dart-sdk/runtime/vm/exceptions.cc
Ben Konyi 1dfba01a3e [ VM ] Don't check if an interpreted frame is marked for lazy deopt
Checking if an interpreted frame is marked for lazy deopt while
preparing to handle an exception was causing an assert to be hit. We
can skip this check for interpreted frames.

Fixes https://github.com/dart-lang/sdk/issues/38003.

Change-Id: Icea65868c6291864df93920fa25236bcc36fded5
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/115268
Reviewed-by: Alexander Markov <alexmarkov@google.com>
Commit-Queue: Ben Konyi <bkonyi@google.com>
2019-09-04 00:09:27 +00:00

1116 lines
40 KiB
C++

// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/exceptions.h"
#include "platform/address_sanitizer.h"
#include "lib/stacktrace.h"
#include "vm/dart_api_impl.h"
#include "vm/dart_entry.h"
#include "vm/datastream.h"
#include "vm/debugger.h"
#include "vm/deopt_instructions.h"
#include "vm/flags.h"
#include "vm/log.h"
#include "vm/longjump.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
namespace dart {
DECLARE_FLAG(bool, enable_interpreter);
DECLARE_FLAG(bool, trace_deoptimization);
DEFINE_FLAG(bool,
print_stacktrace_at_throw,
false,
"Prints a stack trace everytime a throw occurs.");
class StackTraceBuilder : public ValueObject {
public:
StackTraceBuilder() {}
virtual ~StackTraceBuilder() {}
virtual void AddFrame(const Object& code, const Smi& offset) = 0;
};
class RegularStackTraceBuilder : public StackTraceBuilder {
public:
explicit RegularStackTraceBuilder(Zone* zone)
: code_list_(
GrowableObjectArray::Handle(zone, GrowableObjectArray::New())),
pc_offset_list_(
GrowableObjectArray::Handle(zone, GrowableObjectArray::New())) {}
~RegularStackTraceBuilder() {}
const GrowableObjectArray& code_list() const { return code_list_; }
const GrowableObjectArray& pc_offset_list() const { return pc_offset_list_; }
virtual void AddFrame(const Object& code, const Smi& offset) {
code_list_.Add(code);
pc_offset_list_.Add(offset);
}
private:
const GrowableObjectArray& code_list_;
const GrowableObjectArray& pc_offset_list_;
DISALLOW_COPY_AND_ASSIGN(RegularStackTraceBuilder);
};
class PreallocatedStackTraceBuilder : public StackTraceBuilder {
public:
explicit PreallocatedStackTraceBuilder(const Instance& stacktrace)
: stacktrace_(StackTrace::Cast(stacktrace)),
cur_index_(0),
dropped_frames_(0) {
ASSERT(stacktrace_.raw() ==
Isolate::Current()->object_store()->preallocated_stack_trace());
}
~PreallocatedStackTraceBuilder() {}
virtual void AddFrame(const Object& code, const Smi& offset);
private:
static const int kNumTopframes = StackTrace::kPreallocatedStackdepth / 2;
const StackTrace& stacktrace_;
intptr_t cur_index_;
intptr_t dropped_frames_;
DISALLOW_COPY_AND_ASSIGN(PreallocatedStackTraceBuilder);
};
void PreallocatedStackTraceBuilder::AddFrame(const Object& code,
const Smi& offset) {
if (cur_index_ >= StackTrace::kPreallocatedStackdepth) {
// The number of frames is overflowing the preallocated stack trace object.
Object& frame_code = Object::Handle();
Smi& frame_offset = Smi::Handle();
intptr_t start = StackTrace::kPreallocatedStackdepth - (kNumTopframes - 1);
intptr_t null_slot = start - 2;
// We are going to drop one frame.
dropped_frames_++;
// Add an empty slot to indicate the overflow so that the toString
// method can account for the overflow.
if (stacktrace_.CodeAtFrame(null_slot) != Code::null()) {
stacktrace_.SetCodeAtFrame(null_slot, frame_code);
// We drop an extra frame here too.
dropped_frames_++;
}
// Encode the number of dropped frames into the pc offset.
frame_offset = Smi::New(dropped_frames_);
stacktrace_.SetPcOffsetAtFrame(null_slot, frame_offset);
// Move frames one slot down so that we can accommodate the new frame.
for (intptr_t i = start; i < StackTrace::kPreallocatedStackdepth; i++) {
intptr_t prev = (i - 1);
frame_code = stacktrace_.CodeAtFrame(i);
frame_offset = stacktrace_.PcOffsetAtFrame(i);
stacktrace_.SetCodeAtFrame(prev, frame_code);
stacktrace_.SetPcOffsetAtFrame(prev, frame_offset);
}
cur_index_ = (StackTrace::kPreallocatedStackdepth - 1);
}
stacktrace_.SetCodeAtFrame(cur_index_, code);
stacktrace_.SetPcOffsetAtFrame(cur_index_, offset);
cur_index_ += 1;
}
static void BuildStackTrace(StackTraceBuilder* builder) {
StackFrameIterator frames(ValidationPolicy::kDontValidateFrames,
Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL); // We expect to find a dart invocation frame.
Code& code = Code::Handle();
Bytecode& bytecode = Bytecode::Handle();
Smi& offset = Smi::Handle();
for (; frame != NULL; frame = frames.NextFrame()) {
if (!frame->IsDartFrame()) {
continue;
}
if (frame->is_interpreted()) {
bytecode = frame->LookupDartBytecode();
ASSERT(bytecode.ContainsInstructionAt(frame->pc()));
if (bytecode.function() == Function::null()) {
continue;
}
offset = Smi::New(frame->pc() - bytecode.PayloadStart());
builder->AddFrame(bytecode, offset);
} else {
code = frame->LookupDartCode();
ASSERT(code.ContainsInstructionAt(frame->pc()));
offset = Smi::New(frame->pc() - code.PayloadStart());
builder->AddFrame(code, offset);
}
}
}
class ExceptionHandlerFinder : public StackResource {
public:
explicit ExceptionHandlerFinder(Thread* thread)
: StackResource(thread), thread_(thread) {}
// Iterate through the stack frames and try to find a frame with an
// exception handler. Once found, set the pc, sp and fp so that execution
// can continue in that frame. Sets 'needs_stacktrace' if there is no
// catch-all handler or if a stack-trace is specified in the catch.
bool Find() {
StackFrameIterator frames(ValidationPolicy::kDontValidateFrames,
Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = frames.NextFrame();
if (frame == NULL) return false; // No Dart frame.
handler_pc_set_ = false;
needs_stacktrace = false;
bool is_catch_all = false;
uword temp_handler_pc = kUwordMax;
bool is_optimized = false;
code_ = NULL;
catch_entry_moves_cache_ = thread_->isolate()->catch_entry_moves_cache();
while (!frame->IsEntryFrame()) {
if (frame->IsDartFrame()) {
if (frame->FindExceptionHandler(thread_, &temp_handler_pc,
&needs_stacktrace, &is_catch_all,
&is_optimized)) {
if (!handler_pc_set_) {
handler_pc_set_ = true;
handler_pc = temp_handler_pc;
handler_sp = frame->sp();
handler_fp = frame->fp();
if (is_optimized) {
pc_ = frame->pc();
code_ = &Code::Handle(frame->LookupDartCode());
CatchEntryMovesRefPtr* cached_catch_entry_moves =
catch_entry_moves_cache_->Lookup(pc_);
if (cached_catch_entry_moves != NULL) {
cached_catch_entry_moves_ = *cached_catch_entry_moves;
}
#if !defined(DART_PRECOMPILED_RUNTIME) && !defined(DART_PRECOMPILER)
intptr_t num_vars = Smi::Value(code_->variables());
if (cached_catch_entry_moves_.IsEmpty()) {
GetCatchEntryMovesFromDeopt(num_vars, frame);
}
#else
if (cached_catch_entry_moves_.IsEmpty()) {
ReadCompressedCatchEntryMoves();
}
#endif // !defined(DART_PRECOMPILED_RUNTIME) && !defined(DART_PRECOMPILER)
}
}
if (needs_stacktrace || is_catch_all) {
return true;
}
}
} // if frame->IsDartFrame
frame = frames.NextFrame();
ASSERT(frame != NULL);
} // while !frame->IsEntryFrame
ASSERT(frame->IsEntryFrame());
if (!handler_pc_set_) {
handler_pc = frame->pc();
handler_sp = frame->sp();
handler_fp = frame->fp();
}
// No catch-all encountered, needs stacktrace.
needs_stacktrace = true;
return handler_pc_set_;
}
// When entering catch block in the optimized code we need to execute
// catch entry moves that would morph the state of the frame into
// what catch entry expects.
void PrepareFrameForCatchEntry() {
if (code_ == nullptr || !code_->is_optimized()) {
return;
}
if (cached_catch_entry_moves_.IsEmpty()) {
catch_entry_moves_cache_->Insert(
pc_, CatchEntryMovesRefPtr(catch_entry_moves_));
} else {
catch_entry_moves_ = &cached_catch_entry_moves_.moves();
}
ExecuteCatchEntryMoves(*catch_entry_moves_);
}
void ExecuteCatchEntryMoves(const CatchEntryMoves& moves) {
Zone* zone = Thread::Current()->zone();
auto& value = Object::Handle(zone);
auto& dst_values = Array::Handle(zone, Array::New(moves.count()));
uword fp = handler_fp;
ObjectPool* pool = nullptr;
for (int j = 0; j < moves.count(); j++) {
const CatchEntryMove& move = moves.At(j);
switch (move.source_kind()) {
case CatchEntryMove::SourceKind::kConstant:
if (pool == nullptr) {
pool = &ObjectPool::Handle(code_->GetObjectPool());
}
value = pool->ObjectAt(move.src_slot());
break;
case CatchEntryMove::SourceKind::kTaggedSlot:
value = *TaggedSlotAt(fp, move.src_slot());
break;
case CatchEntryMove::SourceKind::kDoubleSlot:
value = Double::New(*SlotAt<double>(fp, move.src_slot()));
break;
case CatchEntryMove::SourceKind::kFloat32x4Slot:
value = Float32x4::New(*SlotAt<simd128_value_t>(fp, move.src_slot()));
break;
case CatchEntryMove::SourceKind::kFloat64x2Slot:
value = Float64x2::New(*SlotAt<simd128_value_t>(fp, move.src_slot()));
break;
case CatchEntryMove::SourceKind::kInt32x4Slot:
value = Int32x4::New(*SlotAt<simd128_value_t>(fp, move.src_slot()));
break;
case CatchEntryMove::SourceKind::kInt64PairSlot:
value = Integer::New(
Utils::LowHighTo64Bits(*SlotAt<uint32_t>(fp, move.src_lo_slot()),
*SlotAt<int32_t>(fp, move.src_hi_slot())));
break;
case CatchEntryMove::SourceKind::kInt64Slot:
value = Integer::New(*SlotAt<int64_t>(fp, move.src_slot()));
break;
case CatchEntryMove::SourceKind::kInt32Slot:
value = Integer::New(*SlotAt<int32_t>(fp, move.src_slot()));
break;
case CatchEntryMove::SourceKind::kUint32Slot:
value = Integer::New(*SlotAt<uint32_t>(fp, move.src_slot()));
break;
default:
UNREACHABLE();
}
dst_values.SetAt(j, value);
}
{
NoSafepointScope no_safepoint_scope;
for (int j = 0; j < moves.count(); j++) {
const CatchEntryMove& move = moves.At(j);
value = dst_values.At(j);
*TaggedSlotAt(fp, move.dest_slot()) = value.raw();
}
}
}
#if defined(DART_PRECOMPILED_RUNTIME) || defined(DART_PRECOMPILER)
void ReadCompressedCatchEntryMoves() {
const intptr_t pc_offset = pc_ - code_->PayloadStart();
const auto& td = TypedData::Handle(code_->catch_entry_moves_maps());
CatchEntryMovesMapReader reader(td);
catch_entry_moves_ = reader.ReadMovesForPcOffset(pc_offset);
}
#else
void GetCatchEntryMovesFromDeopt(intptr_t num_vars, StackFrame* frame) {
Isolate* isolate = thread_->isolate();
DeoptContext* deopt_context =
new DeoptContext(frame, *code_, DeoptContext::kDestIsAllocated, NULL,
NULL, true, false /* deoptimizing_code */);
isolate->set_deopt_context(deopt_context);
catch_entry_moves_ = deopt_context->ToCatchEntryMoves(num_vars);
isolate->set_deopt_context(NULL);
delete deopt_context;
}
#endif // defined(DART_PRECOMPILED_RUNTIME) || defined(DART_PRECOMPILER)
bool needs_stacktrace;
uword handler_pc;
uword handler_sp;
uword handler_fp;
private:
template <typename T>
static T* SlotAt(uword fp, int stack_slot) {
#if defined(TARGET_ARCH_DBC)
return reinterpret_cast<T*>(fp + stack_slot * kWordSize);
#else
const intptr_t frame_slot =
runtime_frame_layout.FrameSlotForVariableIndex(-stack_slot);
return reinterpret_cast<T*>(fp + frame_slot * kWordSize);
#endif
}
static RawObject** TaggedSlotAt(uword fp, int stack_slot) {
return SlotAt<RawObject*>(fp, stack_slot);
}
typedef ReadStream::Raw<sizeof(intptr_t), intptr_t> Reader;
Thread* thread_;
Code* code_;
bool handler_pc_set_;
intptr_t pc_; // Current pc in the handler frame.
const CatchEntryMoves* catch_entry_moves_ = nullptr;
CatchEntryMovesCache* catch_entry_moves_cache_ = nullptr;
CatchEntryMovesRefPtr cached_catch_entry_moves_;
};
CatchEntryMove CatchEntryMove::ReadFrom(ReadStream* stream) {
using Reader = ReadStream::Raw<sizeof(int32_t), int32_t>;
const int32_t src = Reader::Read(stream);
const int32_t dest_and_kind = Reader::Read(stream);
return CatchEntryMove(src, dest_and_kind);
}
#if !defined(DART_PRECOMPILED_RUNTIME)
void CatchEntryMove::WriteTo(WriteStream* stream) {
using Writer = WriteStream::Raw<sizeof(int32_t), int32_t>;
Writer::Write(stream, src_);
Writer::Write(stream, dest_and_kind_);
}
#endif
CatchEntryMoves* CatchEntryMovesMapReader::ReadMovesForPcOffset(
intptr_t pc_offset) {
NoSafepointScope no_safepoint;
ReadStream stream(static_cast<uint8_t*>(bytes_.DataAddr(0)), bytes_.Length());
intptr_t position = 0;
intptr_t length = 0;
FindEntryForPc(&stream, pc_offset, &position, &length);
return ReadCompressedCatchEntryMovesSuffix(&stream, position, length);
}
void CatchEntryMovesMapReader::FindEntryForPc(ReadStream* stream,
intptr_t pc_offset,
intptr_t* position,
intptr_t* length) {
using Reader = ReadStream::Raw<sizeof(intptr_t), intptr_t>;
while (stream->PendingBytes() > 0) {
const intptr_t stream_position = stream->Position();
const intptr_t target_pc_offset = Reader::Read(stream);
const intptr_t prefix_length = Reader::Read(stream);
const intptr_t suffix_length = Reader::Read(stream);
Reader::Read(stream); // Skip suffix_offset
if (pc_offset == target_pc_offset) {
*position = stream_position;
*length = prefix_length + suffix_length;
return;
}
// Skip the prefix moves.
for (intptr_t j = 0; j < prefix_length; j++) {
CatchEntryMove::ReadFrom(stream);
}
}
UNREACHABLE();
}
CatchEntryMoves* CatchEntryMovesMapReader::ReadCompressedCatchEntryMovesSuffix(
ReadStream* stream,
intptr_t offset,
intptr_t length) {
using Reader = ReadStream::Raw<sizeof(intptr_t), intptr_t>;
CatchEntryMoves* moves = CatchEntryMoves::Allocate(length);
intptr_t remaining_length = length;
intptr_t moves_offset = 0;
while (remaining_length > 0) {
stream->SetPosition(offset);
Reader::Read(stream); // skip pc_offset
Reader::Read(stream); // skip prefix length
const intptr_t suffix_length = Reader::Read(stream);
const intptr_t suffix_offset = Reader::Read(stream);
const intptr_t to_read = remaining_length - suffix_length;
if (to_read > 0) {
for (int j = 0; j < to_read; j++) {
// The prefix is written from the back.
moves->At(moves_offset + to_read - j - 1) =
CatchEntryMove::ReadFrom(stream);
}
remaining_length -= to_read;
moves_offset += to_read;
}
offset = suffix_offset;
}
return moves;
}
static void FindErrorHandler(uword* handler_pc,
uword* handler_sp,
uword* handler_fp) {
StackFrameIterator frames(ValidationPolicy::kDontValidateFrames,
Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL);
while (!frame->IsEntryFrame()) {
frame = frames.NextFrame();
ASSERT(frame != NULL);
}
ASSERT(frame->IsEntryFrame());
*handler_pc = frame->pc();
*handler_sp = frame->sp();
*handler_fp = frame->fp();
}
static uword RemapExceptionPCForDeopt(Thread* thread,
uword program_counter,
uword frame_pointer) {
#if !defined(TARGET_ARCH_DBC)
MallocGrowableArray<PendingLazyDeopt>* pending_deopts =
thread->isolate()->pending_deopts();
if (pending_deopts->length() > 0) {
// Check if the target frame is scheduled for lazy deopt.
for (intptr_t i = 0; i < pending_deopts->length(); i++) {
if ((*pending_deopts)[i].fp() == frame_pointer) {
// Deopt should now resume in the catch handler instead of after the
// call.
(*pending_deopts)[i].set_pc(program_counter);
// Jump to the deopt stub instead of the catch handler.
program_counter = StubCode::DeoptimizeLazyFromThrow().EntryPoint();
if (FLAG_trace_deoptimization) {
THR_Print("Throwing to frame scheduled for lazy deopt fp=%" Pp "\n",
frame_pointer);
}
break;
}
}
}
#endif // !DBC
return program_counter;
}
static void ClearLazyDeopts(Thread* thread, uword frame_pointer) {
#if !defined(TARGET_ARCH_DBC)
MallocGrowableArray<PendingLazyDeopt>* pending_deopts =
thread->isolate()->pending_deopts();
if (pending_deopts->length() > 0) {
// We may be jumping over frames scheduled for lazy deopt. Remove these
// frames from the pending deopt table, but only after unmarking them so
// any stack walk that happens before the stack is unwound will still work.
{
DartFrameIterator frames(thread,
StackFrameIterator::kNoCrossThreadIteration);
for (StackFrame* frame = frames.NextFrame(); frame != nullptr;
frame = frames.NextFrame()) {
if (frame->is_interpreted()) {
continue;
} else if (frame->fp() >= frame_pointer) {
break;
}
if (frame->IsMarkedForLazyDeopt()) {
frame->UnmarkForLazyDeopt();
}
}
}
#if defined(DEBUG)
ValidateFrames();
#endif
for (intptr_t i = 0; i < pending_deopts->length(); i++) {
if ((*pending_deopts)[i].fp() < frame_pointer) {
if (FLAG_trace_deoptimization) {
THR_Print(
"Lazy deopt skipped due to throw for "
"fp=%" Pp ", pc=%" Pp "\n",
(*pending_deopts)[i].fp(), (*pending_deopts)[i].pc());
}
pending_deopts->RemoveAt(i);
}
}
#if defined(DEBUG)
ValidateFrames();
#endif
}
#endif // !DBC
}
static void JumpToExceptionHandler(Thread* thread,
uword program_counter,
uword stack_pointer,
uword frame_pointer,
const Object& exception_object,
const Object& stacktrace_object) {
uword remapped_pc =
RemapExceptionPCForDeopt(thread, program_counter, frame_pointer);
thread->set_active_exception(exception_object);
thread->set_active_stacktrace(stacktrace_object);
thread->set_resume_pc(remapped_pc);
uword run_exception_pc = StubCode::RunExceptionHandler().EntryPoint();
Exceptions::JumpToFrame(thread, run_exception_pc, stack_pointer,
frame_pointer, false /* do not clear deopt */);
}
NO_SANITIZE_SAFE_STACK // This function manipulates the safestack pointer.
void Exceptions::JumpToFrame(Thread* thread,
uword program_counter,
uword stack_pointer,
uword frame_pointer,
bool clear_deopt_at_target) {
#if !defined(DART_PRECOMPILED_RUNTIME)
// TODO(regis): We still possibly need to unwind interpreter frames if they
// are callee frames of the C++ frame handling the exception.
if (FLAG_enable_interpreter) {
Interpreter* interpreter = thread->interpreter();
if ((interpreter != NULL) && interpreter->HasFrame(frame_pointer)) {
interpreter->JumpToFrame(program_counter, stack_pointer, frame_pointer,
thread);
}
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
const uword fp_for_clearing =
(clear_deopt_at_target ? frame_pointer + 1 : frame_pointer);
ClearLazyDeopts(thread, fp_for_clearing);
#if defined(USING_SIMULATOR)
// Unwinding of the C++ frames and destroying of their stack resources is done
// by the simulator, because the target stack_pointer is a simulated stack
// pointer and not the C++ stack pointer.
// Continue simulating at the given pc in the given frame after setting up the
// exception object in the kExceptionObjectReg register and the stacktrace
// object (may be raw null) in the kStackTraceObjectReg register.
Simulator::Current()->JumpToFrame(program_counter, stack_pointer,
frame_pointer, thread);
#else
// Prepare for unwinding frames by destroying all the stack resources
// in the previous frames.
StackResource::Unwind(thread);
// Call a stub to set up the exception object in kExceptionObjectReg,
// to set up the stacktrace object in kStackTraceObjectReg, and to
// continue execution at the given pc in the given frame.
typedef void (*ExcpHandler)(uword, uword, uword, Thread*);
ExcpHandler func =
reinterpret_cast<ExcpHandler>(StubCode::JumpToFrame().EntryPoint());
// Unpoison the stack before we tear it down in the generated stub code.
uword current_sp = OSThread::GetCurrentStackPointer() - 1024;
ASAN_UNPOISON(reinterpret_cast<void*>(current_sp),
stack_pointer - current_sp);
// We are jumping over C++ frames, so we have to set the safestack pointer
// back to what it was when we entered the runtime from Dart code.
#if defined(USING_SAFE_STACK)
const uword saved_ssp = thread->saved_safestack_limit();
OSThread::SetCurrentSafestackPointer(saved_ssp);
#endif
func(program_counter, stack_pointer, frame_pointer, thread);
#endif
UNREACHABLE();
}
static RawField* LookupStackTraceField(const Instance& instance) {
if (instance.GetClassId() < kNumPredefinedCids) {
// 'class Error' is not a predefined class.
return Field::null();
}
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
Isolate* isolate = thread->isolate();
Class& error_class =
Class::Handle(zone, isolate->object_store()->error_class());
if (error_class.IsNull()) {
const Library& core_lib = Library::Handle(zone, Library::CoreLibrary());
error_class = core_lib.LookupClass(Symbols::Error());
ASSERT(!error_class.IsNull());
isolate->object_store()->set_error_class(error_class);
}
// If instance class extends 'class Error' return '_stackTrace' field.
Class& test_class = Class::Handle(zone, instance.clazz());
AbstractType& type = AbstractType::Handle(zone, AbstractType::null());
while (true) {
if (test_class.raw() == error_class.raw()) {
return error_class.LookupInstanceFieldAllowPrivate(
Symbols::_stackTrace());
}
type = test_class.super_type();
if (type.IsNull()) return Field::null();
test_class = type.type_class();
}
UNREACHABLE();
return Field::null();
}
RawStackTrace* Exceptions::CurrentStackTrace() {
return GetStackTraceForException();
}
DART_NORETURN
static void ThrowExceptionHelper(Thread* thread,
const Instance& incoming_exception,
const Instance& existing_stacktrace,
const bool is_rethrow) {
DEBUG_ASSERT(thread->TopErrorHandlerIsExitFrame());
Zone* zone = thread->zone();
Isolate* isolate = thread->isolate();
#if !defined(PRODUCT)
// Do not notify debugger on stack overflow and out of memory exceptions.
// The VM would crash when the debugger calls back into the VM to
// get values of variables.
if (incoming_exception.raw() != isolate->object_store()->out_of_memory() &&
incoming_exception.raw() != isolate->object_store()->stack_overflow()) {
isolate->debugger()->PauseException(incoming_exception);
}
#endif
bool use_preallocated_stacktrace = false;
Instance& exception = Instance::Handle(zone, incoming_exception.raw());
if (exception.IsNull()) {
exception ^=
Exceptions::Create(Exceptions::kNullThrown, Object::empty_array());
} else if (exception.raw() == isolate->object_store()->out_of_memory() ||
exception.raw() == isolate->object_store()->stack_overflow()) {
use_preallocated_stacktrace = true;
}
// Find the exception handler and determine if the handler needs a
// stacktrace.
ExceptionHandlerFinder finder(thread);
bool handler_exists = finder.Find();
uword handler_pc = finder.handler_pc;
uword handler_sp = finder.handler_sp;
uword handler_fp = finder.handler_fp;
bool handler_needs_stacktrace = finder.needs_stacktrace;
Instance& stacktrace = Instance::Handle(zone);
if (use_preallocated_stacktrace) {
if (handler_pc == 0) {
// No Dart frame.
ASSERT(incoming_exception.raw() ==
isolate->object_store()->out_of_memory());
const UnhandledException& error = UnhandledException::Handle(
zone, isolate->object_store()->preallocated_unhandled_exception());
thread->long_jump_base()->Jump(1, error);
UNREACHABLE();
}
stacktrace = isolate->object_store()->preallocated_stack_trace();
PreallocatedStackTraceBuilder frame_builder(stacktrace);
ASSERT(existing_stacktrace.IsNull() ||
(existing_stacktrace.raw() == stacktrace.raw()));
ASSERT(existing_stacktrace.IsNull() || is_rethrow);
if (handler_needs_stacktrace && existing_stacktrace.IsNull()) {
BuildStackTrace(&frame_builder);
}
} else {
if (!existing_stacktrace.IsNull()) {
// If we have an existing stack trace then this better be a rethrow. The
// reverse is not necessarily true (e.g. Dart_PropagateError can cause
// a rethrow being called without an existing stacktrace.)
ASSERT(is_rethrow);
stacktrace = existing_stacktrace.raw();
} else {
// Get stacktrace field of class Error to determine whether we have a
// subclass of Error which carries around its stack trace.
const Field& stacktrace_field =
Field::Handle(zone, LookupStackTraceField(exception));
if (!stacktrace_field.IsNull() || handler_needs_stacktrace) {
// Collect the stacktrace if needed.
ASSERT(existing_stacktrace.IsNull());
stacktrace = Exceptions::CurrentStackTrace();
// If we have an Error object, then set its stackTrace field only if it
// not yet initialized.
if (!stacktrace_field.IsNull() &&
(exception.GetField(stacktrace_field) == Object::null())) {
exception.SetField(stacktrace_field, stacktrace);
}
}
}
}
// We expect to find a handler_pc, if the exception is unhandled
// then we expect to at least have the dart entry frame on the
// stack as Exceptions::Throw should happen only after a dart
// invocation has been done.
ASSERT(handler_pc != 0);
if (FLAG_print_stacktrace_at_throw) {
THR_Print("Exception '%s' thrown:\n", exception.ToCString());
THR_Print("%s\n", stacktrace.ToCString());
}
if (handler_exists) {
finder.PrepareFrameForCatchEntry();
// Found a dart handler for the exception, jump to it.
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp,
exception, stacktrace);
} else {
// No dart exception handler found in this invocation sequence,
// so we create an unhandled exception object and return to the
// invocation stub so that it returns this unhandled exception
// object. The C++ code which invoked this dart sequence can check
// and do the appropriate thing (rethrow the exception to the
// dart invocation sequence above it, print diagnostics and terminate
// the isolate etc.). This can happen in the compiler, which is not
// allowed to allocate in new space, so we pass the kOld argument.
const UnhandledException& unhandled_exception = UnhandledException::Handle(
zone, UnhandledException::New(exception, stacktrace, Heap::kOld));
stacktrace = StackTrace::null();
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp,
unhandled_exception, stacktrace);
}
UNREACHABLE();
}
// Static helpers for allocating, initializing, and throwing an error instance.
// Return the script of the Dart function that called the native entry or the
// runtime entry. The frame iterator points to the callee.
RawScript* Exceptions::GetCallerScript(DartFrameIterator* iterator) {
StackFrame* caller_frame = iterator->NextFrame();
ASSERT(caller_frame != NULL && caller_frame->IsDartFrame());
const Function& caller = Function::Handle(caller_frame->LookupDartFunction());
ASSERT(!caller.IsNull());
return caller.script();
}
// Allocate a new instance of the given class name.
// TODO(hausner): Rename this NewCoreInstance to call out the fact that
// the class name is resolved in the core library implicitly?
RawInstance* Exceptions::NewInstance(const char* class_name) {
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
const String& cls_name =
String::Handle(zone, Symbols::New(thread, class_name));
const Library& core_lib = Library::Handle(Library::CoreLibrary());
// No ambiguity error expected: passing NULL.
Class& cls = Class::Handle(core_lib.LookupClass(cls_name));
ASSERT(!cls.IsNull());
// There are no parameterized error types, so no need to set type arguments.
return Instance::New(cls);
}
// Allocate, initialize, and throw a TypeError or CastError.
// If error_msg is not null, throw a TypeError, even for a type cast.
void Exceptions::CreateAndThrowTypeError(TokenPosition location,
const AbstractType& src_type,
const AbstractType& dst_type,
const String& dst_name) {
ASSERT(!dst_name.IsNull()); // Pass Symbols::Empty() instead.
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
const Array& args = Array::Handle(zone, Array::New(4));
ExceptionType exception_type =
(dst_name.raw() == Symbols::InTypeCast().raw()) ? kCast : kType;
DartFrameIterator iterator(thread,
StackFrameIterator::kNoCrossThreadIteration);
const Script& script = Script::Handle(zone, GetCallerScript(&iterator));
intptr_t line = -1;
intptr_t column = -1;
ASSERT(!script.IsNull());
if (location.IsReal()) {
if (script.HasSource() || script.kind() == RawScript::kKernelTag) {
script.GetTokenLocation(location, &line, &column);
} else {
script.GetTokenLocation(location, &line, NULL);
}
}
// Initialize '_url', '_line', and '_column' arguments.
args.SetAt(0, String::Handle(zone, script.url()));
args.SetAt(1, Smi::Handle(zone, Smi::New(line)));
args.SetAt(2, Smi::Handle(zone, Smi::New(column)));
// Construct '_errorMsg'.
const GrowableObjectArray& pieces =
GrowableObjectArray::Handle(zone, GrowableObjectArray::New(20));
// If dst_type is malformed or malbounded, only print the embedded error.
if (!dst_type.IsNull()) {
// Describe the type error.
if (!src_type.IsNull()) {
pieces.Add(Symbols::TypeQuote());
pieces.Add(String::Handle(zone, src_type.UserVisibleName()));
pieces.Add(Symbols::QuoteIsNotASubtypeOf());
}
pieces.Add(Symbols::TypeQuote());
pieces.Add(String::Handle(zone, dst_type.UserVisibleName()));
pieces.Add(Symbols::SingleQuote());
if (exception_type == kCast) {
pieces.Add(dst_name);
} else if (dst_name.Length() > 0) {
pieces.Add(Symbols::SpaceOfSpace());
pieces.Add(Symbols::SingleQuote());
pieces.Add(dst_name);
pieces.Add(Symbols::SingleQuote());
}
// Print ambiguous URIs of src and dst types.
URIs uris(zone, 12);
if (!src_type.IsNull()) {
src_type.EnumerateURIs(&uris);
}
if (!dst_type.IsDynamicType() && !dst_type.IsVoidType()) {
dst_type.EnumerateURIs(&uris);
}
const String& formatted_uris =
String::Handle(zone, AbstractType::PrintURIs(&uris));
if (formatted_uris.Length() > 0) {
pieces.Add(Symbols::SpaceWhereNewLine());
pieces.Add(formatted_uris);
}
}
const Array& arr = Array::Handle(zone, Array::MakeFixedLength(pieces));
const String& error_msg = String::Handle(zone, String::ConcatAll(arr));
args.SetAt(3, error_msg);
// Type errors in the core library may be difficult to diagnose.
// Print type error information before throwing the error when debugging.
if (FLAG_print_stacktrace_at_throw) {
THR_Print("'%s': Failed type check: line %" Pd " pos %" Pd ": ",
String::Handle(zone, script.url()).ToCString(), line, column);
THR_Print("%s\n", error_msg.ToCString());
}
// Throw TypeError or CastError instance.
Exceptions::ThrowByType(exception_type, args);
UNREACHABLE();
}
void Exceptions::Throw(Thread* thread, const Instance& exception) {
// Null object is a valid exception object.
ThrowExceptionHelper(thread, exception, StackTrace::Handle(thread->zone()),
false);
}
void Exceptions::ReThrow(Thread* thread,
const Instance& exception,
const Instance& stacktrace) {
// Null object is a valid exception object.
ThrowExceptionHelper(thread, exception, stacktrace, true);
}
void Exceptions::PropagateError(const Error& error) {
ASSERT(!error.IsNull());
Thread* thread = Thread::Current();
DEBUG_ASSERT(thread->TopErrorHandlerIsExitFrame());
Zone* zone = thread->zone();
if (error.IsUnhandledException()) {
// If the error object represents an unhandled exception, then
// rethrow the exception in the normal fashion.
const UnhandledException& uhe = UnhandledException::Cast(error);
const Instance& exc = Instance::Handle(zone, uhe.exception());
const Instance& stk = Instance::Handle(zone, uhe.stacktrace());
Exceptions::ReThrow(thread, exc, stk);
} else {
// Return to the invocation stub and return this error object. The
// C++ code which invoked this dart sequence can check and do the
// appropriate thing.
uword handler_pc = 0;
uword handler_sp = 0;
uword handler_fp = 0;
FindErrorHandler(&handler_pc, &handler_sp, &handler_fp);
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp, error,
StackTrace::Handle(zone)); // Null stacktrace.
}
UNREACHABLE();
}
void Exceptions::PropagateToEntry(const Error& error) {
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
ASSERT(thread->top_exit_frame_info() != 0);
Instance& stacktrace = Instance::Handle(zone);
if (error.IsUnhandledException()) {
const UnhandledException& uhe = UnhandledException::Cast(error);
stacktrace = uhe.stacktrace();
} else {
stacktrace = Exceptions::CurrentStackTrace();
}
uword handler_pc = 0;
uword handler_sp = 0;
uword handler_fp = 0;
FindErrorHandler(&handler_pc, &handler_sp, &handler_fp);
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp, error,
stacktrace);
UNREACHABLE();
}
void Exceptions::ThrowByType(ExceptionType type, const Array& arguments) {
Thread* thread = Thread::Current();
const Object& result =
Object::Handle(thread->zone(), Create(type, arguments));
if (result.IsError()) {
// We got an error while constructing the exception object.
// Propagate the error instead of throwing the exception.
PropagateError(Error::Cast(result));
} else {
ASSERT(result.IsInstance());
Throw(thread, Instance::Cast(result));
}
}
void Exceptions::ThrowOOM() {
Thread* thread = Thread::Current();
Isolate* isolate = thread->isolate();
const Instance& oom = Instance::Handle(
thread->zone(), isolate->object_store()->out_of_memory());
Throw(thread, oom);
}
void Exceptions::ThrowStackOverflow() {
Thread* thread = Thread::Current();
Isolate* isolate = thread->isolate();
const Instance& stack_overflow = Instance::Handle(
thread->zone(), isolate->object_store()->stack_overflow());
Throw(thread, stack_overflow);
}
void Exceptions::ThrowArgumentError(const Instance& arg) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, arg);
Exceptions::ThrowByType(Exceptions::kArgument, args);
}
void Exceptions::ThrowRangeError(const char* argument_name,
const Integer& argument_value,
intptr_t expected_from,
intptr_t expected_to) {
const Array& args = Array::Handle(Array::New(4));
args.SetAt(0, argument_value);
args.SetAt(1, Integer::Handle(Integer::New(expected_from)));
args.SetAt(2, Integer::Handle(Integer::New(expected_to)));
args.SetAt(3, String::Handle(String::New(argument_name)));
Exceptions::ThrowByType(Exceptions::kRange, args);
}
void Exceptions::ThrowUnsupportedError(const char* msg) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, String::Handle(String::New(msg)));
Exceptions::ThrowByType(Exceptions::kUnsupported, args);
}
void Exceptions::ThrowRangeErrorMsg(const char* msg) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, String::Handle(String::New(msg)));
Exceptions::ThrowByType(Exceptions::kRangeMsg, args);
}
void Exceptions::ThrowCompileTimeError(const LanguageError& error) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, String::Handle(error.FormatMessage()));
Exceptions::ThrowByType(Exceptions::kCompileTimeError, args);
}
RawObject* Exceptions::Create(ExceptionType type, const Array& arguments) {
Library& library = Library::Handle();
const String* class_name = NULL;
const String* constructor_name = &Symbols::Dot();
switch (type) {
case kNone:
case kStackOverflow:
case kOutOfMemory:
UNREACHABLE();
break;
case kRange:
library = Library::CoreLibrary();
class_name = &Symbols::RangeError();
constructor_name = &Symbols::DotRange();
break;
case kRangeMsg:
library = Library::CoreLibrary();
class_name = &Symbols::RangeError();
constructor_name = &Symbols::Dot();
break;
case kArgument:
library = Library::CoreLibrary();
class_name = &Symbols::ArgumentError();
break;
case kArgumentValue:
library = Library::CoreLibrary();
class_name = &Symbols::ArgumentError();
constructor_name = &Symbols::DotValue();
break;
case kIntegerDivisionByZeroException:
library = Library::CoreLibrary();
class_name = &Symbols::IntegerDivisionByZeroException();
break;
case kNoSuchMethod:
library = Library::CoreLibrary();
class_name = &Symbols::NoSuchMethodError();
constructor_name = &Symbols::DotWithType();
break;
case kFormat:
library = Library::CoreLibrary();
class_name = &Symbols::FormatException();
break;
case kUnsupported:
library = Library::CoreLibrary();
class_name = &Symbols::UnsupportedError();
break;
case kNullThrown:
library = Library::CoreLibrary();
class_name = &Symbols::NullThrownError();
break;
case kIsolateSpawn:
library = Library::IsolateLibrary();
class_name = &Symbols::IsolateSpawnException();
break;
case kAssertion:
library = Library::CoreLibrary();
class_name = &Symbols::AssertionError();
constructor_name = &Symbols::DotCreate();
break;
case kCast:
library = Library::CoreLibrary();
class_name = &Symbols::CastError();
constructor_name = &Symbols::DotCreate();
break;
case kType:
library = Library::CoreLibrary();
class_name = &Symbols::TypeError();
constructor_name = &Symbols::DotCreate();
break;
case kFallThrough:
library = Library::CoreLibrary();
class_name = &Symbols::FallThroughError();
constructor_name = &Symbols::DotCreate();
break;
case kAbstractClassInstantiation:
library = Library::CoreLibrary();
class_name = &Symbols::AbstractClassInstantiationError();
constructor_name = &Symbols::DotCreate();
break;
case kCyclicInitializationError:
library = Library::CoreLibrary();
class_name = &Symbols::CyclicInitializationError();
break;
case kCompileTimeError:
library = Library::CoreLibrary();
class_name = &Symbols::_CompileTimeError();
break;
}
Thread* thread = Thread::Current();
NoReloadScope no_reload_scope(thread->isolate(), thread);
return DartLibraryCalls::InstanceCreate(library, *class_name,
*constructor_name, arguments);
}
} // namespace dart