dart-sdk/runtime/vm/isolate_reload.cc
Ryan Macnak 7bbfd532de [vm, reload] Remove _getUnusedChangesInLastReload.
This function has been unused for a long time.

Also, computing fingerprints for bytecode function causes bytecode to be loaded, which can lead to an old enum class being initialized with enum values for the new enum class, causing a forwarding loop when migrating enum values.

Change-Id: Iad9b2bb11aaf161d66f7752cb99cc4b4fc9fb310
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/116442
Reviewed-by: Régis Crelier <regis@google.com>
Reviewed-by: Alexander Markov <alexmarkov@google.com>
Commit-Queue: Ryan Macnak <rmacnak@google.com>
2019-09-10 17:36:24 +00:00

2152 lines
73 KiB
C++

// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/isolate_reload.h"
#include <memory>
#include "vm/bit_vector.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_api_impl.h"
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/hash.h"
#endif
#include "vm/hash_table.h"
#include "vm/heap/become.h"
#include "vm/heap/safepoint.h"
#include "vm/isolate.h"
#include "vm/kernel_isolate.h"
#include "vm/kernel_loader.h"
#include "vm/log.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/runtime_entry.h"
#include "vm/service_event.h"
#include "vm/stack_frame.h"
#include "vm/thread.h"
#include "vm/timeline.h"
#include "vm/type_testing_stubs.h"
#include "vm/visitor.h"
namespace dart {
DEFINE_FLAG(int, reload_every, 0, "Reload every N stack overflow checks.");
DEFINE_FLAG(bool, trace_reload, false, "Trace isolate reloading");
#if !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
DEFINE_FLAG(bool,
trace_reload_verbose,
false,
"trace isolate reloading verbose");
DEFINE_FLAG(bool, identity_reload, false, "Enable checks for identity reload.");
DEFINE_FLAG(bool, reload_every_optimized, true, "Only from optimized code.");
DEFINE_FLAG(bool,
reload_every_back_off,
false,
"Double the --reload-every value after each reload.");
DEFINE_FLAG(bool,
reload_force_rollback,
false,
"Force all reloads to fail and rollback.");
DEFINE_FLAG(bool,
check_reloaded,
false,
"Assert that an isolate has reloaded at least once.")
DECLARE_FLAG(bool, trace_deoptimization);
#define I (isolate())
#define Z (thread->zone())
#define TIMELINE_SCOPE(name) \
TimelineDurationScope tds##name(Thread::Current(), \
Timeline::GetIsolateStream(), #name)
InstanceMorpher::InstanceMorpher(Zone* zone, const Class& from, const Class& to)
: from_(Class::Handle(zone, from.raw())),
to_(Class::Handle(zone, to.raw())),
mapping_(zone, 0) {
before_ = new (zone) ZoneGrowableArray<const Instance*>(zone, 0);
after_ = new (zone) ZoneGrowableArray<const Instance*>(zone, 0);
new_fields_ = new (zone) ZoneGrowableArray<const Field*>(zone, 0);
ASSERT(from_.id() == to_.id());
cid_ = from_.id();
ComputeMapping();
}
void InstanceMorpher::AddObject(RawObject* object) const {
ASSERT(object->GetClassId() == cid());
const Instance& instance = Instance::Cast(Object::Handle(object));
before_->Add(&instance);
}
void InstanceMorpher::ComputeMapping() {
if (from_.NumTypeArguments() > 0) {
// Add copying of the optional type argument field.
intptr_t from_offset = from_.type_arguments_field_offset();
ASSERT(from_offset != Class::kNoTypeArguments);
intptr_t to_offset = to_.type_arguments_field_offset();
ASSERT(to_offset != Class::kNoTypeArguments);
mapping_.Add(from_offset);
mapping_.Add(to_offset);
}
// Add copying of the instance fields if matching by name.
// Note: currently the type of the fields are ignored.
const Array& from_fields =
Array::Handle(from_.OffsetToFieldMap(true /* original classes */));
const Array& to_fields = Array::Handle(to_.OffsetToFieldMap());
Field& from_field = Field::Handle();
Field& to_field = Field::Handle();
String& from_name = String::Handle();
String& to_name = String::Handle();
// Scan across all the fields in the new class definition.
for (intptr_t i = 0; i < to_fields.Length(); i++) {
if (to_fields.At(i) == Field::null()) {
continue; // Ignore non-fields.
}
// Grab the field's name.
to_field = Field::RawCast(to_fields.At(i));
ASSERT(to_field.is_instance());
to_name = to_field.name();
// Did this field not exist in the old class definition?
bool new_field = true;
// Find this field in the old class.
for (intptr_t j = 0; j < from_fields.Length(); j++) {
if (from_fields.At(j) == Field::null()) {
continue; // Ignore non-fields.
}
from_field = Field::RawCast(from_fields.At(j));
ASSERT(from_field.is_instance());
from_name = from_field.name();
if (from_name.Equals(to_name)) {
// Success
mapping_.Add(from_field.Offset());
mapping_.Add(to_field.Offset());
// Field did exist in old class deifnition.
new_field = false;
}
}
if (new_field) {
const Field& field = Field::Handle(to_field.raw());
new_fields_->Add(&field);
}
}
}
RawInstance* InstanceMorpher::Morph(const Instance& instance) const {
const Instance& result = Instance::Handle(Instance::New(to_));
// Morph the context from instance to result using mapping_.
for (intptr_t i = 0; i < mapping_.length(); i += 2) {
intptr_t from_offset = mapping_.At(i);
intptr_t to_offset = mapping_.At(i + 1);
const Object& value =
Object::Handle(instance.RawGetFieldAtOffset(from_offset));
result.RawSetFieldAtOffset(to_offset, value);
}
// Convert the instance into a filler object.
Become::MakeDummyObject(instance);
return result.raw();
}
void InstanceMorpher::RunNewFieldInitializers() const {
if ((new_fields_->length() == 0) || (after_->length() == 0)) {
return;
}
TIR_Print("Running new field initializers for class: %s\n", to_.ToCString());
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
Function& init_func = Function::Handle(zone);
Object& result = Object::Handle(zone);
// For each new field.
for (intptr_t i = 0; i < new_fields_->length(); i++) {
// Create a function that returns the expression.
const Field* field = new_fields_->At(i);
if (field->has_initializer()) {
if (field->is_declared_in_bytecode() && (field->bytecode_offset() == 0)) {
FATAL1(
"Missing field initializer for '%s'. Reload requires bytecode "
"to be generated with 'instance-field-initializers'",
field->ToCString());
}
init_func = kernel::CreateFieldInitializerFunction(thread, zone, *field);
const Array& args = Array::Handle(zone, Array::New(1));
for (intptr_t j = 0; j < after_->length(); j++) {
const Instance* instance = after_->At(j);
TIR_Print("Initializing instance %" Pd " / %" Pd "\n", j + 1,
after_->length());
// Run the function and assign the field.
args.SetAt(0, *instance);
result = DartEntry::InvokeFunction(init_func, args);
if (result.IsError()) {
// TODO(johnmccutchan): Report this error in the reload response?
OS::PrintErr(
"RELOAD: Running initializer for new field `%s` resulted in "
"an error: %s\n",
field->ToCString(), Error::Cast(result).ToErrorCString());
continue;
}
instance->RawSetFieldAtOffset(field->Offset(), result);
}
} else {
result = field->saved_initial_value();
for (intptr_t j = 0; j < after_->length(); j++) {
const Instance* instance = after_->At(j);
TIR_Print("Initializing instance %" Pd " / %" Pd "\n", j + 1,
after_->length());
instance->RawSetFieldAtOffset(field->Offset(), result);
}
}
}
}
void InstanceMorpher::CreateMorphedCopies() const {
for (intptr_t i = 0; i < before()->length(); i++) {
const Instance& copy = Instance::Handle(Morph(*before()->At(i)));
after()->Add(&copy);
}
}
void InstanceMorpher::DumpFormatFor(const Class& cls) const {
THR_Print("%s\n", cls.ToCString());
if (cls.NumTypeArguments() > 0) {
intptr_t field_offset = cls.type_arguments_field_offset();
ASSERT(field_offset != Class::kNoTypeArguments);
THR_Print(" - @%" Pd " <type arguments>\n", field_offset);
}
const Array& fields = Array::Handle(cls.OffsetToFieldMap());
Field& field = Field::Handle();
String& name = String::Handle();
for (intptr_t i = 0; i < fields.Length(); i++) {
if (fields.At(i) != Field::null()) {
field = Field::RawCast(fields.At(i));
ASSERT(field.is_instance());
name = field.name();
THR_Print(" - @%" Pd " %s\n", field.Offset(), name.ToCString());
}
}
THR_Print("Mapping: ");
for (int i = 0; i < mapping_.length(); i += 2) {
THR_Print(" %" Pd "->%" Pd, mapping_.At(i), mapping_.At(i + 1));
}
THR_Print("\n");
}
void InstanceMorpher::Dump() const {
LogBlock blocker;
THR_Print("Morphing from ");
DumpFormatFor(from_);
THR_Print("To ");
DumpFormatFor(to_);
THR_Print("\n");
}
void InstanceMorpher::AppendTo(JSONArray* array) {
JSONObject jsobj(array);
jsobj.AddProperty("type", "ShapeChangeMapping");
jsobj.AddProperty("class", to_);
jsobj.AddProperty("instanceCount", before()->length());
JSONArray map(&jsobj, "fieldOffsetMappings");
for (int i = 0; i < mapping_.length(); i += 2) {
JSONArray pair(&map);
pair.AddValue(mapping_.At(i));
pair.AddValue(mapping_.At(i + 1));
}
}
void ReasonForCancelling::Report(IsolateReloadContext* context) {
const Error& error = Error::Handle(ToError());
context->ReportError(error);
}
RawError* ReasonForCancelling::ToError() {
// By default create the error returned from ToString.
const String& message = String::Handle(ToString());
return LanguageError::New(message);
}
RawString* ReasonForCancelling::ToString() {
UNREACHABLE();
return NULL;
}
void ReasonForCancelling::AppendTo(JSONArray* array) {
JSONObject jsobj(array);
jsobj.AddProperty("type", "ReasonForCancelling");
const String& message = String::Handle(ToString());
jsobj.AddProperty("message", message.ToCString());
}
ClassReasonForCancelling::ClassReasonForCancelling(Zone* zone,
const Class& from,
const Class& to)
: ReasonForCancelling(zone),
from_(Class::ZoneHandle(zone, from.raw())),
to_(Class::ZoneHandle(zone, to.raw())) {}
void ClassReasonForCancelling::AppendTo(JSONArray* array) {
JSONObject jsobj(array);
jsobj.AddProperty("type", "ReasonForCancelling");
jsobj.AddProperty("class", from_);
const String& message = String::Handle(ToString());
jsobj.AddProperty("message", message.ToCString());
}
RawError* IsolateReloadContext::error() const {
ASSERT(reload_aborted());
// Report the first error to the surroundings.
return reasons_to_cancel_reload_.At(0)->ToError();
}
class ScriptUrlSetTraits {
public:
static bool ReportStats() { return false; }
static const char* Name() { return "ScriptUrlSetTraits"; }
static bool IsMatch(const Object& a, const Object& b) {
if (!a.IsString() || !b.IsString()) {
return false;
}
return String::Cast(a).Equals(String::Cast(b));
}
static uword Hash(const Object& obj) { return String::Cast(obj).Hash(); }
};
class ClassMapTraits {
public:
static bool ReportStats() { return false; }
static const char* Name() { return "ClassMapTraits"; }
static bool IsMatch(const Object& a, const Object& b) {
if (!a.IsClass() || !b.IsClass()) {
return false;
}
return IsolateReloadContext::IsSameClass(Class::Cast(a), Class::Cast(b));
}
static uword Hash(const Object& obj) {
uword class_name_hash = String::HashRawSymbol(Class::Cast(obj).Name());
RawLibrary* raw_library = Class::Cast(obj).library();
if (raw_library == Library::null()) {
return class_name_hash;
}
return FinalizeHash(
CombineHashes(class_name_hash,
String::Hash(Library::Handle(raw_library).private_key())),
/* hashbits= */ 30);
}
};
class LibraryMapTraits {
public:
static bool ReportStats() { return false; }
static const char* Name() { return "LibraryMapTraits"; }
static bool IsMatch(const Object& a, const Object& b) {
if (!a.IsLibrary() || !b.IsLibrary()) {
return false;
}
return IsolateReloadContext::IsSameLibrary(Library::Cast(a),
Library::Cast(b));
}
static uword Hash(const Object& obj) { return Library::Cast(obj).UrlHash(); }
};
class BecomeMapTraits {
public:
static bool ReportStats() { return false; }
static const char* Name() { return "BecomeMapTraits"; }
static bool IsMatch(const Object& a, const Object& b) {
return a.raw() == b.raw();
}
static uword Hash(const Object& obj) {
if (obj.IsLibrary()) {
return Library::Cast(obj).UrlHash();
} else if (obj.IsClass()) {
return String::HashRawSymbol(Class::Cast(obj).Name());
} else if (obj.IsField()) {
return String::HashRawSymbol(Field::Cast(obj).name());
} else if (obj.IsClosure()) {
return String::HashRawSymbol(
Function::Handle(Closure::Cast(obj).function()).name());
} else {
FATAL1("Unexpected type in become: %s\n", obj.ToCString());
}
return 0;
}
};
bool IsolateReloadContext::IsSameField(const Field& a, const Field& b) {
if (a.is_static() != b.is_static()) {
return false;
}
const Class& a_cls = Class::Handle(a.Owner());
const Class& b_cls = Class::Handle(b.Owner());
if (!IsSameClass(a_cls, b_cls)) {
return false;
}
const String& a_name = String::Handle(a.name());
const String& b_name = String::Handle(b.name());
return a_name.Equals(b_name);
}
bool IsolateReloadContext::IsSameClass(const Class& a, const Class& b) {
if (a.is_patch() != b.is_patch()) {
// TODO(johnmccutchan): Should we just check the class kind bits?
return false;
}
// TODO(turnidge): We need to look at generic type arguments for
// synthetic mixin classes. Their names are not necessarily unique
// currently.
const String& a_name = String::Handle(a.Name());
const String& b_name = String::Handle(b.Name());
if (!a_name.Equals(b_name)) {
return false;
}
const Library& a_lib = Library::Handle(a.library());
const Library& b_lib = Library::Handle(b.library());
if (a_lib.IsNull() || b_lib.IsNull()) {
return a_lib.raw() == b_lib.raw();
}
return (a_lib.private_key() == b_lib.private_key());
}
bool IsolateReloadContext::IsSameLibrary(const Library& a_lib,
const Library& b_lib) {
const String& a_lib_url =
String::Handle(a_lib.IsNull() ? String::null() : a_lib.url());
const String& b_lib_url =
String::Handle(b_lib.IsNull() ? String::null() : b_lib.url());
return a_lib_url.Equals(b_lib_url);
}
IsolateReloadContext::IsolateReloadContext(Isolate* isolate, JSONStream* js)
: zone_(Thread::Current()->zone()),
start_time_micros_(OS::GetCurrentMonotonicMicros()),
reload_timestamp_(OS::GetCurrentTimeMillis()),
isolate_(isolate),
reload_skipped_(false),
reload_aborted_(false),
reload_finalized_(false),
js_(js),
saved_num_cids_(-1),
saved_class_table_(NULL),
num_saved_libs_(-1),
instance_morphers_(zone_, 0),
reasons_to_cancel_reload_(zone_, 0),
cid_mapper_(),
modified_libs_(NULL),
script_url_(String::null()),
error_(Error::null()),
old_classes_set_storage_(Array::null()),
class_map_storage_(Array::null()),
removed_class_set_storage_(Array::null()),
old_libraries_set_storage_(Array::null()),
library_map_storage_(Array::null()),
become_map_storage_(Array::null()),
become_enum_mappings_(GrowableObjectArray::null()),
saved_root_library_(Library::null()),
saved_libraries_(GrowableObjectArray::null()),
root_url_prefix_(String::null()),
old_root_url_prefix_(String::null()) {
// NOTE: DO NOT ALLOCATE ANY RAW OBJECTS HERE. The IsolateReloadContext is not
// associated with the isolate yet and if a GC is triggered here the raw
// objects will not be properly accounted for.
ASSERT(zone_ != NULL);
}
IsolateReloadContext::~IsolateReloadContext() {
ASSERT(zone_ == Thread::Current()->zone());
ASSERT(saved_class_table_ == NULL);
}
void IsolateReloadContext::ReportError(const Error& error) {
if (!FLAG_support_service || Isolate::IsVMInternalIsolate(I)) {
return;
}
if (FLAG_trace_reload) {
THR_Print("ISO-RELOAD: Error: %s\n", error.ToErrorCString());
}
ServiceEvent service_event(I, ServiceEvent::kIsolateReload);
service_event.set_reload_error(&error);
Service::HandleEvent(&service_event);
}
void IsolateReloadContext::ReportSuccess() {
if (!FLAG_support_service || Isolate::IsVMInternalIsolate(I)) {
return;
}
ServiceEvent service_event(I, ServiceEvent::kIsolateReload);
Service::HandleEvent(&service_event);
}
class Aborted : public ReasonForCancelling {
public:
Aborted(Zone* zone, const Error& error)
: ReasonForCancelling(zone),
error_(Error::ZoneHandle(zone, error.raw())) {}
private:
const Error& error_;
RawError* ToError() { return error_.raw(); }
RawString* ToString() {
return String::NewFormatted("%s", error_.ToErrorCString());
}
};
static intptr_t CommonSuffixLength(const char* a, const char* b) {
const intptr_t a_length = strlen(a);
const intptr_t b_length = strlen(b);
intptr_t a_cursor = a_length;
intptr_t b_cursor = b_length;
while ((a_cursor >= 0) && (b_cursor >= 0)) {
if (a[a_cursor] != b[b_cursor]) {
break;
}
a_cursor--;
b_cursor--;
}
ASSERT((a_length - a_cursor) == (b_length - b_cursor));
return (a_length - a_cursor);
}
static void AcceptCompilation(Thread* thread) {
TransitionVMToNative transition(thread);
Dart_KernelCompilationResult result = KernelIsolate::AcceptCompilation();
if (result.status != Dart_KernelCompilationStatus_Ok) {
FATAL1(
"An error occurred in the CFE while accepting the most recent"
" compilation results: %s",
result.error);
}
}
// NOTE: This function returns *after* FinalizeLoading is called.
// If [root_script_url] is null, attempt to load from [kernel_buffer].
void IsolateReloadContext::Reload(bool force_reload,
const char* root_script_url,
const char* packages_url_,
const uint8_t* kernel_buffer,
intptr_t kernel_buffer_size) {
TIMELINE_SCOPE(Reload);
Thread* thread = Thread::Current();
ASSERT(isolate() == thread->isolate());
// Grab root library before calling CheckpointBeforeReload.
const Library& old_root_lib = Library::Handle(object_store()->root_library());
ASSERT(!old_root_lib.IsNull());
const String& old_root_lib_url = String::Handle(old_root_lib.url());
// Root library url.
const String& root_lib_url =
(root_script_url == NULL) ? old_root_lib_url
: String::Handle(String::New(root_script_url));
// Check to see if the base url of the loaded libraries has moved.
if (!old_root_lib_url.Equals(root_lib_url)) {
const char* old_root_library_url_c = old_root_lib_url.ToCString();
const char* root_library_url_c = root_lib_url.ToCString();
const intptr_t common_suffix_length =
CommonSuffixLength(root_library_url_c, old_root_library_url_c);
root_url_prefix_ = String::SubString(
root_lib_url, 0, root_lib_url.Length() - common_suffix_length + 1);
old_root_url_prefix_ =
String::SubString(old_root_lib_url, 0,
old_root_lib_url.Length() - common_suffix_length + 1);
}
Object& result = Object::Handle(thread->zone());
std::unique_ptr<kernel::Program> kernel_program;
String& packages_url = String::Handle();
if (packages_url_ != NULL) {
packages_url = String::New(packages_url_);
}
// Reset stats.
num_received_libs_ = 0;
bytes_received_libs_ = 0;
num_received_classes_ = 0;
num_received_procedures_ = 0;
bool did_kernel_compilation = false;
bool skip_reload = false;
{
// Load the kernel program and figure out the modified libraries.
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(object_store()->libraries());
intptr_t num_libs = libs.Length();
modified_libs_ = new (Z) BitVector(Z, num_libs);
intptr_t* p_num_received_classes = nullptr;
intptr_t* p_num_received_procedures = nullptr;
// ReadKernelFromFile checks to see if the file at
// root_script_url is a valid .dill file. If that's the case, a Program*
// is returned. Otherwise, this is likely a source file that needs to be
// compiled, so ReadKernelFromFile returns NULL.
kernel_program = kernel::Program::ReadFromFile(root_script_url);
if (kernel_program != nullptr) {
num_received_libs_ = kernel_program->library_count();
bytes_received_libs_ = kernel_program->kernel_data_size();
p_num_received_classes = &num_received_classes_;
p_num_received_procedures = &num_received_procedures_;
} else {
Dart_KernelCompilationResult retval = {};
if (kernel_buffer != NULL && kernel_buffer_size != 0) {
retval.kernel = const_cast<uint8_t*>(kernel_buffer);
retval.kernel_size = kernel_buffer_size;
retval.status = Dart_KernelCompilationStatus_Ok;
} else {
Dart_SourceFile* modified_scripts = NULL;
intptr_t modified_scripts_count = 0;
FindModifiedSources(thread, force_reload, &modified_scripts,
&modified_scripts_count, packages_url_);
{
TransitionVMToNative transition(thread);
retval = KernelIsolate::CompileToKernel(
root_lib_url.ToCString(), NULL, 0, modified_scripts_count,
modified_scripts, true, NULL);
did_kernel_compilation = true;
}
}
if (retval.status != Dart_KernelCompilationStatus_Ok) {
TIR_Print("---- LOAD FAILED, ABORTING RELOAD\n");
const String& error_str = String::Handle(String::New(retval.error));
free(retval.error);
const ApiError& error = ApiError::Handle(ApiError::New(error_str));
if (retval.kernel != NULL) {
free(const_cast<uint8_t*>(retval.kernel));
}
AddReasonForCancelling(new Aborted(zone_, error));
ReportReasonsForCancelling();
CommonFinalizeTail();
return;
}
// The ownership of the kernel buffer goes now to the VM.
const ExternalTypedData& typed_data = ExternalTypedData::Handle(
Z,
ExternalTypedData::New(kExternalTypedDataUint8ArrayCid, retval.kernel,
retval.kernel_size, Heap::kOld));
typed_data.AddFinalizer(
retval.kernel,
[](void* isolate_callback_data, Dart_WeakPersistentHandle handle,
void* data) { free(data); },
retval.kernel_size);
// TODO(dartbug.com/33973): Change the heap objects to have a proper
// retaining path to the kernel blob and ensure the finalizer will free it
// once there are no longer references to it.
// (The [ExternalTypedData] currently referenced by e.g. functions point
// into the middle of c-allocated buffer and don't have a finalizer).
I->RetainKernelBlob(typed_data);
kernel_program = kernel::Program::ReadFromTypedData(typed_data);
}
kernel::KernelLoader::FindModifiedLibraries(
kernel_program.get(), I, modified_libs_, force_reload, &skip_reload,
p_num_received_classes, p_num_received_procedures);
}
if (skip_reload) {
ASSERT(modified_libs_->IsEmpty());
reload_skipped_ = true;
ReportOnJSON(js_);
// If we use the CFE and performed a compilation, we need to notify that
// we have accepted the compilation to clear some state in the incremental
// compiler.
if (did_kernel_compilation) {
AcceptCompilation(thread);
}
TIR_Print("---- SKIPPING RELOAD (No libraries were modified)\n");
return;
}
TIR_Print("---- STARTING RELOAD\n");
// Preallocate storage for maps.
old_classes_set_storage_ =
HashTables::New<UnorderedHashSet<ClassMapTraits> >(4);
class_map_storage_ = HashTables::New<UnorderedHashMap<ClassMapTraits> >(4);
removed_class_set_storage_ =
HashTables::New<UnorderedHashSet<ClassMapTraits> >(4);
old_libraries_set_storage_ =
HashTables::New<UnorderedHashSet<LibraryMapTraits> >(4);
library_map_storage_ =
HashTables::New<UnorderedHashMap<LibraryMapTraits> >(4);
become_map_storage_ = HashTables::New<UnorderedHashMap<BecomeMapTraits> >(4);
// Keep a separate array for enum mappings to avoid having to invoke
// hashCode on the instances.
become_enum_mappings_ = GrowableObjectArray::New(Heap::kOld);
// Disable the background compiler while we are performing the reload.
BackgroundCompiler::Disable(I);
// Wait for any concurrent marking tasks to finish and turn off the
// concurrent marker during reload as we might be allocating new instances
// (constants) when loading the new kernel file and this could cause
// inconsistency between the saved class table and the new class table.
Heap* heap = thread->heap();
const bool old_concurrent_mark_flag =
heap->old_space()->enable_concurrent_mark();
if (old_concurrent_mark_flag) {
heap->WaitForMarkerTasks(thread);
heap->old_space()->set_enable_concurrent_mark(false);
}
// Ensure all functions on the stack have unoptimized code.
EnsuredUnoptimizedCodeForStack();
// Deoptimize all code that had optimizing decisions that are dependent on
// assumptions from field guards or CHA.
// TODO(johnmccutchan): Deoptimizing dependent code here (before the reload)
// is paranoid. This likely can be moved to the commit phase.
DeoptimizeDependentCode();
Checkpoint();
// We synchronously load the hot-reload kernel diff (which includes changed
// libraries and any libraries transitively depending on them).
//
// If loading the hot-reload diff succeeded we'll finalize the loading, which
// will either commit or reject the reload request.
{
const Object& tmp =
kernel::KernelLoader::LoadEntireProgram(kernel_program.get());
if (!tmp.IsError()) {
Library& lib = Library::Handle(thread->zone());
lib ^= tmp.raw();
// If main method disappeared or were not there to begin with then
// KernelLoader will return null. In this case lookup library by
// URL.
if (lib.IsNull()) {
lib = Library::LookupLibrary(thread, root_lib_url);
}
isolate()->object_store()->set_root_library(lib);
FinalizeLoading();
result = Object::null();
// If we use the CFE and performed a compilation, we need to notify that
// we have accepted the compilation to clear some state in the incremental
// compiler.
if (did_kernel_compilation) {
AcceptCompilation(thread);
}
} else {
result = tmp.raw();
}
}
// Re-enable the background compiler. Do this before propagating any errors.
BackgroundCompiler::Enable(I);
// Reenable concurrent marking if it was initially on.
heap->old_space()->set_enable_concurrent_mark(old_concurrent_mark_flag);
if (result.IsUnwindError()) {
if (thread->top_exit_frame_info() == 0) {
// We can only propagate errors when there are Dart frames on the stack.
// In this case there are no Dart frames on the stack and we set the
// thread's sticky error. This error will be returned to the message
// handler.
thread->set_sticky_error(Error::Cast(result));
} else {
// If the tag handler returns with an UnwindError error, propagate it and
// give up.
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
}
// Other errors (e.g. a parse error) are captured by the reload system.
if (result.IsError()) {
FinalizeFailedLoad(Error::Cast(result));
} else {
ReportSuccess();
}
}
void IsolateReloadContext::RegisterClass(const Class& new_cls) {
const Class& old_cls = Class::Handle(OldClassOrNull(new_cls));
if (old_cls.IsNull()) {
I->class_table()->Register(new_cls);
if (FLAG_identity_reload) {
TIR_Print("Could not find replacement class for %s\n",
new_cls.ToCString());
UNREACHABLE();
}
// New class maps to itself.
AddClassMapping(new_cls, new_cls);
return;
}
VTIR_Print("Registering class: %s\n", new_cls.ToCString());
new_cls.set_id(old_cls.id());
isolate()->class_table()->SetAt(old_cls.id(), new_cls.raw());
if (!old_cls.is_enum_class()) {
new_cls.CopyCanonicalConstants(old_cls);
}
new_cls.CopyDeclarationType(old_cls);
AddBecomeMapping(old_cls, new_cls);
AddClassMapping(new_cls, old_cls);
}
void IsolateReloadContext::FinalizeLoading() {
if (reload_skipped_ || reload_finalized_) {
return;
}
BuildLibraryMapping();
BuildRemovedClassesSet();
TIR_Print("---- LOAD SUCCEEDED\n");
if (ValidateReload()) {
Commit();
PostCommit();
isolate()->set_last_reload_timestamp(reload_timestamp_);
} else {
ReportReasonsForCancelling();
Rollback();
}
// ValidateReload mutates the direct subclass information and does
// not remove dead subclasses. Rebuild the direct subclass
// information from scratch.
RebuildDirectSubclasses();
CommonFinalizeTail();
}
// FinalizeFailedLoad will be called *before* Reload() returns and will only
// be called if the embedder fails to load sources.
void IsolateReloadContext::FinalizeFailedLoad(const Error& error) {
TIR_Print("---- LOAD FAILED, ABORTING RELOAD\n");
AddReasonForCancelling(new Aborted(zone_, error));
ReportReasonsForCancelling();
if (!reload_finalized_) {
Rollback();
}
CommonFinalizeTail();
}
void IsolateReloadContext::CommonFinalizeTail() {
ReportOnJSON(js_);
reload_finalized_ = true;
}
void IsolateReloadContext::ReportOnJSON(JSONStream* stream) {
JSONObject jsobj(stream);
jsobj.AddProperty("type", "ReloadReport");
jsobj.AddProperty("success", reload_skipped_ || !HasReasonsForCancelling());
{
if (HasReasonsForCancelling()) {
// Reload was rejected.
JSONArray array(&jsobj, "notices");
for (intptr_t i = 0; i < reasons_to_cancel_reload_.length(); i++) {
ReasonForCancelling* reason = reasons_to_cancel_reload_.At(i);
reason->AppendTo(&array);
}
return;
}
JSONObject details(&jsobj, "details");
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(object_store()->libraries());
const intptr_t final_library_count = libs.Length();
details.AddProperty("finalLibraryCount", final_library_count);
details.AddProperty("receivedLibraryCount", num_received_libs_);
details.AddProperty("receivedLibrariesBytes", bytes_received_libs_);
details.AddProperty("receivedClassesCount", num_received_classes_);
details.AddProperty("receivedProceduresCount", num_received_procedures_);
if (reload_skipped_) {
// Reload was skipped.
details.AddProperty("savedLibraryCount", final_library_count);
details.AddProperty("loadedLibraryCount", static_cast<intptr_t>(0));
} else {
// Reload was successful.
const intptr_t loaded_library_count =
final_library_count - num_saved_libs_;
details.AddProperty("savedLibraryCount", num_saved_libs_);
details.AddProperty("loadedLibraryCount", loaded_library_count);
JSONArray array(&jsobj, "shapeChangeMappings");
for (intptr_t i = 0; i < instance_morphers_.length(); i++) {
instance_morphers_.At(i)->AppendTo(&array);
}
}
}
}
void IsolateReloadContext::EnsuredUnoptimizedCodeForStack() {
TIMELINE_SCOPE(EnsuredUnoptimizedCodeForStack);
StackFrameIterator it(ValidationPolicy::kDontValidateFrames,
Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
Function& func = Function::Handle();
while (it.HasNextFrame()) {
StackFrame* frame = it.NextFrame();
if (frame->IsDartFrame() && !frame->is_interpreted()) {
func = frame->LookupDartFunction();
ASSERT(!func.IsNull());
// Force-optimized functions don't need unoptimized code because their
// optimized code cannot deopt.
if (!func.ForceOptimize()) {
func.EnsureHasCompiledUnoptimizedCode();
}
}
}
}
void IsolateReloadContext::DeoptimizeDependentCode() {
TIMELINE_SCOPE(DeoptimizeDependentCode);
ClassTable* class_table = I->class_table();
const intptr_t bottom = Dart::vm_isolate()->class_table()->NumCids();
const intptr_t top = I->class_table()->NumCids();
Class& cls = Class::Handle();
Array& fields = Array::Handle();
Field& field = Field::Handle();
for (intptr_t cls_idx = bottom; cls_idx < top; cls_idx++) {
if (!class_table->HasValidClassAt(cls_idx)) {
// Skip.
continue;
}
// Deoptimize CHA code.
cls = class_table->At(cls_idx);
ASSERT(!cls.IsNull());
cls.DisableAllCHAOptimizedCode();
// Deoptimize field guard code.
fields = cls.fields();
ASSERT(!fields.IsNull());
for (intptr_t field_idx = 0; field_idx < fields.Length(); field_idx++) {
field = Field::RawCast(fields.At(field_idx));
ASSERT(!field.IsNull());
field.DeoptimizeDependentCode();
}
}
DeoptimizeTypeTestingStubs();
}
void IsolateReloadContext::CheckpointClasses() {
TIMELINE_SCOPE(CheckpointClasses);
TIR_Print("---- CHECKPOINTING CLASSES\n");
// Checkpoint classes before a reload. We need to copy the following:
// 1) The size of the class table.
// 2) The class table itself.
// For efficiency, we build a set of classes before the reload. This set
// is used to pair new classes with old classes.
ClassTable* class_table = I->class_table();
// Copy the size of the class table.
saved_num_cids_ = I->class_table()->NumCids();
ClassAndSize* saved_class_table = nullptr;
class_table->CopyBeforeHotReload(&saved_class_table, &saved_num_cids_);
// Copy classes into saved_class_table_ first. Make sure there are no
// safepoints until saved_class_table_ is filled up and saved so class raw
// pointers in saved_class_table_ are properly visited by GC.
{
NoSafepointScope no_safepoint_scope(Thread::Current());
// The saved_class_table_ is now source of truth for GC.
AtomicOperations::StoreRelease(&saved_class_table_, saved_class_table);
// We can therefore wipe out all of the old entries (if that table is used
// for GC during the hot-reload we have a bug).
class_table->ResetBeforeHotReload();
}
// Add classes to the set. Set is stored in the Array, so adding an element
// may allocate Dart object on the heap and trigger GC.
Class& cls = Class::Handle();
UnorderedHashSet<ClassMapTraits> old_classes_set(old_classes_set_storage_);
for (intptr_t i = 0; i < saved_num_cids_; i++) {
if (class_table->IsValidIndex(i) && class_table->HasValidClassAt(i)) {
if (i != kFreeListElement && i != kForwardingCorpse) {
cls = class_table->At(i);
bool already_present = old_classes_set.Insert(cls);
ASSERT(!already_present);
}
}
}
old_classes_set_storage_ = old_classes_set.Release().raw();
TIR_Print("---- System had %" Pd " classes\n", saved_num_cids_);
}
Dart_FileModifiedCallback IsolateReloadContext::file_modified_callback_ = NULL;
bool IsolateReloadContext::ScriptModifiedSince(const Script& script,
int64_t since) {
if (file_modified_callback_ == NULL) {
return true;
}
// We use the resolved url to determine if the script has been modified.
const String& url = String::Handle(script.resolved_url());
const char* url_chars = url.ToCString();
return (*file_modified_callback_)(url_chars, since);
}
static bool ContainsScriptUri(const GrowableArray<const char*>& seen_uris,
const char* uri) {
for (intptr_t i = 0; i < seen_uris.length(); i++) {
const char* seen_uri = seen_uris.At(i);
size_t seen_len = strlen(seen_uri);
if (seen_len != strlen(uri)) {
continue;
} else if (strncmp(seen_uri, uri, seen_len) == 0) {
return true;
}
}
return false;
}
void IsolateReloadContext::FindModifiedSources(
Thread* thread,
bool force_reload,
Dart_SourceFile** modified_sources,
intptr_t* count,
const char* packages_url) {
Zone* zone = thread->zone();
int64_t last_reload = I->last_reload_timestamp();
GrowableArray<const char*> modified_sources_uris;
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(object_store()->libraries());
Library& lib = Library::Handle(zone);
Array& scripts = Array::Handle(zone);
Script& script = Script::Handle(zone);
String& uri = String::Handle(zone);
for (intptr_t lib_idx = 0; lib_idx < libs.Length(); lib_idx++) {
lib ^= libs.At(lib_idx);
if (lib.is_dart_scheme()) {
// We don't consider dart scheme libraries during reload.
continue;
}
scripts = lib.LoadedScripts();
for (intptr_t script_idx = 0; script_idx < scripts.Length(); script_idx++) {
script ^= scripts.At(script_idx);
uri = script.url();
if (ContainsScriptUri(modified_sources_uris, uri.ToCString())) {
// We've already accounted for this script in a prior library.
continue;
}
if (force_reload || ScriptModifiedSince(script, last_reload)) {
modified_sources_uris.Add(uri.ToCString());
}
}
}
// In addition to all sources, we need to check if the .packages file
// contents have been modified.
if (packages_url != NULL) {
if (file_modified_callback_ == NULL ||
(*file_modified_callback_)(packages_url, last_reload)) {
modified_sources_uris.Add(packages_url);
}
}
*count = modified_sources_uris.length();
if (*count == 0) {
return;
}
*modified_sources = zone_->Alloc<Dart_SourceFile>(*count);
for (intptr_t i = 0; i < *count; ++i) {
(*modified_sources)[i].uri = modified_sources_uris[i];
(*modified_sources)[i].source = NULL;
}
}
void IsolateReloadContext::CheckpointLibraries() {
TIMELINE_SCOPE(CheckpointLibraries);
TIR_Print("---- CHECKPOINTING LIBRARIES\n");
// Save the root library in case we abort the reload.
const Library& root_lib = Library::Handle(object_store()->root_library());
set_saved_root_library(root_lib);
// Save the old libraries array in case we abort the reload.
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(object_store()->libraries());
set_saved_libraries(libs);
// Make a filtered copy of the old libraries array. Keep "clean" libraries
// that we will use instead of reloading.
const GrowableObjectArray& new_libs =
GrowableObjectArray::Handle(GrowableObjectArray::New(Heap::kOld));
Library& lib = Library::Handle();
UnorderedHashSet<LibraryMapTraits> old_libraries_set(
old_libraries_set_storage_);
num_saved_libs_ = 0;
for (intptr_t i = 0; i < libs.Length(); i++) {
lib ^= libs.At(i);
if (modified_libs_->Contains(i)) {
// We are going to reload this library. Clear the index.
lib.set_index(-1);
} else {
// We are preserving this library across the reload, assign its new index
lib.set_index(new_libs.Length());
new_libs.Add(lib, Heap::kOld);
num_saved_libs_++;
}
// Add old library to old libraries set.
bool already_present = old_libraries_set.Insert(lib);
ASSERT(!already_present);
}
modified_libs_ = NULL; // Renumbering the libraries has invalidated this.
old_libraries_set_storage_ = old_libraries_set.Release().raw();
// Reset the registered libraries to the filtered array.
Library::RegisterLibraries(Thread::Current(), new_libs);
// Reset the root library to null.
object_store()->set_root_library(Library::Handle());
}
// While reloading everything we do must be reversible so that we can abort
// safely if the reload fails. This function stashes things to the side and
// prepares the isolate for the reload attempt.
void IsolateReloadContext::Checkpoint() {
TIMELINE_SCOPE(Checkpoint);
CheckpointClasses();
CheckpointLibraries();
}
void IsolateReloadContext::RollbackClasses() {
TIR_Print("---- ROLLING BACK CLASS TABLE\n");
ASSERT(saved_num_cids_ > 0);
ASSERT(saved_class_table_ != NULL);
DiscardSavedClassTable(/*is_rollback=*/true);
}
void IsolateReloadContext::RollbackLibraries() {
TIR_Print("---- ROLLING BACK LIBRARY CHANGES\n");
Thread* thread = Thread::Current();
Library& lib = Library::Handle();
GrowableObjectArray& saved_libs =
GrowableObjectArray::Handle(Z, saved_libraries());
if (!saved_libs.IsNull()) {
for (intptr_t i = 0; i < saved_libs.Length(); i++) {
lib = Library::RawCast(saved_libs.At(i));
// Restore indexes that were modified in CheckpointLibraries.
lib.set_index(i);
}
// Reset the registered libraries to the filtered array.
Library::RegisterLibraries(thread, saved_libs);
}
Library& saved_root_lib = Library::Handle(Z, saved_root_library());
if (!saved_root_lib.IsNull()) {
object_store()->set_root_library(saved_root_lib);
}
set_saved_root_library(Library::Handle());
set_saved_libraries(GrowableObjectArray::Handle());
}
void IsolateReloadContext::Rollback() {
TIR_Print("---- ROLLING BACK");
RollbackClasses();
RollbackLibraries();
}
#ifdef DEBUG
void IsolateReloadContext::VerifyMaps() {
TIMELINE_SCOPE(VerifyMaps);
Class& cls = Class::Handle();
Class& new_cls = Class::Handle();
Class& cls2 = Class::Handle();
// Verify that two old classes aren't both mapped to the same new
// class. This could happen is the IsSameClass function is broken.
UnorderedHashMap<ClassMapTraits> class_map(class_map_storage_);
UnorderedHashMap<ClassMapTraits> reverse_class_map(
HashTables::New<UnorderedHashMap<ClassMapTraits> >(
class_map.NumOccupied()));
{
UnorderedHashMap<ClassMapTraits>::Iterator it(&class_map);
while (it.MoveNext()) {
const intptr_t entry = it.Current();
new_cls = Class::RawCast(class_map.GetKey(entry));
cls = Class::RawCast(class_map.GetPayload(entry, 0));
cls2 ^= reverse_class_map.GetOrNull(new_cls);
if (!cls2.IsNull()) {
OS::PrintErr(
"Classes '%s' and '%s' are distinct classes but both map "
" to class '%s'\n",
cls.ToCString(), cls2.ToCString(), new_cls.ToCString());
UNREACHABLE();
}
bool update = reverse_class_map.UpdateOrInsert(cls, new_cls);
ASSERT(!update);
}
}
class_map.Release();
reverse_class_map.Release();
}
#endif
void IsolateReloadContext::Commit() {
TIMELINE_SCOPE(Commit);
TIR_Print("---- COMMITTING RELOAD\n");
#ifdef DEBUG
VerifyMaps();
#endif
// Copy over certain properties of libraries, e.g. is the library
// debuggable?
{
TIMELINE_SCOPE(CopyLibraryBits);
Library& lib = Library::Handle();
Library& new_lib = Library::Handle();
UnorderedHashMap<LibraryMapTraits> lib_map(library_map_storage_);
{
// Reload existing libraries.
UnorderedHashMap<LibraryMapTraits>::Iterator it(&lib_map);
while (it.MoveNext()) {
const intptr_t entry = it.Current();
ASSERT(entry != -1);
new_lib = Library::RawCast(lib_map.GetKey(entry));
lib = Library::RawCast(lib_map.GetPayload(entry, 0));
new_lib.set_debuggable(lib.IsDebuggable());
// Native extension support.
new_lib.set_native_entry_resolver(lib.native_entry_resolver());
new_lib.set_native_entry_symbol_resolver(
lib.native_entry_symbol_resolver());
}
}
// Release the library map.
lib_map.Release();
}
{
TIMELINE_SCOPE(CopyStaticFieldsAndPatchFieldsAndFunctions);
// Copy static field values from the old classes to the new classes.
// Patch fields and functions in the old classes so that they retain
// the old script.
Class& old_cls = Class::Handle();
Class& new_cls = Class::Handle();
UnorderedHashMap<ClassMapTraits> class_map(class_map_storage_);
{
UnorderedHashMap<ClassMapTraits>::Iterator it(&class_map);
while (it.MoveNext()) {
const intptr_t entry = it.Current();
new_cls = Class::RawCast(class_map.GetKey(entry));
old_cls = Class::RawCast(class_map.GetPayload(entry, 0));
if (new_cls.raw() != old_cls.raw()) {
ASSERT(new_cls.is_enum_class() == old_cls.is_enum_class());
if (new_cls.is_enum_class() && new_cls.is_finalized()) {
new_cls.ReplaceEnum(this, old_cls);
} else {
new_cls.CopyStaticFieldValues(this, old_cls);
}
old_cls.PatchFieldsAndFunctions();
old_cls.MigrateImplicitStaticClosures(this, new_cls);
}
}
}
class_map.Release();
{
UnorderedHashSet<ClassMapTraits> removed_class_set(
removed_class_set_storage_);
UnorderedHashSet<ClassMapTraits>::Iterator it(&removed_class_set);
while (it.MoveNext()) {
const intptr_t entry = it.Current();
old_cls ^= removed_class_set.GetKey(entry);
old_cls.PatchFieldsAndFunctions();
}
removed_class_set.Release();
}
}
{
TIMELINE_SCOPE(UpdateLibrariesArray);
// Update the libraries array.
Library& lib = Library::Handle();
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(I->object_store()->libraries());
for (intptr_t i = 0; i < libs.Length(); i++) {
lib = Library::RawCast(libs.At(i));
VTIR_Print("Lib '%s' at index %" Pd "\n", lib.ToCString(), i);
lib.set_index(i);
}
// Initialize library side table.
library_infos_.SetLength(libs.Length());
for (intptr_t i = 0; i < libs.Length(); i++) {
lib = Library::RawCast(libs.At(i));
// Mark the library dirty if it comes after the libraries we saved.
library_infos_[i].dirty = i >= num_saved_libs_;
}
}
{
MorphInstancesAndApplyNewClassTable();
const GrowableObjectArray& become_enum_mappings =
GrowableObjectArray::Handle(become_enum_mappings_);
UnorderedHashMap<BecomeMapTraits> become_map(become_map_storage_);
intptr_t replacement_count =
become_map.NumOccupied() + become_enum_mappings.Length() / 2;
const Array& before =
Array::Handle(Array::New(replacement_count, Heap::kOld));
const Array& after =
Array::Handle(Array::New(replacement_count, Heap::kOld));
Object& obj = Object::Handle();
intptr_t replacement_index = 0;
UnorderedHashMap<BecomeMapTraits>::Iterator it(&become_map);
while (it.MoveNext()) {
const intptr_t entry = it.Current();
obj = become_map.GetKey(entry);
before.SetAt(replacement_index, obj);
obj = become_map.GetPayload(entry, 0);
after.SetAt(replacement_index, obj);
replacement_index++;
}
for (intptr_t i = 0; i < become_enum_mappings.Length(); i += 2) {
obj = become_enum_mappings.At(i);
before.SetAt(replacement_index, obj);
obj = become_enum_mappings.At(i + 1);
after.SetAt(replacement_index, obj);
replacement_index++;
}
ASSERT(replacement_index == replacement_count);
become_map.Release();
Become::ElementsForwardIdentity(before, after);
}
// Rehash constants map for all classes. Constants are hashed by content, and
// content may have changed from fields being added or removed.
{
TIMELINE_SCOPE(RehashConstants);
I->RehashConstants();
}
#ifdef DEBUG
I->ValidateConstants();
#endif
if (FLAG_identity_reload) {
if (saved_num_cids_ != I->class_table()->NumCids()) {
TIR_Print("Identity reload failed! B#C=%" Pd " A#C=%" Pd "\n",
saved_num_cids_, I->class_table()->NumCids());
}
const GrowableObjectArray& saved_libs =
GrowableObjectArray::Handle(saved_libraries());
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(I->object_store()->libraries());
if (saved_libs.Length() != libs.Length()) {
TIR_Print("Identity reload failed! B#L=%" Pd " A#L=%" Pd "\n",
saved_libs.Length(), libs.Length());
}
}
// Run the initializers for new instance fields.
RunNewFieldInitializers();
}
bool IsolateReloadContext::IsDirty(const Library& lib) {
const intptr_t index = lib.index();
if (index == static_cast<classid_t>(-1)) {
// Treat deleted libraries as dirty.
return true;
}
ASSERT((index >= 0) && (index < library_infos_.length()));
return library_infos_[index].dirty;
}
void IsolateReloadContext::PostCommit() {
TIMELINE_SCOPE(PostCommit);
set_saved_root_library(Library::Handle());
set_saved_libraries(GrowableObjectArray::Handle());
InvalidateWorld();
TIR_Print("---- DONE COMMIT\n");
}
void IsolateReloadContext::AddReasonForCancelling(ReasonForCancelling* reason) {
reload_aborted_ = true;
reasons_to_cancel_reload_.Add(reason);
}
void IsolateReloadContext::AddInstanceMorpher(InstanceMorpher* morpher) {
instance_morphers_.Add(morpher);
cid_mapper_.Insert(morpher);
}
void IsolateReloadContext::ReportReasonsForCancelling() {
ASSERT(FLAG_reload_force_rollback || HasReasonsForCancelling());
for (int i = 0; i < reasons_to_cancel_reload_.length(); i++) {
reasons_to_cancel_reload_.At(i)->Report(this);
}
}
// The ObjectLocator is used for collecting instances that
// needs to be morphed.
class ObjectLocator : public ObjectVisitor {
public:
explicit ObjectLocator(IsolateReloadContext* context)
: context_(context), count_(0) {}
void VisitObject(RawObject* obj) {
InstanceMorpher* morpher =
context_->cid_mapper_.LookupValue(obj->GetClassId());
if (morpher != NULL) {
morpher->AddObject(obj);
count_++;
}
}
// Return the number of located objects for morphing.
intptr_t count() { return count_; }
private:
IsolateReloadContext* context_;
intptr_t count_;
};
static bool HasNoTasks(Heap* heap) {
MonitorLocker ml(heap->old_space()->tasks_lock());
return heap->old_space()->tasks() == 0;
}
void IsolateReloadContext::MorphInstancesAndApplyNewClassTable() {
TIMELINE_SCOPE(MorphInstances);
if (!HasInstanceMorphers()) {
// Fast path: no class had a shape change.
DiscardSavedClassTable(/*is_rollback=*/false);
return;
}
if (FLAG_trace_reload) {
LogBlock blocker;
TIR_Print("MorphInstance: \n");
for (intptr_t i = 0; i < instance_morphers_.length(); i++) {
instance_morphers_.At(i)->Dump();
}
}
// Find all objects that need to be morphed (reallocated to a new size).
ObjectLocator locator(this);
{
HeapIterationScope iteration(Thread::Current());
iteration.IterateObjects(&locator);
}
intptr_t count = locator.count();
if (count == 0) {
// Fast path: classes with shape change have no instances.
DiscardSavedClassTable(/*is_rollback=*/false);
return;
}
TIR_Print("Found %" Pd " object%s subject to morphing.\n", count,
(count > 1) ? "s" : "");
// While we are reallocating instances to their new size, the heap will
// contain a mix of instances with the old and new sizes that have the same
// cid. This makes the heap unwalkable until the "become" operation below
// replaces all the instances of the old size with forwarding corpses. Force
// heap growth to prevent size confusion during this period.
NoHeapGrowthControlScope scope;
// The HeapIterationScope above ensures no other GC tasks can be active.
ASSERT(HasNoTasks(I->heap()));
for (intptr_t i = 0; i < instance_morphers_.length(); i++) {
instance_morphers_.At(i)->CreateMorphedCopies();
}
// Create the inputs for Become.
intptr_t index = 0;
const Array& before = Array::Handle(Array::New(count));
const Array& after = Array::Handle(Array::New(count));
for (intptr_t i = 0; i < instance_morphers_.length(); i++) {
InstanceMorpher* morpher = instance_morphers_.At(i);
for (intptr_t j = 0; j < morpher->before()->length(); j++) {
before.SetAt(index, *morpher->before()->At(j));
after.SetAt(index, *morpher->after()->At(j));
index++;
}
}
ASSERT(index == count);
// Apply the new class table before "become". Become will replace all the
// instances of the old size with forwarding corpses, then perform a heap walk
// to fix references to the forwarding corpses. During this heap walk, it will
// encounter instances of the new size, so it requires the new class table.
ASSERT(HasNoTasks(I->heap()));
#if defined(DEBUG)
for (intptr_t i = 0; i < saved_num_cids_; i++) {
saved_class_table_[i] = ClassAndSize(nullptr, -1);
}
#endif
// We accepted the hot-reload and morphed instances. So now we can commit to
// the changed class table and deleted the saved one.
DiscardSavedClassTable(/*is_rollback=*/false);
Become::ElementsForwardIdentity(before, after);
// The heap now contains only instances with the new size. Ordinary GC is safe
// again.
}
void IsolateReloadContext::RunNewFieldInitializers() {
// Run new field initializers on all instances.
for (intptr_t i = 0; i < instance_morphers_.length(); i++) {
instance_morphers_.At(i)->RunNewFieldInitializers();
}
}
bool IsolateReloadContext::ValidateReload() {
TIMELINE_SCOPE(ValidateReload);
if (reload_aborted()) return false;
TIR_Print("---- VALIDATING RELOAD\n");
// Validate libraries.
{
ASSERT(library_map_storage_ != Array::null());
UnorderedHashMap<LibraryMapTraits> map(library_map_storage_);
UnorderedHashMap<LibraryMapTraits>::Iterator it(&map);
Library& lib = Library::Handle();
Library& new_lib = Library::Handle();
while (it.MoveNext()) {
const intptr_t entry = it.Current();
new_lib = Library::RawCast(map.GetKey(entry));
lib = Library::RawCast(map.GetPayload(entry, 0));
if (new_lib.raw() != lib.raw()) {
lib.CheckReload(new_lib, this);
}
}
map.Release();
}
// Validate classes.
{
ASSERT(class_map_storage_ != Array::null());
UnorderedHashMap<ClassMapTraits> map(class_map_storage_);
UnorderedHashMap<ClassMapTraits>::Iterator it(&map);
Class& cls = Class::Handle();
Class& new_cls = Class::Handle();
while (it.MoveNext()) {
const intptr_t entry = it.Current();
new_cls = Class::RawCast(map.GetKey(entry));
cls = Class::RawCast(map.GetPayload(entry, 0));
if (new_cls.raw() != cls.raw()) {
cls.CheckReload(new_cls, this);
}
}
map.Release();
}
return !FLAG_reload_force_rollback && !HasReasonsForCancelling();
}
RawClass* IsolateReloadContext::FindOriginalClass(const Class& cls) {
return MappedClass(cls);
}
RawClass* IsolateReloadContext::GetClassForHeapWalkAt(intptr_t cid) {
ClassAndSize* class_table =
AtomicOperations::LoadAcquire(&saved_class_table_);
if (class_table != NULL) {
ASSERT(cid > 0);
ASSERT(cid < saved_num_cids_);
return class_table[cid].get_raw_class();
} else {
return isolate_->class_table()->At(cid);
}
}
intptr_t IsolateReloadContext::GetClassSizeForHeapWalkAt(intptr_t cid) {
ClassAndSize* class_table =
AtomicOperations::LoadAcquire(&saved_class_table_);
if (class_table != NULL) {
ASSERT(cid > 0);
ASSERT(cid < saved_num_cids_);
return class_table[cid].size();
} else {
return isolate_->class_table()->SizeAt(cid);
}
}
void IsolateReloadContext::DiscardSavedClassTable(bool is_rollback) {
ClassAndSize* local_saved_class_table = saved_class_table_;
I->class_table()->ResetAfterHotReload(local_saved_class_table,
saved_num_cids_, is_rollback);
AtomicOperations::StoreRelease(&saved_class_table_,
static_cast<ClassAndSize*>(nullptr));
}
RawLibrary* IsolateReloadContext::saved_root_library() const {
return saved_root_library_;
}
void IsolateReloadContext::set_saved_root_library(const Library& value) {
saved_root_library_ = value.raw();
}
RawGrowableObjectArray* IsolateReloadContext::saved_libraries() const {
return saved_libraries_;
}
void IsolateReloadContext::set_saved_libraries(
const GrowableObjectArray& value) {
saved_libraries_ = value.raw();
}
void IsolateReloadContext::VisitObjectPointers(ObjectPointerVisitor* visitor) {
visitor->VisitPointers(from(), to());
if (saved_class_table_ != NULL) {
for (intptr_t i = 0; i < saved_num_cids_; i++) {
visitor->VisitPointer(
reinterpret_cast<RawObject**>(&(saved_class_table_[i].class_)));
}
}
}
ObjectStore* IsolateReloadContext::object_store() {
return isolate_->object_store();
}
void IsolateReloadContext::ResetUnoptimizedICsOnStack() {
Thread* thread = Thread::Current();
StackZone stack_zone(thread);
Zone* zone = stack_zone.GetZone();
Code& code = Code::Handle(zone);
Bytecode& bytecode = Bytecode::Handle(zone);
Function& function = Function::Handle(zone);
CallSiteResetter resetter(zone);
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = iterator.NextFrame();
while (frame != NULL) {
if (frame->is_interpreted()) {
bytecode = frame->LookupDartBytecode();
resetter.RebindStaticTargets(bytecode);
} else {
code = frame->LookupDartCode();
if (code.is_optimized() && !code.is_force_optimized()) {
// If this code is optimized, we need to reset the ICs in the
// corresponding unoptimized code, which will be executed when the stack
// unwinds to the optimized code.
function = code.function();
code = function.unoptimized_code();
ASSERT(!code.IsNull());
resetter.ResetSwitchableCalls(code);
resetter.ResetCaches(code);
} else {
resetter.ResetSwitchableCalls(code);
resetter.ResetCaches(code);
}
}
frame = iterator.NextFrame();
}
}
void IsolateReloadContext::ResetMegamorphicCaches() {
object_store()->set_megamorphic_cache_table(GrowableObjectArray::Handle());
// Since any current optimized code will not make any more calls, it may be
// better to clear the table instead of clearing each of the caches, allow
// the current megamorphic caches get GC'd and any new optimized code allocate
// new ones.
}
class InvalidationCollector : public ObjectVisitor {
public:
InvalidationCollector(Zone* zone,
GrowableArray<const Function*>* functions,
GrowableArray<const KernelProgramInfo*>* kernel_infos)
: zone_(zone), functions_(functions), kernel_infos_(kernel_infos) {}
virtual ~InvalidationCollector() {}
virtual void VisitObject(RawObject* obj) {
if (obj->IsPseudoObject()) {
return; // Cannot be wrapped in handles.
}
const Object& handle = Object::Handle(zone_, obj);
if (handle.IsFunction()) {
const auto& func = Function::Cast(handle);
if (!func.ForceOptimize()) {
// Force-optimized functions cannot deoptimize.
functions_->Add(&func);
}
} else if (handle.IsKernelProgramInfo()) {
kernel_infos_->Add(&KernelProgramInfo::Cast(handle));
}
}
private:
Zone* const zone_;
GrowableArray<const Function*>* const functions_;
GrowableArray<const KernelProgramInfo*>* const kernel_infos_;
};
typedef UnorderedHashMap<SmiTraits> IntHashMap;
void IsolateReloadContext::RunInvalidationVisitors() {
TIMELINE_SCOPE(MarkAllFunctionsForRecompilation);
TIR_Print("---- RUNNING INVALIDATION HEAP VISITORS\n");
Thread* thread = Thread::Current();
StackZone stack_zone(thread);
Zone* zone = stack_zone.GetZone();
Thread* mutator_thread = isolate()->mutator_thread();
if (mutator_thread != nullptr) {
Interpreter* interpreter = mutator_thread->interpreter();
if (interpreter != nullptr) {
interpreter->ClearLookupCache();
}
}
GrowableArray<const Function*> functions(4 * KB);
GrowableArray<const KernelProgramInfo*> kernel_infos(KB);
{
HeapIterationScope iteration(thread);
InvalidationCollector visitor(zone, &functions, &kernel_infos);
iteration.IterateObjects(&visitor);
}
Array& data = Array::Handle(zone);
Object& key = Object::Handle(zone);
Smi& value = Smi::Handle(zone);
for (intptr_t i = 0; i < kernel_infos.length(); i++) {
const KernelProgramInfo& info = *kernel_infos[i];
// Clear the libraries cache.
{
data = info.libraries_cache();
ASSERT(!data.IsNull());
IntHashMap table(&key, &value, &data);
table.Clear();
info.set_libraries_cache(table.Release());
}
// Clear the classes cache.
{
data = info.classes_cache();
ASSERT(!data.IsNull());
IntHashMap table(&key, &value, &data);
table.Clear();
info.set_classes_cache(table.Release());
}
// Clear the bytecode object table.
if (info.bytecode_component() != Array::null()) {
kernel::BytecodeReader::ResetObjectTable(info);
}
}
CallSiteResetter resetter(zone);
Class& owning_class = Class::Handle(zone);
Library& owning_lib = Library::Handle(zone);
Code& code = Code::Handle(zone);
Bytecode& bytecode = Bytecode::Handle(zone);
for (intptr_t i = 0; i < functions.length(); i++) {
const Function& func = *functions[i];
if (func.IsSignatureFunction()) {
continue;
}
// Switch to unoptimized code or the lazy compilation stub.
func.SwitchToLazyCompiledUnoptimizedCode();
// Grab the current code.
code = func.CurrentCode();
ASSERT(!code.IsNull());
bytecode = func.bytecode();
owning_class = func.Owner();
owning_lib = owning_class.library();
const bool clear_code = IsDirty(owning_lib);
const bool stub_code = code.IsStubCode();
// Zero edge counters, before clearing the ICDataArray, since that's where
// they're held.
resetter.ZeroEdgeCounters(func);
if (!bytecode.IsNull()) {
resetter.RebindStaticTargets(bytecode);
}
if (stub_code) {
// Nothing to reset.
} else if (clear_code) {
VTIR_Print("Marking %s for recompilation, clearing code\n",
func.ToCString());
// Null out the ICData array and code.
func.ClearICDataArray();
func.ClearCode();
func.SetWasCompiled(false);
} else {
// We are preserving the unoptimized code, reset instance calls and type
// test caches.
resetter.ResetSwitchableCalls(code);
resetter.ResetCaches(code);
}
// Clear counters.
func.set_usage_counter(0);
func.set_deoptimization_counter(0);
func.set_optimized_instruction_count(0);
func.set_optimized_call_site_count(0);
}
}
void IsolateReloadContext::InvalidateWorld() {
TIR_Print("---- INVALIDATING WORLD\n");
ResetMegamorphicCaches();
if (FLAG_trace_deoptimization) {
THR_Print("Deopt for reload\n");
}
DeoptimizeFunctionsOnStack();
ResetUnoptimizedICsOnStack();
RunInvalidationVisitors();
}
RawClass* IsolateReloadContext::MappedClass(const Class& replacement_or_new) {
UnorderedHashMap<ClassMapTraits> map(class_map_storage_);
Class& cls = Class::Handle();
cls ^= map.GetOrNull(replacement_or_new);
// No need to update storage address because no mutation occurred.
map.Release();
return cls.raw();
}
RawLibrary* IsolateReloadContext::MappedLibrary(
const Library& replacement_or_new) {
return Library::null();
}
RawClass* IsolateReloadContext::OldClassOrNull(
const Class& replacement_or_new) {
UnorderedHashSet<ClassMapTraits> old_classes_set(old_classes_set_storage_);
Class& cls = Class::Handle();
cls ^= old_classes_set.GetOrNull(replacement_or_new);
old_classes_set_storage_ = old_classes_set.Release().raw();
return cls.raw();
}
RawString* IsolateReloadContext::FindLibraryPrivateKey(
const Library& replacement_or_new) {
const Library& old = Library::Handle(OldLibraryOrNull(replacement_or_new));
if (old.IsNull()) {
return String::null();
}
#if defined(DEBUG)
VTIR_Print("`%s` is getting `%s`'s private key.\n",
String::Handle(replacement_or_new.url()).ToCString(),
String::Handle(old.url()).ToCString());
#endif
return old.private_key();
}
RawLibrary* IsolateReloadContext::OldLibraryOrNull(
const Library& replacement_or_new) {
UnorderedHashSet<LibraryMapTraits> old_libraries_set(
old_libraries_set_storage_);
Library& lib = Library::Handle();
lib ^= old_libraries_set.GetOrNull(replacement_or_new);
old_libraries_set.Release();
if (lib.IsNull() && (root_url_prefix_ != String::null()) &&
(old_root_url_prefix_ != String::null())) {
return OldLibraryOrNullBaseMoved(replacement_or_new);
}
return lib.raw();
}
// Attempt to find the pair to |replacement_or_new| with the knowledge that
// the base url prefix has moved.
RawLibrary* IsolateReloadContext::OldLibraryOrNullBaseMoved(
const Library& replacement_or_new) {
const String& url_prefix = String::Handle(root_url_prefix_);
const String& old_url_prefix = String::Handle(old_root_url_prefix_);
const intptr_t prefix_length = url_prefix.Length();
const intptr_t old_prefix_length = old_url_prefix.Length();
const String& new_url = String::Handle(replacement_or_new.url());
const String& suffix =
String::Handle(String::SubString(new_url, prefix_length));
if (!new_url.StartsWith(url_prefix)) {
return Library::null();
}
Library& old = Library::Handle();
String& old_url = String::Handle();
String& old_suffix = String::Handle();
GrowableObjectArray& saved_libs =
GrowableObjectArray::Handle(saved_libraries());
ASSERT(!saved_libs.IsNull());
for (intptr_t i = 0; i < saved_libs.Length(); i++) {
old = Library::RawCast(saved_libs.At(i));
old_url = old.url();
if (!old_url.StartsWith(old_url_prefix)) {
continue;
}
old_suffix = String::SubString(old_url, old_prefix_length);
if (old_suffix.IsNull()) {
continue;
}
if (old_suffix.Equals(suffix)) {
TIR_Print("`%s` is moving to `%s`\n", old_url.ToCString(),
new_url.ToCString());
return old.raw();
}
}
return Library::null();
}
void IsolateReloadContext::BuildLibraryMapping() {
const GrowableObjectArray& libs =
GrowableObjectArray::Handle(object_store()->libraries());
Library& replacement_or_new = Library::Handle();
Library& old = Library::Handle();
for (intptr_t i = num_saved_libs_; i < libs.Length(); i++) {
replacement_or_new = Library::RawCast(libs.At(i));
old = OldLibraryOrNull(replacement_or_new);
if (old.IsNull()) {
if (FLAG_identity_reload) {
TIR_Print("Could not find original library for %s\n",
replacement_or_new.ToCString());
UNREACHABLE();
}
// New library.
AddLibraryMapping(replacement_or_new, replacement_or_new);
} else {
ASSERT(!replacement_or_new.is_dart_scheme());
// Replaced class.
AddLibraryMapping(replacement_or_new, old);
AddBecomeMapping(old, replacement_or_new);
}
}
}
// Find classes that have been removed from the program.
// Instances of these classes may still be referenced from variables, so the
// functions of these class may still execute in the future, and they need to
// be given patch class owners still they correctly reference their (old) kernel
// data even after the library's kernel data is updated.
//
// Note that all such classes must belong to a library that has either been
// changed or removed.
void IsolateReloadContext::BuildRemovedClassesSet() {
// Find all old classes [mapped_old_classes_set].
UnorderedHashMap<ClassMapTraits> class_map(class_map_storage_);
UnorderedHashSet<ClassMapTraits> mapped_old_classes_set(
HashTables::New<UnorderedHashSet<ClassMapTraits> >(
class_map.NumOccupied()));
{
UnorderedHashMap<ClassMapTraits>::Iterator it(&class_map);
Class& cls = Class::Handle();
Class& new_cls = Class::Handle();
while (it.MoveNext()) {
const intptr_t entry = it.Current();
new_cls = Class::RawCast(class_map.GetKey(entry));
cls = Class::RawCast(class_map.GetPayload(entry, 0));
mapped_old_classes_set.InsertOrGet(cls);
}
}
class_map.Release();
// Find all reloaded libraries [mapped_old_library_set].
UnorderedHashMap<LibraryMapTraits> library_map(library_map_storage_);
UnorderedHashMap<LibraryMapTraits>::Iterator it_library(&library_map);
UnorderedHashSet<LibraryMapTraits> mapped_old_library_set(
HashTables::New<UnorderedHashSet<LibraryMapTraits> >(
library_map.NumOccupied()));
{
Library& old_library = Library::Handle();
Library& new_library = Library::Handle();
while (it_library.MoveNext()) {
const intptr_t entry = it_library.Current();
new_library ^= library_map.GetKey(entry);
old_library ^= library_map.GetPayload(entry, 0);
if (new_library.raw() != old_library.raw()) {
mapped_old_library_set.InsertOrGet(old_library);
}
}
}
// For every old class, check if it's library was reloaded and if
// the class was mapped. If the class wasn't mapped - add it to
// [removed_class_set].
UnorderedHashSet<ClassMapTraits> old_classes_set(old_classes_set_storage_);
UnorderedHashSet<ClassMapTraits>::Iterator it(&old_classes_set);
UnorderedHashSet<ClassMapTraits> removed_class_set(
removed_class_set_storage_);
Class& old_cls = Class::Handle();
Class& new_cls = Class::Handle();
Library& old_library = Library::Handle();
Library& mapped_old_library = Library::Handle();
while (it.MoveNext()) {
const intptr_t entry = it.Current();
old_cls ^= Class::RawCast(old_classes_set.GetKey(entry));
old_library = old_cls.library();
if (old_library.IsNull()) {
continue;
}
mapped_old_library ^= mapped_old_library_set.GetOrNull(old_library);
if (!mapped_old_library.IsNull()) {
new_cls ^= mapped_old_classes_set.GetOrNull(old_cls);
if (new_cls.IsNull()) {
removed_class_set.InsertOrGet(old_cls);
}
}
}
removed_class_set_storage_ = removed_class_set.Release().raw();
old_classes_set.Release();
mapped_old_classes_set.Release();
mapped_old_library_set.Release();
library_map.Release();
}
void IsolateReloadContext::AddClassMapping(const Class& replacement_or_new,
const Class& original) {
UnorderedHashMap<ClassMapTraits> map(class_map_storage_);
bool update = map.UpdateOrInsert(replacement_or_new, original);
ASSERT(!update);
// The storage given to the map may have been reallocated, remember the new
// address.
class_map_storage_ = map.Release().raw();
}
void IsolateReloadContext::AddLibraryMapping(const Library& replacement_or_new,
const Library& original) {
UnorderedHashMap<LibraryMapTraits> map(library_map_storage_);
bool update = map.UpdateOrInsert(replacement_or_new, original);
ASSERT(!update);
// The storage given to the map may have been reallocated, remember the new
// address.
library_map_storage_ = map.Release().raw();
}
void IsolateReloadContext::AddStaticFieldMapping(const Field& old_field,
const Field& new_field) {
ASSERT(old_field.is_static());
ASSERT(new_field.is_static());
AddBecomeMapping(old_field, new_field);
}
void IsolateReloadContext::AddBecomeMapping(const Object& old,
const Object& neu) {
ASSERT(become_map_storage_ != Array::null());
UnorderedHashMap<BecomeMapTraits> become_map(become_map_storage_);
bool update = become_map.UpdateOrInsert(old, neu);
ASSERT(!update);
become_map_storage_ = become_map.Release().raw();
}
void IsolateReloadContext::AddEnumBecomeMapping(const Object& old,
const Object& neu) {
const GrowableObjectArray& become_enum_mappings =
GrowableObjectArray::Handle(become_enum_mappings_);
become_enum_mappings.Add(old);
become_enum_mappings.Add(neu);
ASSERT((become_enum_mappings.Length() % 2) == 0);
}
void IsolateReloadContext::RebuildDirectSubclasses() {
ClassTable* class_table = I->class_table();
intptr_t num_cids = class_table->NumCids();
// Clear the direct subclasses for all classes.
Class& cls = Class::Handle();
GrowableObjectArray& subclasses = GrowableObjectArray::Handle();
for (intptr_t i = 1; i < num_cids; i++) {
if (class_table->HasValidClassAt(i)) {
cls = class_table->At(i);
if (!cls.is_declaration_loaded()) {
continue; // Can't have any subclasses or implementors yet.
}
subclasses = cls.direct_subclasses();
if (!subclasses.IsNull()) {
cls.ClearDirectSubclasses();
}
subclasses = cls.direct_implementors();
if (!subclasses.IsNull()) {
cls.ClearDirectImplementors();
}
}
}
// Recompute the direct subclasses / implementors.
AbstractType& super_type = AbstractType::Handle();
Class& super_cls = Class::Handle();
Array& interface_types = Array::Handle();
AbstractType& interface_type = AbstractType::Handle();
Class& interface_class = Class::Handle();
for (intptr_t i = 1; i < num_cids; i++) {
if (class_table->HasValidClassAt(i)) {
cls = class_table->At(i);
if (!cls.is_declaration_loaded()) {
continue; // Will register itself later when loaded.
}
super_type = cls.super_type();
if (!super_type.IsNull() && !super_type.IsObjectType()) {
super_cls = cls.SuperClass();
ASSERT(!super_cls.IsNull());
super_cls.AddDirectSubclass(cls);
}
interface_types = cls.interfaces();
if (!interface_types.IsNull()) {
const intptr_t mixin_index = cls.is_transformed_mixin_application()
? interface_types.Length() - 1
: -1;
for (intptr_t j = 0; j < interface_types.Length(); ++j) {
interface_type ^= interface_types.At(j);
interface_class = interface_type.type_class();
interface_class.AddDirectImplementor(
cls, /* is_mixin = */ i == mixin_index);
}
}
}
}
}
#endif // !defined(PRODUCT) && !defined(DART_PRECOMPILED_RUNTIME)
} // namespace dart