dart-sdk/runtime/vm/os_android.cc
Samir Jindel 7283827b4e [vm/test] Show crash dump in builder logs for Android tests.
Previously we would not have any VM logs because they are were sent to the Android
system logs, which are not captured by the bots.

Also added a flag --android-log-to-stderr, which is useful for local testing
and debugging.

Change-Id: I1968b4c230d70b5546d2dd48e40fe3cfe5196def
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/112250
Commit-Queue: Samir Jindel <sjindel@google.com>
Reviewed-by: Martin Kustermann <kustermann@google.com>
2019-08-07 15:38:11 +00:00

372 lines
10 KiB
C++

// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(HOST_OS_ANDROID)
#include "vm/os.h"
#include <android/log.h> // NOLINT
#include <errno.h> // NOLINT
#include <limits.h> // NOLINT
#include <malloc.h> // NOLINT
#include <sys/resource.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <sys/types.h> // NOLINT
#include <time.h> // NOLINT
#include <unistd.h> // NOLINT
#include "platform/utils.h"
#include "vm/code_observers.h"
#include "vm/dart.h"
#include "vm/isolate.h"
#include "vm/zone.h"
namespace dart {
DEFINE_FLAG(bool,
android_log_to_stderr,
false,
"Send Dart VM logs to stdout and stderr instead of the Android "
"system logs.");
// Android CodeObservers.
#ifndef PRODUCT
DEFINE_FLAG(bool,
generate_perf_events_symbols,
false,
"Generate events symbols for profiling with perf");
class PerfCodeObserver : public CodeObserver {
public:
PerfCodeObserver() : out_file_(NULL) {
Dart_FileOpenCallback file_open = Dart::file_open_callback();
if (file_open == NULL) {
return;
}
intptr_t pid = getpid();
char* filename = OS::SCreate(NULL, "/tmp/perf-%" Pd ".map", pid);
out_file_ = (*file_open)(filename, true);
free(filename);
}
~PerfCodeObserver() {
Dart_FileCloseCallback file_close = Dart::file_close_callback();
if ((file_close == NULL) || (out_file_ == NULL)) {
return;
}
(*file_close)(out_file_);
}
virtual bool IsActive() const {
return FLAG_generate_perf_events_symbols && (out_file_ != NULL);
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized,
const CodeComments* comments) {
Dart_FileWriteCallback file_write = Dart::file_write_callback();
if ((file_write == NULL) || (out_file_ == NULL)) {
return;
}
const char* marker = optimized ? "*" : "";
char* buffer =
OS::SCreate(Thread::Current()->zone(), "%" Px " %" Px " %s%s\n", base,
size, marker, name);
(*file_write)(buffer, strlen(buffer), out_file_);
}
private:
void* out_file_;
DISALLOW_COPY_AND_ASSIGN(PerfCodeObserver);
};
#endif // !PRODUCT
const char* OS::Name() {
return "android";
}
intptr_t OS::ProcessId() {
return static_cast<intptr_t>(getpid());
}
static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) {
time_t seconds = static_cast<time_t>(seconds_since_epoch);
if (seconds != seconds_since_epoch) return false;
struct tm* error_code = localtime_r(&seconds, tm_result);
return error_code != NULL;
}
const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// If unsuccessful, return an empty string like V8 does.
return (succeeded && (decomposed.tm_zone != NULL)) ? decomposed.tm_zone : "";
}
int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// If unsuccessful, return zero like V8 does.
return succeeded ? static_cast<int>(decomposed.tm_gmtoff) : 0;
}
int OS::GetLocalTimeZoneAdjustmentInSeconds() {
// TODO(floitsch): avoid excessive calls to tzset?
tzset();
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// Note that Unix and Dart disagree on the sign.
return static_cast<int>(-timezone);
}
int64_t OS::GetCurrentTimeMillis() {
return GetCurrentTimeMicros() / 1000;
}
int64_t OS::GetCurrentTimeMicros() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) {
UNREACHABLE();
return 0;
}
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
int64_t OS::GetCurrentMonotonicTicks() {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
UNREACHABLE();
return 0;
}
// Convert to nanoseconds.
int64_t result = ts.tv_sec;
result *= kNanosecondsPerSecond;
result += ts.tv_nsec;
return result;
}
int64_t OS::GetCurrentMonotonicFrequency() {
return kNanosecondsPerSecond;
}
int64_t OS::GetCurrentMonotonicMicros() {
int64_t ticks = GetCurrentMonotonicTicks();
ASSERT(GetCurrentMonotonicFrequency() == kNanosecondsPerSecond);
return ticks / kNanosecondsPerMicrosecond;
}
int64_t OS::GetCurrentThreadCPUMicros() {
struct timespec ts;
if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts) != 0) {
UNREACHABLE();
return -1;
}
int64_t result = ts.tv_sec;
result *= kMicrosecondsPerSecond;
result += (ts.tv_nsec / kNanosecondsPerMicrosecond);
return result;
}
// TODO(5411554): May need to hoist these architecture dependent code
// into a architecture specific file e.g: os_ia32_linux.cc
intptr_t OS::ActivationFrameAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64) || \
defined(TARGET_ARCH_DBC) && \
(defined(HOST_ARCH_IA32) || defined(HOST_ARCH_X64) || \
defined(HOST_ARCH_ARM64))
const int kMinimumAlignment = 16;
#elif defined(TARGET_ARCH_ARM) || \
defined(TARGET_ARCH_DBC) && defined(HOST_ARCH_ARM)
const int kMinimumAlignment = 8;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default stack alignment for
// testing purposes.
// Flags::DebugIsInt("stackalign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
return alignment;
}
intptr_t OS::PreferredCodeAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64) || defined(TARGET_ARCH_DBC)
const int kMinimumAlignment = 32;
#elif defined(TARGET_ARCH_ARM)
const int kMinimumAlignment = 16;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default code alignment for
// testing purposes.
// Flags::DebugIsInt("codealign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
ASSERT(alignment <= OS::kMaxPreferredCodeAlignment);
return alignment;
}
int OS::NumberOfAvailableProcessors() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
void OS::Sleep(int64_t millis) {
int64_t micros = millis * kMicrosecondsPerMillisecond;
SleepMicros(micros);
}
void OS::SleepMicros(int64_t micros) {
struct timespec req; // requested.
struct timespec rem; // remainder.
int64_t seconds = micros / kMicrosecondsPerSecond;
micros = micros - seconds * kMicrosecondsPerSecond;
int64_t nanos = micros * kNanosecondsPerMicrosecond;
req.tv_sec = seconds;
req.tv_nsec = nanos;
while (true) {
int r = nanosleep(&req, &rem);
if (r == 0) {
break;
}
// We should only ever see an interrupt error.
ASSERT(errno == EINTR);
// Copy remainder into requested and repeat.
req = rem;
}
}
void OS::DebugBreak() {
__builtin_trap();
}
DART_NOINLINE uintptr_t OS::GetProgramCounter() {
return reinterpret_cast<uintptr_t>(
__builtin_extract_return_addr(__builtin_return_address(0)));
}
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
if (FLAG_android_log_to_stderr) {
vfprintf(stderr, format, args);
} else {
// Forward to the Android log for remote access.
__android_log_vprint(ANDROID_LOG_INFO, "DartVM", format, args);
}
va_end(args);
}
void OS::VFPrint(FILE* stream, const char* format, va_list args) {
vfprintf(stream, format, args);
fflush(stream);
}
char* OS::SCreate(Zone* zone, const char* format, ...) {
va_list args;
va_start(args, format);
char* buffer = VSCreate(zone, format, args);
va_end(args);
return buffer;
}
char* OS::VSCreate(Zone* zone, const char* format, va_list args) {
// Measure.
va_list measure_args;
va_copy(measure_args, args);
intptr_t len = Utils::VSNPrint(NULL, 0, format, measure_args);
va_end(measure_args);
char* buffer;
if (zone) {
buffer = zone->Alloc<char>(len + 1);
} else {
buffer = reinterpret_cast<char*>(malloc(len + 1));
}
ASSERT(buffer != NULL);
// Print.
va_list print_args;
va_copy(print_args, args);
Utils::VSNPrint(buffer, len + 1, format, print_args);
va_end(print_args);
return buffer;
}
bool OS::StringToInt64(const char* str, int64_t* value) {
ASSERT(str != NULL && strlen(str) > 0 && value != NULL);
int32_t base = 10;
char* endptr;
int i = 0;
if (str[0] == '-') {
i = 1;
} else if (str[0] == '+') {
i = 1;
}
if ((str[i] == '0') && (str[i + 1] == 'x' || str[i + 1] == 'X') &&
(str[i + 2] != '\0')) {
base = 16;
}
errno = 0;
if (base == 16) {
// Unsigned 64-bit hexadecimal integer literals are allowed but
// immediately interpreted as signed 64-bit integers.
*value = static_cast<int64_t>(strtoull(str, &endptr, base));
} else {
*value = strtoll(str, &endptr, base);
}
return ((errno == 0) && (endptr != str) && (*endptr == 0));
}
void OS::RegisterCodeObservers() {
#ifndef PRODUCT
if (FLAG_generate_perf_events_symbols) {
CodeObservers::Register(new PerfCodeObserver);
}
#endif // !PRODUCT
}
void OS::PrintErr(const char* format, ...) {
va_list args;
va_start(args, format);
if (FLAG_android_log_to_stderr) {
vfprintf(stderr, format, args);
} else {
// Forward to the Android log for remote access.
__android_log_vprint(ANDROID_LOG_ERROR, "DartVM", format, args);
}
va_end(args);
}
void OS::Init() {}
void OS::Cleanup() {}
void OS::PrepareToAbort() {}
void OS::Abort() {
PrepareToAbort();
abort();
}
void OS::Exit(int code) {
exit(code);
}
} // namespace dart
#endif // defined(HOST_OS_ANDROID)