstance* CreateMethodMirror(const Function& func,
const Instance& owner_mirror,
const AbstractType& instantiator) {
const Array& args = Array::Handle(Array::New(6));
args.SetAt(0, MirrorReference::Handle(MirrorReference::New(func)));
String& name = String::Handle(func.name());
name = String::ScrubNameRetainPrivate(name);
args.SetAt(1, name);
args.SetAt(2, owner_mirror);
args.SetAt(3, instantiator);
args.SetAt(4, Bool::Get(func.is_static()));
intptr_t kind_flags = 0;
kind_flags |= (func.is_abstract() << Mirrors::kAbstract);
kind_flags |= (func.IsGetterFunction() << Mirrors::kGetter);
kind_flags |= (func.IsSetterFunction() << Mirrors::kSetter);
bool is_ctor = (func.kind() == RawFunction::kConstructor);
kind_flags |= (is_ctor << Mirrors::kConstructor);
kind_flags |= ((is_ctor && func.is_const()) << Mirrors::kConstCtor);
kind_flags |=
((is_ctor && func.IsGenerativeConstructor()) << Mirrors::kGenerativeCtor);
kind_flags |=
((is_ctor && func.is_redirecting()) << Mirrors::kRedirectingCtor);
kind_flags |= ((is_ctor && func.IsFactory()) << Mirrors::kFactoryCtor);
kind_flags |= (func.is_external() << Mirrors::kExternal);
args.SetAt(5, Smi::Handle(Smi::New(kind_flags)));
return CreateMirror(Symbols::_LocalMethodMirror(), args);
}
static RawInstance* CreateVariableMirror(const Field& field,
const Instance& owner_mirror) {
const MirrorReference& field_ref =
MirrorReference::Handle(MirrorReference::New(field));
const String& name = String::Handle(field.name());
const Array& args = Array::Handle(Array::New(7));
args.SetAt(0, field_ref);
args.SetAt(1, name);
args.SetAt(2, owner_mirror);
args.SetAt(3, Object::null_instance()); // Null for type.
args.SetAt(4, Bool::Get(field.is_static()));
args.SetAt(5, Bool::Get(field.is_final()));
args.SetAt(6, Bool::Get(field.is_const()));
return CreateMirror(Symbols::_LocalVariableMirror(), args);
}
static RawInstance* CreateClassMirror(const Class& cls,
const AbstractType& type,
const Bool& is_declaration,
const Instance& owner_mirror) {
if (type.IsTypeRef()) {
AbstractType& ref_type = AbstractType::Handle(TypeRef::Cast(type).type());
ASSERT(!ref_type.IsTypeRef());
ASSERT(ref_type.IsCanonical());
return CreateClassMirror(cls, ref_type, is_declaration, owner_mirror);
}
ASSERT(!cls.IsDynamicClass() && !cls.IsVoidClass());
ASSERT(!type.IsNull());
ASSERT(type.IsFinalized());
if (cls.IsTypedefClass()) {
return CreateTypedefMirror(cls, type, is_declaration, owner_mirror);
}
const Array& args = Array::Handle(Array::New(9));
args.SetAt(0, MirrorReference::Handle(MirrorReference::New(cls)));
args.SetAt(1, type);
// Note that the VM does not consider mixin application aliases to be mixin
// applications, so this only covers anonymous mixin applications. We do not
// set the names of anonymous mixin applications here because the mirrors
// use a different naming convention than the VM (lib.S with lib.M and S&M
// respectively).
if (!cls.IsMixinApplication()) {
args.SetAt(2, String::Handle(cls.Name()));
}
args.SetAt(3, owner_mirror);
args.SetAt(4, Bool::Get(cls.is_abstract()));
args.SetAt(5, Bool::Get(cls.IsGeneric()));
args.SetAt(6, Bool::Get(cls.is_mixin_app_alias()));
args.SetAt(7, cls.NumTypeParameters() == 0 ? Bool::False() : is_declaration);
args.SetAt(8, Bool::Get(cls.is_enum_class()));
return CreateMirror(Symbols::_LocalClassMirror(), args);
}
static RawInstance* CreateLibraryMirror(Thread* thread, const Library& lib) {
Zone* zone = thread->zone();
ASSERT(!lib.IsNull());
const Array& args = Array::Handle(zone, Array::New(3));
args.SetAt(0, MirrorReference::Handle(zone, MirrorReference::New(lib)));
String& str = String::Handle(zone);
str = lib.name();
args.SetAt(1, str);
str = lib.url();
const char* censored_libraries[] = {
"dart:_builtin", "dart:_vmservice", NULL,
};
for (intptr_t i = 0; censored_libraries[i] != NULL; i++) {
if (str.Equals(censored_libraries[i])) {
// Censored library (grumble).
return Instance::null();
}
}
args.SetAt(2, str);
return CreateMirror(Symbols::_LocalLibraryMirror(), args);
}
static RawInstance* CreateCombinatorMirror(const Object& identifiers,
bool is_show) {
const Array& args = Array::Handle(Array::New(2));
args.SetAt(0, identifiers);
args.SetAt(1, Bool::Get(is_show));
return CreateMirror(Symbols::_LocalCombinatorMirror(), args);
}
static RawInstance* CreateLibraryDependencyMirror(Thread* thread,
const Instance& importer,
const Namespace& ns,
const LibraryPrefix& prefix,
const bool is_import,
const bool is_deferred) {
const Library& importee = Library::Handle(ns.library());
const Instance& importee_mirror =
Instance::Handle(CreateLibraryMirror(thread, importee));
if (importee_mirror.IsNull()) {
// Imported library is censored: censor the import.
return Instance::null();
}
const Array& show_names = Array::Handle(ns.show_names());
const Array& hide_names = Array::Handle(ns.hide_names());
intptr_t n = show_names.IsNull() ? 0 : show_names.Length();
intptr_t m = hide_names.IsNull() ? 0 : hide_names.Length();
const Array& combinators = Array::Handle(Array::New(n + m));
Object& t = Object::Handle();
intptr_t i = 0;
for (intptr_t j = 0; j < n; j++) {
t = show_names.At(j);
t = CreateCombinatorMirror(t, true);
combinators.SetAt(i++, t);
}
for (intptr_t j = 0; j < m; j++) {
t = hide_names.At(j);
t = CreateCombinatorMirror(t, false);
combinators.SetAt(i++, t);
}
Object& metadata = Object::Handle(ns.GetMetadata());
if (metadata.IsError()) {
Exceptions::PropagateError(Error::Cast(metadata));
UNREACHABLE();
}
const Array& args = Array::Handle(Array::New(7));
args.SetAt(0, importer);
if (importee.Loaded() || prefix.IsNull()) {
// A native extension is never "loaded" by the embedder. Use the fact that
// it doesn't have an prefix where asa deferred import does to distinguish
// it from a deferred import. It will appear like an empty library.
args.SetAt(1, importee_mirror);
} else {
args.SetAt(1, prefix);
}
args.SetAt(2, combinators);
args.SetAt(3, prefix.IsNull() ? Object::null_object()
: String::Handle(prefix.name()));
args.SetAt(4, Bool::Get(is_import));
args.SetAt(5, Bool::Get(is_deferred));
args.SetAt(6, metadata);
return CreateMirror(Symbols::_LocalLibraryDependencyMirror(), args);
}
DEFINE_NATIVE_ENTRY(LibraryMirror_fromPrefix, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(LibraryPrefix, prefix,
arguments->NativeArgAt(0));
const Library& deferred_lib = Library::Handle(prefix.GetLibrary(0));
if (!deferred_lib.Loaded()) {
return Instance::null();
}
return CreateLibraryMirror(thread, deferred_lib);
}
DEFINE_NATIVE_ENTRY(LibraryMirror_libraryDependencies, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, lib_mirror, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Library& lib = Library::Handle(ref.GetLibraryReferent());
Array& ports = Array::Handle();
Namespace& ns = Namespace::Handle();
Instance& dep = Instance::Handle();
LibraryPrefix& prefix = LibraryPrefix::Handle();
GrowableObjectArray& deps =
GrowableObjectArray::Handle(GrowableObjectArray::New());
// Unprefixed imports.
ports = lib.imports();
for (intptr_t i = 0; i < ports.Length(); i++) {
ns ^= ports.At(i);
if (!ns.IsNull()) {
dep = CreateLibraryDependencyMirror(thread, lib_mirror, ns, prefix, true,
false);
if (!dep.IsNull()) {
deps.Add(dep);
}
}
}
// Exports.
ports = lib.exports();
for (intptr_t i = 0; i < ports.Length(); i++) {
ns ^= ports.At(i);
dep = CreateLibraryDependencyMirror(thread, lib_mirror, ns, prefix, false,
false);
if (!dep.IsNull()) {
deps.Add(dep);
}
}
// Prefixed imports.
DictionaryIterator entries(lib);
Object& entry = Object::Handle();
while (entries.HasNext()) {
entry = entries.GetNext();
if (entry.IsLibraryPrefix()) {
prefix ^= entry.raw();
ports = prefix.imports();
for (intptr_t i = 0; i < ports.Length(); i++) {
ns ^= ports.At(i);
if (!ns.IsNull()) {
dep = CreateLibraryDependencyMirror(thread, lib_mirror, ns, prefix,
true, prefix.is_deferred_load());
if (!dep.IsNull()) {
deps.Add(dep);
}
}
}
}
}
return deps.raw();
}
static RawInstance* CreateTypeMirror(const AbstractType& type) {
if (type.IsTypeRef()) {
AbstractType& ref_type = AbstractType::Handle(TypeRef::Cast(type).type());
ASSERT(!ref_type.IsTypeRef());
ASSERT(ref_type.IsCanonical());
return CreateTypeMirror(ref_type);
}
ASSERT(type.IsFinalized());
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsCanonical() || type.IsTypeParameter() || type.IsBoundedType());
if (type.IsFunctionType()) {
const Class& scope_class = Class::Handle(Type::Cast(type).type_class());
if (scope_class.IsTypedefClass()) {
return CreateTypedefMirror(scope_class, type, Bool::False(),
Object::null_instance());
} else {
return CreateFunctionTypeMirror(type);
}
}
if (type.HasResolvedTypeClass()) {
const Class& cls = Class::Handle(type.type_class());
// Handle void and dynamic types.
if (cls.IsVoidClass()) {
Array& args = Array::Handle(Array::New(1));
args.SetAt(0, Symbols::Void());
return CreateMirror(Symbols::_SpecialTypeMirror(), args);
} else if (cls.IsDynamicClass()) {
Array& args = Array::Handle(Array::New(1));
args.SetAt(0, Symbols::Dynamic());
return CreateMirror(Symbols::_SpecialTypeMirror(), args);
}
return CreateClassMirror(cls, type, Bool::False(), Object::null_instance());
} else if (type.IsTypeParameter()) {
return CreateTypeVariableMirror(TypeParameter::Cast(type),
Object::null_instance());
} else if (type.IsBoundedType()) {
AbstractType& actual_type =
AbstractType::Handle(BoundedType::Cast(type).type());
return CreateTypeMirror(actual_type);
}
UNREACHABLE();
return Instance::null();
}
static RawInstance* CreateIsolateMirror() {
Thread* thread = Thread::Current();
Isolate* isolate = thread->isolate();
const String& debug_name = String::Handle(String::New(isolate->name()));
const Library& root_library =
Library::Handle(thread->zone(), isolate->object_store()->root_library());
const Instance& root_library_mirror =
Instance::Handle(CreateLibraryMirror(thread, root_library));
const Array& args = Array::Handle(Array::New(2));
args.SetAt(0, debug_name);
args.SetAt(1, root_library_mirror);
return CreateMirror(Symbols::_LocalIsolateMirror(), args);
}
static void VerifyMethodKindShifts() {
#ifdef DEBUG
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
const Library& lib = Library::Handle(zone, Library::MirrorsLibrary());
const Class& cls = Class::Handle(
zone, lib.LookupClassAllowPrivate(Symbols::_LocalMethodMirror()));
const Error& error = Error::Handle(zone, cls.EnsureIsFinalized(thread));
ASSERT(error.IsNull());
Field& field = Field::Handle();
Smi& value = Smi::Handle();
#define CHECK_KIND_SHIFT(name) \
field = cls.LookupField(String::Handle(String::New(#name))); \
ASSERT(!field.IsNull()); \
value ^= field.StaticValue(); \
ASSERT(value.Value() == Mirrors::name);
MIRRORS_KIND_SHIFT_LIST(CHECK_KIND_SHIFT)
#undef CHECK_KIND_SHIFT
#endif
}
static RawInstance* ReturnResult(const Object& result) {
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
if (result.IsInstance()) {
return Instance::Cast(result).raw();
}
ASSERT(result.IsNull());
return Instance::null();
}
// Invoke the function, or noSuchMethod if it is null. Propagate any unhandled
// exceptions. Wrap and propagate any compilation errors.
static RawInstance* InvokeDynamicFunction(const Instance& receiver,
const Function& function,
const String& target_name,
const Array& args,
const Array& args_descriptor_array) {
// Note "args" is already the internal arguments with the receiver as the
// first element.
Object& result = Object::Handle();
ArgumentsDescriptor args_descriptor(args_descriptor_array);
if (function.IsNull() || !function.is_reflectable() ||
!function.AreValidArguments(args_descriptor, NULL)) {
result = DartEntry::InvokeNoSuchMethod(receiver, target_name, args,
args_descriptor_array);
} else {
result = DartEntry::InvokeFunction(function, args, args_descriptor_array);
}
return ReturnResult(result);
}
static RawInstance* InvokeLibraryGetter(const Library& library,
const String& getter_name,
const bool throw_nsm_if_absent) {
// To access a top-level we may need to use the Field or the getter Function.
// The getter function may either be in the library or in the field's owner
// class, depending on whether it was an actual getter, or an uninitialized
// field.
const Field& field = Field::Handle(library.LookupLocalField(getter_name));
Function& getter = Function::Handle();
if (field.IsNull()) {
// No field found. Check for a getter in the lib.
const String& internal_getter_name =
String::Handle(Field::GetterName(getter_name));
getter = library.LookupLocalFunction(internal_getter_name);
if (getter.IsNull()) {
getter = library.LookupLocalFunction(getter_name);
if (!getter.IsNull()) {
// Looking for a getter but found a regular method: closurize it.
const Function& closure_function =
Function::Handle(getter.ImplicitClosureFunction());
return closure_function.ImplicitStaticClosure();
}
}
} else {
if (!field.IsUninitialized()) {
return field.StaticValue();
}
// An uninitialized field was found. Check for a getter in the field's
// owner class.
const Class& klass = Class::Handle(field.Owner());
const String& internal_getter_name =
String::Handle(Field::GetterName(getter_name));
getter = klass.LookupStaticFunction(internal_getter_name);
}
if (!getter.IsNull() && getter.is_reflectable()) {
// Invoke the getter and return the result.
const Object& result = Object::Handle(
DartEntry::InvokeFunction(getter, Object::empty_array()));
return ReturnResult(result);
}
if (throw_nsm_if_absent) {
ThrowNoSuchMethod(AbstractType::Handle(
Class::Handle(library.toplevel_class()).RareType()),
getter_name, Object::null_array(), Object::null_array(),
InvocationMirror::kTopLevel, InvocationMirror::kGetter);
UNREACHABLE();
}
// Fall through case: Indicate that we didn't find any function or field using
// a special null instance. This is different from a field being null. Callers
// make sure that this null does not leak into Dartland.
return Object::sentinel().raw();
}
static RawInstance* InvokeClassGetter(const Class& klass,
const String& getter_name,
const bool throw_nsm_if_absent) {
// Note static fields do not have implicit getters.
const Field& field = Field::Handle(klass.LookupStaticField(getter_name));
if (field.IsNull() || field.IsUninitialized()) {
const String& internal_getter_name =
String::Handle(Field::GetterName(getter_name));
Function& getter =
Function::Handle(klass.LookupStaticFunction(internal_getter_name));
if (getter.IsNull() || !getter.is_reflectable()) {
if (getter.IsNull()) {
getter = klass.LookupStaticFunction(getter_name);
if (!getter.IsNull()) {
// Looking for a getter but found a regular method: closurize it.
const Function& closure_function =
Function::Handle(getter.ImplicitClosureFunction());
return closure_function.ImplicitStaticClosure();
}
}
if (throw_nsm_if_absent) {
ThrowNoSuchMethod(AbstractType::Handle(klass.RareType()), getter_name,
Object::null_array(), Object::null_array(),
InvocationMirror::kStatic, InvocationMirror::kGetter);
UNREACHABLE();
}
// Fall through case: Indicate that we didn't find any function or field
// using a special null instance. This is different from a field being
// null. Callers make sure that this null does not leak into Dartland.
return Object::sentinel().raw();
}
// Invoke the getter and return the result.
const Object& result = Object::Handle(
DartEntry::InvokeFunction(getter, Object::empty_array()));
return ReturnResult(result);
}
return field.StaticValue();
}
static RawAbstractType* InstantiateType(const AbstractType& type,
const AbstractType& instantiator) {
// Generic function type parameters are not reified, but mapped to dynamic,
// i.e. all function type parameters are free with a null vector.
ASSERT(type.IsFinalized());
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsCanonical() || type.IsTypeParameter() || type.IsBoundedType());
if (type.IsInstantiated()) {
return type.Canonicalize();
}
TypeArguments& instantiator_type_args = TypeArguments::Handle();
if (!instantiator.IsNull()) {
ASSERT(instantiator.IsFinalized());
PROPAGATE_IF_MALFORMED(instantiator);
instantiator_type_args = instantiator.arguments();
}
Error& bound_error = Error::Handle();
AbstractType& result = AbstractType::Handle(type.InstantiateFrom(
instantiator_type_args, Object::null_type_arguments(), kAllFree,
&bound_error, NULL, NULL, Heap::kOld));
if (!bound_error.IsNull()) {
Exceptions::PropagateError(bound_error);
UNREACHABLE();
}
ASSERT(result.IsFinalized());
return result.Canonicalize();
}
DEFINE_NATIVE_ENTRY(MirrorSystem_libraries, 0) {
const GrowableObjectArray& libraries =
GrowableObjectArray::Handle(zone, isolate->object_store()->libraries());
const intptr_t num_libraries = libraries.Length();
const GrowableObjectArray& library_mirrors = GrowableObjectArray::Handle(
zone, GrowableObjectArray::New(num_libraries));
Library& library = Library::Handle(zone);
Instance& library_mirror = Instance::Handle(zone);
for (int i = 0; i < num_libraries; i++) {
library ^= libraries.At(i);
library_mirror = CreateLibraryMirror(thread, library);
if (!library_mirror.IsNull() && library.Loaded()) {
library_mirrors.Add(library_mirror);
}
}
return library_mirrors.raw();
}
DEFINE_NATIVE_ENTRY(MirrorSystem_isolate, 0) {
VerifyMethodKindShifts();
return CreateIsolateMirror();
}
DEFINE_NATIVE_ENTRY(Mirrors_makeLocalClassMirror, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
ASSERT(type.HasResolvedTypeClass());
const Class& cls = Class::Handle(type.type_class());
ASSERT(!cls.IsNull());
if (cls.IsDynamicClass() || cls.IsVoidClass() || cls.IsTypedefClass()) {
Exceptions::ThrowArgumentError(type);
UNREACHABLE();
}
return CreateClassMirror(cls, AbstractType::Handle(cls.DeclarationType()),
Bool::True(), // is_declaration
Object::null_instance());
}
DEFINE_NATIVE_ENTRY(Mirrors_makeLocalTypeMirror, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
return CreateTypeMirror(type);
}
DEFINE_NATIVE_ENTRY(Mirrors_instantiateGenericType, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(Array, args, arguments->NativeArgAt(1));
ASSERT(type.HasResolvedTypeClass());
const Class& clz = Class::Handle(type.type_class());
if (!clz.IsGeneric()) {
const Array& error_args = Array::Handle(Array::New(3));
error_args.SetAt(0, type);
error_args.SetAt(1, String::Handle(String::New("key")));
error_args.SetAt(2, String::Handle(String::New(
"Type must be a generic class or function.")));
Exceptions::ThrowByType(Exceptions::kArgumentValue, error_args);
UNREACHABLE();
}
if (clz.NumTypeParameters() != args.Length()) {
const Array& error_args = Array::Handle(Array::New(3));
error_args.SetAt(0, args);
error_args.SetAt(1, String::Handle(String::New("typeArguments")));
error_args.SetAt(2, String::Handle(String::New(
"Number of type arguments does not match.")));
Exceptions::ThrowByType(Exceptions::kArgumentValue, error_args);
UNREACHABLE();
}
intptr_t num_expected_type_arguments = args.Length();
TypeArguments& type_args_obj = TypeArguments::Handle();
type_args_obj ^= TypeArguments::New(num_expected_type_arguments);
AbstractType& type_arg = AbstractType::Handle();
Instance& instance = Instance::Handle();
for (intptr_t i = 0; i < args.Length(); i++) {
instance ^= args.At(i);
if (!instance.IsType()) {
const Array& error_args = Array::Handle(Array::New(3));
error_args.SetAt(0, args);
error_args.SetAt(1, String::Handle(String::New("typeArguments")));
error_args.SetAt(2, String::Handle(String::New(
"Type arguments must be instances of Type.")));
Exceptions::ThrowByType(Exceptions::kArgumentValue, error_args);
UNREACHABLE();
}
type_arg ^= args.At(i);
type_args_obj.SetTypeAt(i, type_arg);
}
Type& instantiated_type =
Type::Handle(Type::New(clz, type_args_obj, TokenPosition::kNoSource));
instantiated_type ^= ClassFinalizer::FinalizeType(clz, instantiated_type);
if (instantiated_type.IsMalbounded()) {
const LanguageError& type_error =
LanguageError::Handle(instantiated_type.error());
const Array& error_args = Array::Handle(Array::New(3));
error_args.SetAt(0, args);
error_args.SetAt(1, String::Handle(String::New("typeArguments")));
error_args.SetAt(2, String::Handle(type_error.FormatMessage()));
Exceptions::ThrowByType(Exceptions::kArgumentValue, error_args);
UNREACHABLE();
}
return instantiated_type.raw();
}
DEFINE_NATIVE_ENTRY(Mirrors_mangleName, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(String, name, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Library& lib = Library::Handle(ref.GetLibraryReferent());
return lib.IsPrivate(name) ? lib.PrivateName(name) : name.raw();
}
DEFINE_NATIVE_ENTRY(MirrorReference_equals, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, a, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, b, arguments->NativeArgAt(1));
return Bool::Get(a.referent() == b.referent()).raw();
}
DEFINE_NATIVE_ENTRY(DeclarationMirror_metadata, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, reflectee, arguments->NativeArgAt(0));
Object& decl = Object::Handle();
if (reflectee.IsMirrorReference()) {
const MirrorReference& decl_ref = MirrorReference::Cast(reflectee);
decl = decl_ref.referent();
} else if (reflectee.IsTypeParameter()) {
decl = reflectee.raw();
} else {
UNREACHABLE();
}
Class& klass = Class::Handle();
Library& library = Library::Handle();
if (decl.IsClass()) {
klass ^= decl.raw();
library = klass.library();
} else if (decl.IsFunction() && !Function::Cast(decl).IsSignatureFunction()) {
klass = Function::Cast(decl).origin();
library = klass.library();
} else if (decl.IsField()) {
klass = Field::Cast(decl).Origin();
library = klass.library();
} else if (decl.IsLibrary()) {
library ^= decl.raw();
} else if (decl.IsTypeParameter()) {
if (TypeParameter::Cast(decl).IsFunctionTypeParameter()) {
// TODO(regis): Fully support generic functions.
return Object::empty_array().raw();
}
klass ^= TypeParameter::Cast(decl).parameterized_class();
library = klass.library();
} else {
return Object::empty_array().raw();
}
const Object& metadata = Object::Handle(library.GetMetadata(decl));
if (metadata.IsError()) {
Exceptions::PropagateError(Error::Cast(metadata));
}
return metadata.raw();
}
DEFINE_NATIVE_ENTRY(FunctionTypeMirror_call_method, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, owner_mirror,
arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
// TODO(rmacnak): Return get:call() method on class _Closure instead?
// This now returns the result of invoking that call getter.
const Function& func = Function::Handle(ref.GetFunctionReferent());
ASSERT(!func.IsNull());
return CreateMethodMirror(func, owner_mirror, AbstractType::Handle());
}
DEFINE_NATIVE_ENTRY(FunctionTypeMirror_parameters, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, owner, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Function& func = Function::Handle(ref.GetFunctionReferent());
return CreateParameterMirrorList(func, owner);
}
DEFINE_NATIVE_ENTRY(FunctionTypeMirror_return_type, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Function& func = Function::Handle(ref.GetFunctionReferent());
ASSERT(!func.IsNull());
AbstractType& type = AbstractType::Handle(func.result_type());
// Signatures of function types are instantiated, but not canonical.
return type.Canonicalize();
}
DEFINE_NATIVE_ENTRY(ClassMirror_libraryUri, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Class& klass = Class::Handle(ref.GetClassReferent());
const Library& library = Library::Handle(klass.library());
ASSERT(!library.IsNull());
return library.url();
}
DEFINE_NATIVE_ENTRY(ClassMirror_supertype, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
const Class& cls = Class::Handle(type.type_class());
const AbstractType& super_type = AbstractType::Handle(cls.super_type());
ASSERT(super_type.IsNull() || super_type.IsFinalized());
return super_type.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_supertype_instantiated, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
const Class& cls = Class::Handle(type.type_class());
const AbstractType& super_type = AbstractType::Handle(cls.super_type());
return InstantiateType(super_type, type);
}
DEFINE_NATIVE_ENTRY(ClassMirror_interfaces, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
const Class& cls = Class::Handle(type.type_class());
const Error& error = Error::Handle(cls.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
return cls.interfaces();
}
DEFINE_NATIVE_ENTRY(ClassMirror_interfaces_instantiated, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
const Class& cls = Class::Handle(type.type_class());
const Error& error = Error::Handle(cls.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
Array& interfaces = Array::Handle(cls.interfaces());
Array& interfaces_inst = Array::Handle(Array::New(interfaces.Length()));
AbstractType& interface = AbstractType::Handle();
for (int i = 0; i < interfaces.Length(); i++) {
interface ^= interfaces.At(i);
interface = InstantiateType(interface, type);
interfaces_inst.SetAt(i, interface);
}
return interfaces_inst.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_mixin, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
const Class& cls = Class::Handle(type.type_class());
const AbstractType& mixin_type = AbstractType::Handle(cls.mixin());
ASSERT(mixin_type.IsNull() || mixin_type.IsFinalized());
return mixin_type.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_mixin_instantiated, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, instantiator,
arguments->NativeArgAt(1));
PROPAGATE_IF_MALFORMED(type);
ASSERT(type.IsFinalized());
const Class& cls = Class::Handle(type.type_class());
const AbstractType& mixin_type = AbstractType::Handle(cls.mixin());
if (mixin_type.IsNull()) {
return mixin_type.raw();
}
return InstantiateType(mixin_type, instantiator);
}
DEFINE_NATIVE_ENTRY(ClassMirror_members, 3) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, owner_mirror,
arguments->NativeArgAt(0));
GET_NATIVE_ARGUMENT(AbstractType, owner_instantiator,
arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(2));
const Class& klass = Class::Handle(ref.GetClassReferent());
const Error& error = Error::Handle(klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
const Array& fields = Array::Handle(klass.fields());
const intptr_t num_fields = fields.Length();
const Array& functions = Array::Handle(klass.functions());
const intptr_t num_functions = functions.Length();
Instance& member_mirror = Instance::Handle();
const GrowableObjectArray& member_mirrors = GrowableObjectArray::Handle(
GrowableObjectArray::New(num_fields + num_functions));
Field& field = Field::Handle();
for (intptr_t i = 0; i < num_fields; i++) {
field ^= fields.At(i);
if (field.is_reflectable()) {
member_mirror = CreateVariableMirror(field, owner_mirror);
member_mirrors.Add(member_mirror);
}
}
Function& func = Function::Handle();
for (intptr_t i = 0; i < num_functions; i++) {
func ^= functions.At(i);
if (func.is_reflectable() &&
(func.kind() == RawFunction::kRegularFunction ||
func.kind() == RawFunction::kGetterFunction ||
func.kind() == RawFunction::kSetterFunction)) {
member_mirror =
CreateMethodMirror(func, owner_mirror, owner_instantiator);
member_mirrors.Add(member_mirror);
}
}
return member_mirrors.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_constructors, 3) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, owner_mirror,
arguments->NativeArgAt(0));
GET_NATIVE_ARGUMENT(AbstractType, owner_instantiator,
arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(2));
const Class& klass = Class::Handle(ref.GetClassReferent());
const Error& error = Error::Handle(klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
const Array& functions = Array::Handle(klass.functions());
const intptr_t num_functions = functions.Length();
Instance& constructor_mirror = Instance::Handle();
const GrowableObjectArray& constructor_mirrors =
GrowableObjectArray::Handle(GrowableObjectArray::New(num_functions));
Function& func = Function::Handle();
for (intptr_t i = 0; i < num_functions; i++) {
func ^= functions.At(i);
if (func.is_reflectable() && func.kind() == RawFunction::kConstructor) {
constructor_mirror =
CreateMethodMirror(func, owner_mirror, owner_instantiator);
constructor_mirrors.Add(constructor_mirror);
}
}
return constructor_mirrors.raw();
}
DEFINE_NATIVE_ENTRY(LibraryMirror_members, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, owner_mirror,
arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Library& library = Library::Handle(ref.GetLibraryReferent());
Instance& member_mirror = Instance::Handle();
const GrowableObjectArray& member_mirrors =
GrowableObjectArray::Handle(GrowableObjectArray::New());
Object& entry = Object::Handle();
DictionaryIterator entries(library);
AbstractType& type = AbstractType::Handle();
while (entries.HasNext()) {
entry = entries.GetNext();
if (entry.IsClass()) {
const Class& klass = Class::Cast(entry);
// We filter out mixin application classes and dynamic.
// TODO(12478): Should not need to filter out dynamic.
// Note that the VM does not consider mixin application aliases to be
// mixin applications.
if (!klass.IsDynamicClass() && !klass.IsMixinApplication()) {
type = klass.DeclarationType();
member_mirror = CreateClassMirror(klass, type,
Bool::True(), // is_declaration
owner_mirror);
member_mirrors.Add(member_mirror);
}
} else if (entry.IsField()) {
const Field& field = Field::Cast(entry);
if (field.is_reflectable()) {
member_mirror = CreateVariableMirror(field, owner_mirror);
member_mirrors.Add(member_mirror);
}
} else if (entry.IsFunction()) {
const Function& func = Function::Cast(entry);
if (func.is_reflectable() &&
(func.kind() == RawFunction::kRegularFunction ||
func.kind() == RawFunction::kGetterFunction ||
func.kind() == RawFunction::kSetterFunction)) {
member_mirror =
CreateMethodMirror(func, owner_mirror, AbstractType::Handle());
member_mirrors.Add(member_mirror);
}
}
}
return member_mirrors.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_type_variables, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Class& klass = Class::Handle(ref.GetClassReferent());
const Error& error = Error::Handle(zone, klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
return CreateTypeVariableList(klass);
}
DEFINE_NATIVE_ENTRY(ClassMirror_type_arguments, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, type, arguments->NativeArgAt(0));
const Class& cls = Class::Handle(type.type_class());
const intptr_t num_params = cls.NumTypeParameters();
if (num_params == 0) {
return Object::empty_array().raw();
}
const Array& result = Array::Handle(Array::New(num_params));
AbstractType& arg_type = AbstractType::Handle();
Instance& type_mirror = Instance::Handle();
const TypeArguments& args = TypeArguments::Handle(type.arguments());
// Handle argument lists that have been optimized away, because either no
// arguments have been provided, or all arguments are dynamic. Return a list
// of typemirrors on dynamic in this case.
if (args.IsNull()) {
arg_type ^= Object::dynamic_type().raw();
type_mirror ^= CreateTypeMirror(arg_type);
for (intptr_t i = 0; i < num_params; i++) {
result.SetAt(i, type_mirror);
}
return result.raw();
}
ASSERT(args.Length() >= num_params);
const intptr_t num_inherited_args = args.Length() - num_params;
for (intptr_t i = 0; i < num_params; i++) {
arg_type ^= args.TypeAt(i + num_inherited_args);
type_mirror = CreateTypeMirror(arg_type);
result.SetAt(i, type_mirror);
}
return result.raw();
}
DEFINE_NATIVE_ENTRY(TypeVariableMirror_owner, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(TypeParameter, param, arguments->NativeArgAt(0));
Class& owner = Class::Handle(param.parameterized_class());
AbstractType& type = AbstractType::Handle();
if (owner.IsNull()) {
// TODO(regis): Fully support generic functions. For now, reify function
// type parameters to dynamic and map their function owner to Null class.
ASSERT(param.IsFunctionTypeParameter());
type = Type::NullType();
owner = type.type_class();
} else {
type = owner.DeclarationType();
}
return CreateClassMirror(owner, type,
Bool::True(), // is_declaration
Instance::null_instance());
}
DEFINE_NATIVE_ENTRY(TypeVariableMirror_upper_bound, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(TypeParameter, param, arguments->NativeArgAt(0));
return param.bound();
}
DEFINE_NATIVE_ENTRY(Mirrors_evalInLibraryWithPrivateKey, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(String, expression, arguments->NativeArgAt(0));
GET_NATIVE_ARGUMENT(String, private_key, arguments->NativeArgAt(1));
const GrowableObjectArray& libraries =
GrowableObjectArray::Handle(isolate->object_store()->libraries());
const int num_libraries = libraries.Length();
Library& each_library = Library::Handle();
Library& ctxt_library = Library::Handle();
String& library_key = String::Handle();
if (private_key.IsNull()) {
ctxt_library = Library::CoreLibrary();
} else {
for (int i = 0; i < num_libraries; i++) {
each_library ^= libraries.At(i);
library_key = each_library.private_key();
if (library_key.Equals(private_key)) {
ctxt_library = each_library.raw();
break;
}
}
}
ASSERT(!ctxt_library.IsNull());
const Object& result = Object::Handle(ctxt_library.Evaluate(
expression, Array::empty_array(), Array::empty_array()));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
// Because we currently only use this native for building field extractors and
// setters, assume the result is a closure and mark its function as invisible,
// so it will not appear in stack traces. Whenever we support
// ObjectMirror.evaluate this will need to be separated.
ASSERT(result.IsClosure());
const Function& func = Function::Handle(Closure::Cast(result).function());
func.set_is_visible(false);
func.set_is_debuggable(false);
return result.raw();
}
DEFINE_NATIVE_ENTRY(TypedefMirror_declaration, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(Type, type, arguments->NativeArgAt(0));
ASSERT(type.IsFunctionType());
const Class& cls = Class::Handle(type.type_class());
ASSERT(cls.IsTypedefClass());
return CreateTypedefMirror(cls, AbstractType::Handle(cls.DeclarationType()),
Bool::True(), // is_declaration
Object::null_instance());
}
DEFINE_NATIVE_ENTRY(InstanceMirror_invoke, 5) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NATIVE_ARGUMENT(Instance, reflectee, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(String, function_name,
arguments->NativeArgAt(2));
GET_NON_NULL_NATIVE_ARGUMENT(Array, args, arguments->NativeArgAt(3));
GET_NON_NULL_NATIVE_ARGUMENT(Array, arg_names, arguments->NativeArgAt(4));
Class& klass = Class::Handle(reflectee.clazz());
Function& function = Function::Handle(
zone, Resolver::ResolveDynamicAnyArgs(zone, klass, function_name));
// TODO(regis): Support invocation of generic functions with type arguments.
const int kTypeArgsLen = 0;
const Array& args_descriptor = Array::Handle(
zone, ArgumentsDescriptor::New(kTypeArgsLen, args.Length(), arg_names));
if (function.IsNull()) {
// Didn't find a method: try to find a getter and invoke call on its result.
const String& getter_name =
String::Handle(zone, Field::GetterName(function_name));
function = Resolver::ResolveDynamicAnyArgs(zone, klass, getter_name);
if (!function.IsNull()) {
ASSERT(function.kind() != RawFunction::kMethodExtractor);
// Invoke the getter.
const int kNumArgs = 1;
const Array& getter_args = Array::Handle(zone, Array::New(kNumArgs));
getter_args.SetAt(0, reflectee);
const Array& getter_args_descriptor = Array::Handle(
zone, ArgumentsDescriptor::New(kTypeArgsLen, getter_args.Length()));
const Instance& getter_result = Instance::Handle(
zone, InvokeDynamicFunction(reflectee, function, getter_name,
getter_args, getter_args_descriptor));
// Replace the closure as the receiver in the arguments list.
args.SetAt(0, getter_result);
// Call the closure.
const Object& call_result =
Object::Handle(zone, DartEntry::InvokeClosure(args, args_descriptor));
if (call_result.IsError()) {
Exceptions::PropagateError(Error::Cast(call_result));
UNREACHABLE();
}
return call_result.raw();
}
}
// Found an ordinary method.
return InvokeDynamicFunction(reflectee, function, function_name, args,
args_descriptor);
}
DEFINE_NATIVE_ENTRY(InstanceMirror_invokeGetter, 3) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NATIVE_ARGUMENT(Instance, reflectee, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(String, getter_name, arguments->NativeArgAt(2));
Class& klass = Class::Handle(reflectee.clazz());
const String& internal_getter_name =
String::Handle(Field::GetterName(getter_name));
Function& function = Function::Handle(
zone, Resolver::ResolveDynamicAnyArgs(zone, klass, internal_getter_name));
// Check for method extraction when method extractors are not created.
if (function.IsNull() && !FLAG_lazy_dispatchers) {
function = Resolver::ResolveDynamicAnyArgs(zone, klass, getter_name);
if (!function.IsNull()) {
const Function& closure_function =
Function::Handle(zone, function.ImplicitClosureFunction());
return closure_function.ImplicitInstanceClosure(reflectee);
}
}
const int kTypeArgsLen = 0;
const int kNumArgs = 1;
const Array& args = Array::Handle(zone, Array::New(kNumArgs));
args.SetAt(0, reflectee);
const Array& args_descriptor = Array::Handle(
zone, ArgumentsDescriptor::New(kTypeArgsLen, args.Length()));
// InvokeDynamic invokes NoSuchMethod if the provided function is null.
return InvokeDynamicFunction(reflectee, function, internal_getter_name, args,
args_descriptor);
}
DEFINE_NATIVE_ENTRY(InstanceMirror_invokeSetter, 4) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NATIVE_ARGUMENT(Instance, reflectee, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(String, setter_name, arguments->NativeArgAt(2));
GET_NATIVE_ARGUMENT(Instance, value, arguments->NativeArgAt(3));
const Class& klass = Class::Handle(zone, reflectee.clazz());
const String& internal_setter_name =
String::Handle(zone, Field::SetterName(setter_name));
const Function& setter = Function::Handle(
zone, Resolver::ResolveDynamicAnyArgs(zone, klass, internal_setter_name));
const int kTypeArgsLen = 0;
const int kNumArgs = 2;
const Array& args = Array::Handle(zone, Array::New(kNumArgs));
args.SetAt(0, reflectee);
args.SetAt(1, value);
const Array& args_descriptor = Array::Handle(
zone, ArgumentsDescriptor::New(kTypeArgsLen, args.Length()));
return InvokeDynamicFunction(reflectee, setter, internal_setter_name, args,
args_descriptor);
}
DEFINE_NATIVE_ENTRY(InstanceMirror_computeType, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, instance, arguments->NativeArgAt(0));
const AbstractType& type = AbstractType::Handle(instance.GetType(Heap::kNew));
// The static type of null is specified to be the bottom type, however, the
// runtime type of null is the Null type, which we correctly return here.
return type.Canonicalize();
}
DEFINE_NATIVE_ENTRY(ClosureMirror_function, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, closure, arguments->NativeArgAt(0));
ASSERT(!closure.IsNull());
Function& function = Function::Handle();
bool callable = closure.IsCallable(&function);
if (callable) {
if (function.IsImplicitClosureFunction()) {
// The VM uses separate Functions for tear-offs, but the mirrors consider
// the tear-offs to be the same as the torn-off methods. Avoid handing out
// a reference to the tear-off here to avoid a special case in the
// the equality test.
function = function.parent_function();
}
Type& instantiator = Type::Handle();
if (closure.IsClosure()) {
const TypeArguments& arguments = TypeArguments::Handle(
Closure::Cast(closure).instantiator_type_arguments());
// TODO(regis): Mirrors need work to properly support generic functions.
// The 'instantiator' created below should not be a type, but two type
// argument vectors: instantiator_type_arguments and
// function_type_arguments.
const Class& cls =
Class::Handle(Isolate::Current()->object_store()->object_class());
instantiator = Type::New(cls, arguments, TokenPosition::kNoSource);
instantiator.SetIsFinalized();
}
return CreateMethodMirror(function, Instance::null_instance(),
instantiator);
}
return Instance::null();
}
DEFINE_NATIVE_ENTRY(ClassMirror_invoke, 5) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Class& klass = Class::Handle(ref.GetClassReferent());
GET_NON_NULL_NATIVE_ARGUMENT(String, function_name,
arguments->NativeArgAt(2));
GET_NON_NULL_NATIVE_ARGUMENT(Array, args, arguments->NativeArgAt(3));
GET_NON_NULL_NATIVE_ARGUMENT(Array, arg_names, arguments->NativeArgAt(4));
// TODO(regis): Support invocation of generic functions with type arguments.
const int kTypeArgsLen = 0;
const Error& error = Error::Handle(zone, klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
Function& function =
Function::Handle(klass.LookupStaticFunction(function_name));
if (function.IsNull()) {
// Didn't find a method: try to find a getter and invoke call on its result.
const String& getter_name =
String::Handle(Field::GetterName(function_name));
function = klass.LookupStaticFunction(getter_name);
if (!function.IsNull()) {
// Invoke the getter.
const Object& getter_result = Object::Handle(
DartEntry::InvokeFunction(function, Object::empty_array()));
if (getter_result.IsError()) {
Exceptions::PropagateError(Error::Cast(getter_result));
UNREACHABLE();
}
// Make room for the closure (receiver) in the argument list.
const intptr_t num_args = args.Length();
const Array& call_args = Array::Handle(Array::New(num_args + 1));
Object& temp = Object::Handle();
for (int i = 0; i < num_args; i++) {
temp = args.At(i);
call_args.SetAt(i + 1, temp);
}
call_args.SetAt(0, getter_result);
const Array& call_args_descriptor_array =
Array::Handle(ArgumentsDescriptor::New(
kTypeArgsLen, call_args.Length(), arg_names));
// Call the closure.
const Object& call_result = Object::Handle(
DartEntry::InvokeClosure(call_args, call_args_descriptor_array));
if (call_result.IsError()) {
Exceptions::PropagateError(Error::Cast(call_result));
UNREACHABLE();
}
return call_result.raw();
}
}
const Array& args_descriptor_array = Array::Handle(
ArgumentsDescriptor::New(kTypeArgsLen, args.Length(), arg_names));
ArgumentsDescriptor args_descriptor(args_descriptor_array);
if (function.IsNull() || !function.AreValidArguments(args_descriptor, NULL) ||
!function.is_reflectable()) {
ThrowNoSuchMethod(AbstractType::Handle(klass.RareType()), function_name,
args, arg_names, InvocationMirror::kStatic,
InvocationMirror::kMethod);
UNREACHABLE();
}
Object& result = Object::Handle(
DartEntry::InvokeFunction(function, args, args_descriptor_array));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
return result.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_invokeGetter, 3) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Class& klass = Class::Handle(ref.GetClassReferent());
const Error& error = Error::Handle(zone, klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
GET_NON_NULL_NATIVE_ARGUMENT(String, getter_name, arguments->NativeArgAt(2));
return InvokeClassGetter(klass, getter_name, true);
}
DEFINE_NATIVE_ENTRY(ClassMirror_invokeSetter, 4) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Class& klass = Class::Handle(ref.GetClassReferent());
GET_NON_NULL_NATIVE_ARGUMENT(String, setter_name, arguments->NativeArgAt(2));
GET_NATIVE_ARGUMENT(Instance, value, arguments->NativeArgAt(3));
const Error& error = Error::Handle(zone, klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
// Check for real fields and user-defined setters.
const Field& field = Field::Handle(klass.LookupStaticField(setter_name));
Function& setter = Function::Handle();
const String& internal_setter_name =
String::Handle(Field::SetterName(setter_name));
if (field.IsNull()) {
setter = klass.LookupStaticFunction(internal_setter_name);
const int kNumArgs = 1;
const Array& args = Array::Handle(Array::New(kNumArgs));
args.SetAt(0, value);
if (setter.IsNull() || !setter.is_reflectable()) {
ThrowNoSuchMethod(AbstractType::Handle(klass.RareType()),
internal_setter_name, args, Object::null_array(),
InvocationMirror::kStatic, InvocationMirror::kSetter);
UNREACHABLE();
}
// Invoke the setter and return the result.
Object& result = Object::Handle(DartEntry::InvokeFunction(setter, args));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
return result.raw();
}
if (field.is_final() || !field.is_reflectable()) {
const int kNumArgs = 1;
const Array& args = Array::Handle(Array::New(kNumArgs));
args.SetAt(0, value);
ThrowNoSuchMethod(AbstractType::Handle(klass.RareType()),
internal_setter_name, args, Object::null_array(),
InvocationMirror::kStatic, InvocationMirror::kSetter);
UNREACHABLE();
}
field.SetStaticValue(value);
return value.raw();
}
DEFINE_NATIVE_ENTRY(ClassMirror_invokeConstructor, 5) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Class& klass = Class::Handle(ref.GetClassReferent());
GET_NATIVE_ARGUMENT(Type, type, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(String, constructor_name,
arguments->NativeArgAt(2));
GET_NON_NULL_NATIVE_ARGUMENT(Array, explicit_args, arguments->NativeArgAt(3));
GET_NON_NULL_NATIVE_ARGUMENT(Array, arg_names, arguments->NativeArgAt(4));
const Error& error = Error::Handle(zone, klass.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
// By convention, the static function implementing a named constructor 'C'
// for class 'A' is labeled 'A.C', and the static function implementing the
// unnamed constructor for class 'A' is labeled 'A.'.
// This convention prevents users from explicitly calling constructors.
const String& klass_name = String::Handle(klass.Name());
String& external_constructor_name = String::Handle(klass_name.raw());
String& internal_constructor_name =
String::Handle(String::Concat(klass_name, Symbols::Dot()));
if (!constructor_name.IsNull() && constructor_name.Length() > 0) {
internal_constructor_name =
String::Concat(internal_constructor_name, constructor_name);
external_constructor_name = internal_constructor_name.raw();
}
Function& lookup_constructor =
Function::Handle(klass.LookupFunction(internal_constructor_name));
if (lookup_constructor.IsNull() ||
(lookup_constructor.kind() != RawFunction::kConstructor) ||
!lookup_constructor.is_reflectable()) {
ThrowNoSuchMethod(AbstractType::Handle(klass.RareType()),
external_constructor_name, explicit_args, arg_names,
InvocationMirror::kConstructor,
InvocationMirror::kMethod);
UNREACHABLE();
}
if (klass.is_abstract() && !lookup_constructor.IsFactory()) {
const Array& error_args = Array::Handle(Array::New(3));
error_args.SetAt(0, klass_name);
// 1 = script url
// 2 = token position
Exceptions::ThrowByType(Exceptions::kAbstractClassInstantiation,
error_args);
UNREACHABLE();
}
ASSERT(!type.IsNull());
TypeArguments& type_arguments = TypeArguments::Handle(type.arguments());
if (!type.IsInstantiated()) {
// Must have been a declaration type.
AbstractType& rare_type = AbstractType::Handle(klass.RareType());
ASSERT(rare_type.IsInstantiated());
type_arguments = rare_type.arguments();
}
Class& redirected_klass = Class::Handle(klass.raw());
Function& redirected_constructor = Function::Handle(lookup_constructor.raw());
if (lookup_constructor.IsRedirectingFactory()) {
ClassFinalizer::ResolveRedirectingFactory(klass, lookup_constructor);
Type& redirect_type = Type::Handle(lookup_constructor.RedirectionType());
if (!redirect_type.IsInstantiated()) {
// The type arguments of the redirection type are instantiated from the
// type arguments of the type reflected by the class mirror.
ASSERT(redirect_type.IsInstantiated(kFunctions));
Error& bound_error = Error::Handle();
redirect_type ^= redirect_type.InstantiateFrom(
type_arguments, Object::null_type_arguments(), kNoneFree,
&bound_error, NULL, NULL, Heap::kOld);
if (!bound_error.IsNull()) {
Exceptions::PropagateError(bound_error);
UNREACHABLE();
}
redirect_type ^= redirect_type.Canonicalize();
}
type = redirect_type.raw();
type_arguments = redirect_type.arguments();
redirected_constructor = lookup_constructor.RedirectionTarget();
ASSERT(!redirected_constructor.IsNull());
redirected_klass = type.type_class();
}
const intptr_t num_explicit_args = explicit_args.Length();
const intptr_t num_implicit_args = 1;
const Array& args =
Array::Handle(Array::New(num_implicit_args + num_explicit_args));
// Copy over the explicit arguments.
Object& explicit_argument = Object::Handle();
for (int i = 0; i < num_explicit_args; i++) {
explicit_argument = explicit_args.At(i);
args.SetAt(i + num_implicit_args, explicit_argument);
}
const int kTypeArgsLen = 0;
const Array& args_descriptor_array = Array::Handle(
ArgumentsDescriptor::New(kTypeArgsLen, args.Length(), arg_names));
ArgumentsDescriptor args_descriptor(args_descriptor_array);
if (!redirected_constructor.AreValidArguments(args_descriptor, NULL)) {
external_constructor_name = redirected_constructor.name();
ThrowNoSuchMethod(AbstractType::Handle(klass.RareType()),
external_constructor_name, explicit_args, arg_names,
InvocationMirror::kConstructor,
InvocationMirror::kMethod);
UNREACHABLE();
}
Instance& new_object = Instance::Handle();
if (redirected_constructor.IsGenerativeConstructor()) {
// Constructors get the uninitialized object.
// Note we have delayed allocation until after the function
// type and argument matching checks.
new_object = Instance::New(redirected_klass);
if (!type_arguments.IsNull()) {
// The type arguments will be null if the class has no type parameters, in
// which case the following call would fail because there is no slot
// reserved in the object for the type vector.
new_object.SetTypeArguments(type_arguments);
}
args.SetAt(0, new_object);
} else {
// Factories get type arguments.
args.SetAt(0, type_arguments);
}
// Invoke the constructor and return the new object.
const Object& result = Object::Handle(DartEntry::InvokeFunction(
redirected_constructor, args, args_descriptor_array));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
// Factories may return null.
ASSERT(result.IsInstance() || result.IsNull());
if (redirected_constructor.IsGenerativeConstructor()) {
return new_object.raw();
} else {
return result.raw();
}
}
DEFINE_NATIVE_ENTRY(LibraryMirror_invoke, 5) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Library& library = Library::Handle(ref.GetLibraryReferent());
GET_NON_NULL_NATIVE_ARGUMENT(String, function_name,
arguments->NativeArgAt(2));
GET_NON_NULL_NATIVE_ARGUMENT(Array, args, arguments->NativeArgAt(3));
GET_NON_NULL_NATIVE_ARGUMENT(Array, arg_names, arguments->NativeArgAt(4));
// TODO(regis): Support invocation of generic functions with type arguments.
const int kTypeArgsLen = 0;
Function& function =
Function::Handle(library.LookupLocalFunction(function_name));
if (function.IsNull()) {
// Didn't find a method: try to find a getter and invoke call on its result.
const Instance& getter_result =
Instance::Handle(InvokeLibraryGetter(library, function_name, false));
if (getter_result.raw() != Object::sentinel().raw()) {
// Make room for the closure (receiver) in arguments.
intptr_t numArgs = args.Length();
const Array& call_args = Array::Handle(Array::New(numArgs + 1));
Object& temp = Object::Handle();
for (int i = 0; i < numArgs; i++) {
temp = args.At(i);
call_args.SetAt(i + 1, temp);
}
call_args.SetAt(0, getter_result);
const Array& call_args_descriptor_array =
Array::Handle(ArgumentsDescriptor::New(
kTypeArgsLen, call_args.Length(), arg_names));
// Call closure.
const Object& call_result = Object::Handle(
DartEntry::InvokeClosure(call_args, call_args_descriptor_array));
if (call_result.IsError()) {
Exceptions::PropagateError(Error::Cast(call_result));
UNREACHABLE();
}
return call_result.raw();
}
}
const Array& args_descriptor_array = Array::Handle(
ArgumentsDescriptor::New(kTypeArgsLen, args.Length(), arg_names));
ArgumentsDescriptor args_descriptor(args_descriptor_array);
if (function.IsNull() || !function.AreValidArguments(args_descriptor, NULL) ||
!function.is_reflectable()) {
ThrowNoSuchMethod(AbstractType::Handle(
Class::Handle(library.toplevel_class()).RareType()),
function_name, args, arg_names,
InvocationMirror::kTopLevel, InvocationMirror::kMethod);
UNREACHABLE();
}
const Object& result = Object::Handle(
DartEntry::InvokeFunction(function, args, args_descriptor_array));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
return result.raw();
}
DEFINE_NATIVE_ENTRY(LibraryMirror_invokeGetter, 3) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Library& library = Library::Handle(ref.GetLibraryReferent());
GET_NON_NULL_NATIVE_ARGUMENT(String, getter_name, arguments->NativeArgAt(2));
return InvokeLibraryGetter(library, getter_name, true);
}
DEFINE_NATIVE_ENTRY(LibraryMirror_invokeSetter, 4) {
// Argument 0 is the mirror, which is unused by the native. It exists
// because this native is an instance method in order to be polymorphic
// with its cousins.
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Library& library = Library::Handle(ref.GetLibraryReferent());
GET_NON_NULL_NATIVE_ARGUMENT(String, setter_name, arguments->NativeArgAt(2));
GET_NATIVE_ARGUMENT(Instance, value, arguments->NativeArgAt(3));
// To access a top-level we may need to use the Field or the
// setter Function. The setter function may either be in the
// library or in the field's owner class, depending.
const Field& field = Field::Handle(library.LookupLocalField(setter_name));
Function& setter = Function::Handle();
const String& internal_setter_name =
String::Handle(Field::SetterName(setter_name));
if (field.IsNull()) {
setter = library.LookupLocalFunction(internal_setter_name);
const int kNumArgs = 1;
const Array& args = Array::Handle(Array::New(kNumArgs));
args.SetAt(0, value);
if (setter.IsNull() || !setter.is_reflectable()) {
ThrowNoSuchMethod(AbstractType::Handle(
Class::Handle(library.toplevel_class()).RareType()),
internal_setter_name, args, Object::null_array(),
InvocationMirror::kTopLevel, InvocationMirror::kSetter);
UNREACHABLE();
}
// Invoke the setter and return the result.
const Object& result =
Object::Handle(DartEntry::InvokeFunction(setter, args));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
return result.raw();
}
if (field.is_final() || !field.is_reflectable()) {
const int kNumArgs = 1;
const Array& args = Array::Handle(Array::New(kNumArgs));
args.SetAt(0, value);
ThrowNoSuchMethod(AbstractType::Handle(
Class::Handle(library.toplevel_class()).RareType()),
internal_setter_name, args, Object::null_array(),
InvocationMirror::kTopLevel, InvocationMirror::kSetter);
UNREACHABLE();
}
field.SetStaticValue(value);
return value.raw();
}
DEFINE_NATIVE_ENTRY(MethodMirror_owner, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
GET_NATIVE_ARGUMENT(AbstractType, instantiator, arguments->NativeArgAt(1));
const Function& func = Function::Handle(ref.GetFunctionReferent());
if (func.IsNonImplicitClosureFunction()) {
return CreateMethodMirror(Function::Handle(func.parent_function()),
Object::null_instance(), instantiator);
}
const Class& owner = Class::Handle(func.Owner());
if (owner.IsTopLevel()) {
return CreateLibraryMirror(thread, Library::Handle(owner.library()));
}
AbstractType& type = AbstractType::Handle(owner.DeclarationType());
return CreateClassMirror(owner, type, Bool::True(), Object::null_instance());
}
DEFINE_NATIVE_ENTRY(MethodMirror_parameters, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, owner, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(1));
const Function& func = Function::Handle(ref.GetFunctionReferent());
return CreateParameterMirrorList(func, owner);
}
DEFINE_NATIVE_ENTRY(MethodMirror_return_type, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Function& func = Function::Handle(ref.GetFunctionReferent());
GET_NATIVE_ARGUMENT(AbstractType, instantiator, arguments->NativeArgAt(1));
// We handle constructors in Dart code.
ASSERT(!func.IsGenerativeConstructor());
AbstractType& type = AbstractType::Handle(func.result_type());
type ^= type.Canonicalize(); // Instantiated signatures are not canonical.
return InstantiateType(type, instantiator);
}
DEFINE_NATIVE_ENTRY(MethodMirror_source, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Function& func = Function::Handle(ref.GetFunctionReferent());
return func.GetSource();
}
static RawInstance* CreateSourceLocation(const String& uri,
intptr_t line,
intptr_t column) {
const Array& args = Array::Handle(Array::New(3));
args.SetAt(0, uri);
args.SetAt(1, Smi::Handle(Smi::New(line)));
args.SetAt(2, Smi::Handle(Smi::New(column)));
return CreateMirror(Symbols::_SourceLocation(), args);
}
DEFINE_NATIVE_ENTRY(DeclarationMirror_location, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(Instance, reflectee, arguments->NativeArgAt(0));
Object& decl = Object::Handle(zone);
if (reflectee.IsMirrorReference()) {
const MirrorReference& decl_ref = MirrorReference::Cast(reflectee);
decl = decl_ref.referent();
} else if (reflectee.IsTypeParameter()) {
decl = reflectee.raw();
} else {
UNREACHABLE();
}
Script& script = Script::Handle(zone);
TokenPosition token_pos = TokenPosition::kNoSource;
if (decl.IsFunction()) {
const Function& func = Function::Cast(decl);
if (func.IsImplicitConstructor() || func.IsSignatureFunction()) {
// These are synthetic methods; they have no source.
return Instance::null();
}
script = func.script();
token_pos = func.token_pos();
} else if (decl.IsClass()) {
const Class& cls = Class::Cast(decl);
const bool is_typedef = cls.IsTypedefClass();
if (cls.is_synthesized_class() && !is_typedef &&
!cls.is_mixin_app_alias() && !cls.is_enum_class()) {
return Instance::null(); // Synthetic.
}
script = cls.script();
token_pos = cls.token_pos();
} else if (decl.IsField()) {
const Field& field = Field::Cast(decl);
script = field.Script();
token_pos = field.token_pos();
} else if (decl.IsTypeParameter()) {
const TypeParameter& type_var = TypeParameter::Cast(decl);
if (type_var.IsFunctionTypeParameter()) {
// TODO(regis): Support generic functions.
return Instance::null();
}
const Class& owner = Class::Handle(zone, type_var.parameterized_class());
script = owner.script();
token_pos = type_var.token_pos();
} else if (decl.IsLibrary()) {
const Library& lib = Library::Cast(decl);
if (lib.raw() == Library::NativeWrappersLibrary()) {
return Instance::null(); // No source.
}
const Array& scripts = Array::Handle(zone, lib.LoadedScripts());
for (intptr_t i = 0; i < scripts.Length(); i++) {
script ^= scripts.At(i);
if (script.kind() == RawScript::kLibraryTag) break;
}
ASSERT(!script.IsNull());
const String& libname = String::Handle(zone, lib.name());
if (libname.Length() == 0) {
// No library declaration.
const String& uri = String::Handle(zone, script.url());
return CreateSourceLocation(uri, 1, 1);
}
const TokenStream& stream = TokenStream::Handle(zone, script.tokens());
TokenStream::Iterator tkit(zone, stream, TokenPosition::kMinSource);
if (tkit.CurrentTokenKind() == Token::kSCRIPTTAG) tkit.Advance();
token_pos = tkit.CurrentPosition();
}
ASSERT(!script.IsNull());
ASSERT(token_pos != TokenPosition::kNoSource);
const String& uri = String::Handle(zone, script.url());
intptr_t from_line = 0;
intptr_t from_col = 0;
if (script.HasSource()) {
script.GetTokenLocation(token_pos, &from_line, &from_col);
} else {
// Avoid the slow path of printing the token stream when precise source
// information is not available.
script.GetTokenLocation(token_pos, &from_line, NULL);
}
// We should always have at least the line number.
ASSERT(from_line != 0);
return CreateSourceLocation(uri, from_line, from_col);
}
DEFINE_NATIVE_ENTRY(TypedefMirror_referent, 1) {
GET_NON_NULL_NATIVE_ARGUMENT(Type, type, arguments->NativeArgAt(0));
ASSERT(type.IsFunctionType());
const Class& cls = Class::Handle(type.type_class());
ASSERT(cls.IsTypedefClass());
const Function& sig_func = Function::Handle(cls.signature_function());
Type& referent_type = Type::Handle(sig_func.SignatureType());
ASSERT(cls.raw() == referent_type.type_class());
referent_type ^= InstantiateType(referent_type, type);
return CreateFunctionTypeMirror(referent_type);
}
DEFINE_NATIVE_ENTRY(ParameterMirror_type, 3) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, pos, arguments->NativeArgAt(1));
GET_NATIVE_ARGUMENT(AbstractType, instantiator, arguments->NativeArgAt(2));
const Function& func = Function::Handle(ref.GetFunctionReferent());
AbstractType& type = AbstractType::Handle(
func.ParameterTypeAt(func.NumImplicitParameters() + pos.Value()));
type ^= type.Canonicalize(); // Instantiated signatures are not canonical.
return InstantiateType(type, instantiator);
}
DEFINE_NATIVE_ENTRY(VariableMirror_type, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(MirrorReference, ref, arguments->NativeArgAt(0));
const Field& field = Field::Handle(ref.GetFieldReferent());
GET_NATIVE_ARGUMENT(AbstractType, instantiator, arguments->NativeArgAt(1));
const AbstractType& type = AbstractType::Handle(field.type());
return InstantiateType(type, instantiator);
}
DEFINE_NATIVE_ENTRY(TypeMirror_subtypeTest, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, a, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(AbstractType, b, arguments->NativeArgAt(1));
return Bool::Get(a.IsSubtypeOf(b, NULL, NULL, Heap::kNew)).raw();
}
#endif // !DART_PRECOMPILED_RUNTIME
} // namespace dart