mirror of
https://github.com/dart-lang/sdk
synced 2024-11-02 12:20:38 +00:00
8a179fb953
New folder structure (nested under vm/): - compiler/ - jit/ - JIT specific code - aot/ - AOT specific code - backend/ - all middle-end and back-end code (IL, flow graph) - assembler/ - assemblers and disassemblers - frontend/ - front ends (AST -> IL, Kernel -> IL) compiler/README.md would be the documentation root for the compiler pipeline Bug: https://github.com/dart-lang/sdk/issues/30575 Change-Id: I2dfd9688793bff737f7632ddc77fca766875ce36 Reviewed-on: https://dart-review.googlesource.com/2940 Reviewed-by: Vyacheslav Egorov <vegorov@google.com> Commit-Queue: Vyacheslav Egorov <vegorov@google.com>
1390 lines
52 KiB
C++
1390 lines
52 KiB
C++
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
|
// for details. All rights reserved. Use of this source code is governed by a
|
|
// BSD-style license that can be found in the LICENSE file.
|
|
|
|
#ifndef RUNTIME_VM_REGEXP_H_
|
|
#define RUNTIME_VM_REGEXP_H_
|
|
|
|
#include "vm/compiler/assembler/assembler.h"
|
|
#include "vm/compiler/backend/flow_graph_compiler.h"
|
|
#include "vm/compiler/backend/il.h"
|
|
#include "vm/object.h"
|
|
#include "vm/regexp_assembler.h"
|
|
|
|
namespace dart {
|
|
|
|
class NodeVisitor;
|
|
class RegExpCompiler;
|
|
class RegExpMacroAssembler;
|
|
class RegExpNode;
|
|
class RegExpTree;
|
|
class BoyerMooreLookahead;
|
|
|
|
// Represents code units in the range from from_ to to_, both ends are
|
|
// inclusive.
|
|
class CharacterRange {
|
|
public:
|
|
CharacterRange() : from_(0), to_(0) {}
|
|
CharacterRange(uint16_t from, uint16_t to) : from_(from), to_(to) {}
|
|
|
|
static void AddClassEscape(uint16_t type,
|
|
ZoneGrowableArray<CharacterRange>* ranges);
|
|
static GrowableArray<const intptr_t> GetWordBounds();
|
|
static inline CharacterRange Singleton(uint16_t value) {
|
|
return CharacterRange(value, value);
|
|
}
|
|
static inline CharacterRange Range(uint16_t from, uint16_t to) {
|
|
ASSERT(from <= to);
|
|
return CharacterRange(from, to);
|
|
}
|
|
static inline CharacterRange Everything() {
|
|
return CharacterRange(0, 0xFFFF);
|
|
}
|
|
bool Contains(uint16_t i) const { return from_ <= i && i <= to_; }
|
|
uint16_t from() const { return from_; }
|
|
void set_from(uint16_t value) { from_ = value; }
|
|
uint16_t to() const { return to_; }
|
|
void set_to(uint16_t value) { to_ = value; }
|
|
bool is_valid() const { return from_ <= to_; }
|
|
bool IsEverything(uint16_t max) const { return from_ == 0 && to_ >= max; }
|
|
bool IsSingleton() const { return (from_ == to_); }
|
|
void AddCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges,
|
|
bool is_one_byte,
|
|
Zone* zone);
|
|
static void Split(ZoneGrowableArray<CharacterRange>* base,
|
|
GrowableArray<const intptr_t> overlay,
|
|
ZoneGrowableArray<CharacterRange>** included,
|
|
ZoneGrowableArray<CharacterRange>** excluded,
|
|
Zone* zone);
|
|
// Whether a range list is in canonical form: Ranges ordered by from value,
|
|
// and ranges non-overlapping and non-adjacent.
|
|
static bool IsCanonical(ZoneGrowableArray<CharacterRange>* ranges);
|
|
// Convert range list to canonical form. The characters covered by the ranges
|
|
// will still be the same, but no character is in more than one range, and
|
|
// adjacent ranges are merged. The resulting list may be shorter than the
|
|
// original, but cannot be longer.
|
|
static void Canonicalize(ZoneGrowableArray<CharacterRange>* ranges);
|
|
// Negate the contents of a character range in canonical form.
|
|
static void Negate(ZoneGrowableArray<CharacterRange>* src,
|
|
ZoneGrowableArray<CharacterRange>* dst);
|
|
static const intptr_t kStartMarker = (1 << 24);
|
|
static const intptr_t kPayloadMask = (1 << 24) - 1;
|
|
|
|
private:
|
|
uint16_t from_;
|
|
uint16_t to_;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
// A set of unsigned integers that behaves especially well on small
|
|
// integers (< 32). May do zone-allocation.
|
|
class OutSet : public ZoneAllocated {
|
|
public:
|
|
OutSet() : first_(0), remaining_(NULL), successors_(NULL) {}
|
|
OutSet* Extend(unsigned value, Zone* zone);
|
|
bool Get(unsigned value) const;
|
|
static const unsigned kFirstLimit = 32;
|
|
|
|
private:
|
|
// Destructively set a value in this set. In most cases you want
|
|
// to use Extend instead to ensure that only one instance exists
|
|
// that contains the same values.
|
|
void Set(unsigned value, Zone* zone);
|
|
|
|
// The successors are a list of sets that contain the same values
|
|
// as this set and the one more value that is not present in this
|
|
// set.
|
|
ZoneGrowableArray<OutSet*>* successors() { return successors_; }
|
|
|
|
OutSet(uint32_t first, ZoneGrowableArray<unsigned>* remaining)
|
|
: first_(first), remaining_(remaining), successors_(NULL) {}
|
|
uint32_t first_;
|
|
ZoneGrowableArray<unsigned>* remaining_;
|
|
ZoneGrowableArray<OutSet*>* successors_;
|
|
friend class Trace;
|
|
};
|
|
|
|
#define FOR_EACH_NODE_TYPE(VISIT) \
|
|
VISIT(End) \
|
|
VISIT(Action) \
|
|
VISIT(Choice) \
|
|
VISIT(BackReference) \
|
|
VISIT(Assertion) \
|
|
VISIT(Text)
|
|
|
|
#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
|
|
VISIT(Disjunction) \
|
|
VISIT(Alternative) \
|
|
VISIT(Assertion) \
|
|
VISIT(CharacterClass) \
|
|
VISIT(Atom) \
|
|
VISIT(Quantifier) \
|
|
VISIT(Capture) \
|
|
VISIT(Lookahead) \
|
|
VISIT(BackReference) \
|
|
VISIT(Empty) \
|
|
VISIT(Text)
|
|
|
|
#define FORWARD_DECLARE(Name) class RegExp##Name;
|
|
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
|
|
#undef FORWARD_DECLARE
|
|
|
|
class TextElement {
|
|
public:
|
|
enum TextType { ATOM, CHAR_CLASS };
|
|
|
|
static TextElement Atom(RegExpAtom* atom);
|
|
static TextElement CharClass(RegExpCharacterClass* char_class);
|
|
|
|
intptr_t cp_offset() const { return cp_offset_; }
|
|
void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
|
|
intptr_t length() const;
|
|
|
|
TextType text_type() const { return text_type_; }
|
|
|
|
RegExpTree* tree() const { return tree_; }
|
|
|
|
RegExpAtom* atom() const {
|
|
ASSERT(text_type() == ATOM);
|
|
return reinterpret_cast<RegExpAtom*>(tree());
|
|
}
|
|
|
|
RegExpCharacterClass* char_class() const {
|
|
ASSERT(text_type() == CHAR_CLASS);
|
|
return reinterpret_cast<RegExpCharacterClass*>(tree());
|
|
}
|
|
|
|
private:
|
|
TextElement(TextType text_type, RegExpTree* tree)
|
|
: cp_offset_(-1), text_type_(text_type), tree_(tree) {}
|
|
|
|
intptr_t cp_offset_;
|
|
TextType text_type_;
|
|
RegExpTree* tree_;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
class Trace;
|
|
struct PreloadState;
|
|
class GreedyLoopState;
|
|
class AlternativeGenerationList;
|
|
|
|
struct NodeInfo {
|
|
NodeInfo()
|
|
: being_analyzed(false),
|
|
been_analyzed(false),
|
|
follows_word_interest(false),
|
|
follows_newline_interest(false),
|
|
follows_start_interest(false),
|
|
at_end(false),
|
|
visited(false),
|
|
replacement_calculated(false) {}
|
|
|
|
// Returns true if the interests and assumptions of this node
|
|
// matches the given one.
|
|
bool Matches(NodeInfo* that) {
|
|
return (at_end == that->at_end) &&
|
|
(follows_word_interest == that->follows_word_interest) &&
|
|
(follows_newline_interest == that->follows_newline_interest) &&
|
|
(follows_start_interest == that->follows_start_interest);
|
|
}
|
|
|
|
// Updates the interests of this node given the interests of the
|
|
// node preceding it.
|
|
void AddFromPreceding(NodeInfo* that) {
|
|
at_end |= that->at_end;
|
|
follows_word_interest |= that->follows_word_interest;
|
|
follows_newline_interest |= that->follows_newline_interest;
|
|
follows_start_interest |= that->follows_start_interest;
|
|
}
|
|
|
|
bool HasLookbehind() {
|
|
return follows_word_interest || follows_newline_interest ||
|
|
follows_start_interest;
|
|
}
|
|
|
|
// Sets the interests of this node to include the interests of the
|
|
// following node.
|
|
void AddFromFollowing(NodeInfo* that) {
|
|
follows_word_interest |= that->follows_word_interest;
|
|
follows_newline_interest |= that->follows_newline_interest;
|
|
follows_start_interest |= that->follows_start_interest;
|
|
}
|
|
|
|
void ResetCompilationState() {
|
|
being_analyzed = false;
|
|
been_analyzed = false;
|
|
}
|
|
|
|
bool being_analyzed : 1;
|
|
bool been_analyzed : 1;
|
|
|
|
// These bits are set of this node has to know what the preceding
|
|
// character was.
|
|
bool follows_word_interest : 1;
|
|
bool follows_newline_interest : 1;
|
|
bool follows_start_interest : 1;
|
|
|
|
bool at_end : 1;
|
|
bool visited : 1;
|
|
bool replacement_calculated : 1;
|
|
};
|
|
|
|
// Details of a quick mask-compare check that can look ahead in the
|
|
// input stream.
|
|
class QuickCheckDetails {
|
|
public:
|
|
QuickCheckDetails()
|
|
: characters_(0), mask_(0), value_(0), cannot_match_(false) {}
|
|
explicit QuickCheckDetails(intptr_t characters)
|
|
: characters_(characters), mask_(0), value_(0), cannot_match_(false) {}
|
|
bool Rationalize(bool one_byte);
|
|
// Merge in the information from another branch of an alternation.
|
|
void Merge(QuickCheckDetails* other, intptr_t from_index);
|
|
// Advance the current position by some amount.
|
|
void Advance(intptr_t by, bool one_byte);
|
|
void Clear();
|
|
bool cannot_match() { return cannot_match_; }
|
|
void set_cannot_match() { cannot_match_ = true; }
|
|
struct Position {
|
|
Position() : mask(0), value(0), determines_perfectly(false) {}
|
|
uint16_t mask;
|
|
uint16_t value;
|
|
bool determines_perfectly;
|
|
};
|
|
intptr_t characters() { return characters_; }
|
|
void set_characters(intptr_t characters) { characters_ = characters; }
|
|
Position* positions(intptr_t index) {
|
|
ASSERT(index >= 0);
|
|
ASSERT(index < characters_);
|
|
return positions_ + index;
|
|
}
|
|
uint32_t mask() { return mask_; }
|
|
uint32_t value() { return value_; }
|
|
|
|
private:
|
|
// How many characters do we have quick check information from. This is
|
|
// the same for all branches of a choice node.
|
|
intptr_t characters_;
|
|
Position positions_[4];
|
|
// These values are the condensate of the above array after Rationalize().
|
|
uint32_t mask_;
|
|
uint32_t value_;
|
|
// If set to true, there is no way this quick check can match at all.
|
|
// E.g., if it requires to be at the start of the input, and isn't.
|
|
bool cannot_match_;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
class RegExpNode : public ZoneAllocated {
|
|
public:
|
|
explicit RegExpNode(Zone* zone)
|
|
: replacement_(NULL), trace_count_(0), zone_(zone) {
|
|
bm_info_[0] = bm_info_[1] = NULL;
|
|
}
|
|
virtual ~RegExpNode();
|
|
virtual void Accept(NodeVisitor* visitor) = 0;
|
|
// Generates a goto to this node or actually generates the code at this point.
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
|
|
// How many characters must this node consume at a minimum in order to
|
|
// succeed. If we have found at least 'still_to_find' characters that
|
|
// must be consumed there is no need to ask any following nodes whether
|
|
// they are sure to eat any more characters. The not_at_start argument is
|
|
// used to indicate that we know we are not at the start of the input. In
|
|
// this case anchored branches will always fail and can be ignored when
|
|
// determining how many characters are consumed on success.
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start) = 0;
|
|
// Emits some quick code that checks whether the preloaded characters match.
|
|
// Falls through on certain failure, jumps to the label on possible success.
|
|
// If the node cannot make a quick check it does nothing and returns false.
|
|
bool EmitQuickCheck(RegExpCompiler* compiler,
|
|
Trace* bounds_check_trace,
|
|
Trace* trace,
|
|
bool preload_has_checked_bounds,
|
|
BlockLabel* on_possible_success,
|
|
QuickCheckDetails* details_return,
|
|
bool fall_through_on_failure);
|
|
// For a given number of characters this returns a mask and a value. The
|
|
// next n characters are anded with the mask and compared with the value.
|
|
// A comparison failure indicates the node cannot match the next n characters.
|
|
// A comparison success indicates the node may match.
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start) = 0;
|
|
static const intptr_t kNodeIsTooComplexForGreedyLoops = -1;
|
|
virtual intptr_t GreedyLoopTextLength() {
|
|
return kNodeIsTooComplexForGreedyLoops;
|
|
}
|
|
// Only returns the successor for a text node of length 1 that matches any
|
|
// character and that has no guards on it.
|
|
virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
|
|
RegExpCompiler* compiler) {
|
|
return NULL;
|
|
}
|
|
|
|
// Collects information on the possible code units (mod 128) that can match if
|
|
// we look forward. This is used for a Boyer-Moore-like string searching
|
|
// implementation. TODO(erikcorry): This should share more code with
|
|
// EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
|
|
// the number of nodes we are willing to look at in order to create this data.
|
|
static const intptr_t kRecursionBudget = 200;
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// If we know that the input is one-byte then there are some nodes that can
|
|
// never match. This method returns a node that can be substituted for
|
|
// itself, or NULL if the node can never match.
|
|
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case) {
|
|
return this;
|
|
}
|
|
// Helper for FilterOneByte.
|
|
RegExpNode* replacement() {
|
|
ASSERT(info()->replacement_calculated);
|
|
return replacement_;
|
|
}
|
|
RegExpNode* set_replacement(RegExpNode* replacement) {
|
|
info()->replacement_calculated = true;
|
|
replacement_ = replacement;
|
|
return replacement; // For convenience.
|
|
}
|
|
|
|
// We want to avoid recalculating the lookahead info, so we store it on the
|
|
// node. Only info that is for this node is stored. We can tell that the
|
|
// info is for this node when offset == 0, so the information is calculated
|
|
// relative to this node.
|
|
void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, intptr_t offset) {
|
|
if (offset == 0) set_bm_info(not_at_start, bm);
|
|
}
|
|
|
|
BlockLabel* label() { return &label_; }
|
|
// If non-generic code is generated for a node (i.e. the node is not at the
|
|
// start of the trace) then it cannot be reused. This variable sets a limit
|
|
// on how often we allow that to happen before we insist on starting a new
|
|
// trace and generating generic code for a node that can be reused by flushing
|
|
// the deferred actions in the current trace and generating a goto.
|
|
static const intptr_t kMaxCopiesCodeGenerated = 10;
|
|
|
|
NodeInfo* info() { return &info_; }
|
|
|
|
BoyerMooreLookahead* bm_info(bool not_at_start) {
|
|
return bm_info_[not_at_start ? 1 : 0];
|
|
}
|
|
|
|
Zone* zone() const { return zone_; }
|
|
|
|
protected:
|
|
enum LimitResult { DONE, CONTINUE };
|
|
RegExpNode* replacement_;
|
|
|
|
LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
|
|
|
|
void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
|
|
bm_info_[not_at_start ? 1 : 0] = bm;
|
|
}
|
|
|
|
private:
|
|
static const intptr_t kFirstCharBudget = 10;
|
|
BlockLabel label_;
|
|
NodeInfo info_;
|
|
// This variable keeps track of how many times code has been generated for
|
|
// this node (in different traces). We don't keep track of where the
|
|
// generated code is located unless the code is generated at the start of
|
|
// a trace, in which case it is generic and can be reused by flushing the
|
|
// deferred operations in the current trace and generating a goto.
|
|
intptr_t trace_count_;
|
|
BoyerMooreLookahead* bm_info_[2];
|
|
Zone* zone_;
|
|
};
|
|
|
|
// A simple closed interval.
|
|
class Interval {
|
|
public:
|
|
Interval() : from_(kNone), to_(kNone) {}
|
|
Interval(intptr_t from, intptr_t to) : from_(from), to_(to) {}
|
|
|
|
Interval Union(Interval that) {
|
|
if (that.from_ == kNone)
|
|
return *this;
|
|
else if (from_ == kNone)
|
|
return that;
|
|
else
|
|
return Interval(Utils::Minimum(from_, that.from_),
|
|
Utils::Maximum(to_, that.to_));
|
|
}
|
|
bool Contains(intptr_t value) const {
|
|
return (from_ <= value) && (value <= to_);
|
|
}
|
|
bool is_empty() const { return from_ == kNone; }
|
|
intptr_t from() const { return from_; }
|
|
intptr_t to() const { return to_; }
|
|
static Interval Empty() { return Interval(); }
|
|
static const intptr_t kNone = -1;
|
|
|
|
private:
|
|
intptr_t from_;
|
|
intptr_t to_;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
class SeqRegExpNode : public RegExpNode {
|
|
public:
|
|
explicit SeqRegExpNode(RegExpNode* on_success)
|
|
: RegExpNode(on_success->zone()), on_success_(on_success) {}
|
|
RegExpNode* on_success() { return on_success_; }
|
|
void set_on_success(RegExpNode* node) { on_success_ = node; }
|
|
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start) {
|
|
on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
|
|
if (offset == 0) set_bm_info(not_at_start, bm);
|
|
}
|
|
|
|
protected:
|
|
RegExpNode* FilterSuccessor(intptr_t depth, bool ignore_case);
|
|
|
|
private:
|
|
RegExpNode* on_success_;
|
|
};
|
|
|
|
class ActionNode : public SeqRegExpNode {
|
|
public:
|
|
enum ActionType {
|
|
SET_REGISTER,
|
|
INCREMENT_REGISTER,
|
|
STORE_POSITION,
|
|
BEGIN_SUBMATCH,
|
|
POSITIVE_SUBMATCH_SUCCESS,
|
|
EMPTY_MATCH_CHECK,
|
|
CLEAR_CAPTURES
|
|
};
|
|
static ActionNode* SetRegister(intptr_t reg,
|
|
intptr_t val,
|
|
RegExpNode* on_success);
|
|
static ActionNode* IncrementRegister(intptr_t reg, RegExpNode* on_success);
|
|
static ActionNode* StorePosition(intptr_t reg,
|
|
bool is_capture,
|
|
RegExpNode* on_success);
|
|
static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
|
|
static ActionNode* BeginSubmatch(intptr_t stack_pointer_reg,
|
|
intptr_t position_reg,
|
|
RegExpNode* on_success);
|
|
static ActionNode* PositiveSubmatchSuccess(intptr_t stack_pointer_reg,
|
|
intptr_t restore_reg,
|
|
intptr_t clear_capture_count,
|
|
intptr_t clear_capture_from,
|
|
RegExpNode* on_success);
|
|
static ActionNode* EmptyMatchCheck(intptr_t start_register,
|
|
intptr_t repetition_register,
|
|
intptr_t repetition_limit,
|
|
RegExpNode* on_success);
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t filled_in,
|
|
bool not_at_start) {
|
|
return on_success()->GetQuickCheckDetails(details, compiler, filled_in,
|
|
not_at_start);
|
|
}
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start);
|
|
ActionType action_type() { return action_type_; }
|
|
// TODO(erikcorry): We should allow some action nodes in greedy loops.
|
|
virtual intptr_t GreedyLoopTextLength() {
|
|
return kNodeIsTooComplexForGreedyLoops;
|
|
}
|
|
|
|
private:
|
|
union {
|
|
struct {
|
|
intptr_t reg;
|
|
intptr_t value;
|
|
} u_store_register;
|
|
struct {
|
|
intptr_t reg;
|
|
} u_increment_register;
|
|
struct {
|
|
intptr_t reg;
|
|
bool is_capture;
|
|
} u_position_register;
|
|
struct {
|
|
intptr_t stack_pointer_register;
|
|
intptr_t current_position_register;
|
|
intptr_t clear_register_count;
|
|
intptr_t clear_register_from;
|
|
} u_submatch;
|
|
struct {
|
|
intptr_t start_register;
|
|
intptr_t repetition_register;
|
|
intptr_t repetition_limit;
|
|
} u_empty_match_check;
|
|
struct {
|
|
intptr_t range_from;
|
|
intptr_t range_to;
|
|
} u_clear_captures;
|
|
} data_;
|
|
ActionNode(ActionType action_type, RegExpNode* on_success)
|
|
: SeqRegExpNode(on_success), action_type_(action_type) {}
|
|
ActionType action_type_;
|
|
friend class DotPrinter;
|
|
};
|
|
|
|
class TextNode : public SeqRegExpNode {
|
|
public:
|
|
TextNode(ZoneGrowableArray<TextElement>* elms, RegExpNode* on_success)
|
|
: SeqRegExpNode(on_success), elms_(elms) {}
|
|
TextNode(RegExpCharacterClass* that, RegExpNode* on_success)
|
|
: SeqRegExpNode(on_success),
|
|
elms_(new (zone()) ZoneGrowableArray<TextElement>(1)) {
|
|
elms_->Add(TextElement::CharClass(that));
|
|
}
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start);
|
|
ZoneGrowableArray<TextElement>* elements() { return elms_; }
|
|
void MakeCaseIndependent(bool is_one_byte);
|
|
virtual intptr_t GreedyLoopTextLength();
|
|
virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
|
|
RegExpCompiler* compiler);
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start);
|
|
void CalculateOffsets();
|
|
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
|
|
|
|
private:
|
|
enum TextEmitPassType {
|
|
NON_LATIN1_MATCH, // Check for characters that can't match.
|
|
SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
|
|
NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
|
|
CASE_CHARACTER_MATCH, // Case-independent single character check.
|
|
CHARACTER_CLASS_MATCH // Character class.
|
|
};
|
|
static bool SkipPass(intptr_t pass, bool ignore_case);
|
|
static const intptr_t kFirstRealPass = SIMPLE_CHARACTER_MATCH;
|
|
static const intptr_t kLastPass = CHARACTER_CLASS_MATCH;
|
|
void TextEmitPass(RegExpCompiler* compiler,
|
|
TextEmitPassType pass,
|
|
bool preloaded,
|
|
Trace* trace,
|
|
bool first_element_checked,
|
|
intptr_t* checked_up_to);
|
|
intptr_t Length();
|
|
ZoneGrowableArray<TextElement>* elms_;
|
|
};
|
|
|
|
class AssertionNode : public SeqRegExpNode {
|
|
public:
|
|
enum AssertionType {
|
|
AT_END,
|
|
AT_START,
|
|
AT_BOUNDARY,
|
|
AT_NON_BOUNDARY,
|
|
AFTER_NEWLINE
|
|
};
|
|
static AssertionNode* AtEnd(RegExpNode* on_success) {
|
|
return new (on_success->zone()) AssertionNode(AT_END, on_success);
|
|
}
|
|
static AssertionNode* AtStart(RegExpNode* on_success) {
|
|
return new (on_success->zone()) AssertionNode(AT_START, on_success);
|
|
}
|
|
static AssertionNode* AtBoundary(RegExpNode* on_success) {
|
|
return new (on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
|
|
}
|
|
static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
|
|
return new (on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
|
|
}
|
|
static AssertionNode* AfterNewline(RegExpNode* on_success) {
|
|
return new (on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
|
|
}
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t filled_in,
|
|
bool not_at_start);
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start);
|
|
AssertionType assertion_type() { return assertion_type_; }
|
|
|
|
private:
|
|
void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
|
|
enum IfPrevious { kIsNonWord, kIsWord };
|
|
void BacktrackIfPrevious(RegExpCompiler* compiler,
|
|
Trace* trace,
|
|
IfPrevious backtrack_if_previous);
|
|
AssertionNode(AssertionType t, RegExpNode* on_success)
|
|
: SeqRegExpNode(on_success), assertion_type_(t) {}
|
|
AssertionType assertion_type_;
|
|
};
|
|
|
|
class BackReferenceNode : public SeqRegExpNode {
|
|
public:
|
|
BackReferenceNode(intptr_t start_reg,
|
|
intptr_t end_reg,
|
|
RegExpNode* on_success)
|
|
: SeqRegExpNode(on_success), start_reg_(start_reg), end_reg_(end_reg) {}
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
intptr_t start_register() { return start_reg_; }
|
|
intptr_t end_register() { return end_reg_; }
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t recursion_depth,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start) {
|
|
return;
|
|
}
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start);
|
|
|
|
private:
|
|
intptr_t start_reg_;
|
|
intptr_t end_reg_;
|
|
};
|
|
|
|
class EndNode : public RegExpNode {
|
|
public:
|
|
enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
|
|
explicit EndNode(Action action, Zone* zone)
|
|
: RegExpNode(zone), action_(action) {}
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t recursion_depth,
|
|
bool not_at_start) {
|
|
return 0;
|
|
}
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start) {
|
|
// Returning 0 from EatsAtLeast should ensure we never get here.
|
|
UNREACHABLE();
|
|
}
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start) {
|
|
// Returning 0 from EatsAtLeast should ensure we never get here.
|
|
UNREACHABLE();
|
|
}
|
|
|
|
private:
|
|
Action action_;
|
|
};
|
|
|
|
class NegativeSubmatchSuccess : public EndNode {
|
|
public:
|
|
NegativeSubmatchSuccess(intptr_t stack_pointer_reg,
|
|
intptr_t position_reg,
|
|
intptr_t clear_capture_count,
|
|
intptr_t clear_capture_start,
|
|
Zone* zone)
|
|
: EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
|
|
stack_pointer_register_(stack_pointer_reg),
|
|
current_position_register_(position_reg),
|
|
clear_capture_count_(clear_capture_count),
|
|
clear_capture_start_(clear_capture_start) {}
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
|
|
private:
|
|
intptr_t stack_pointer_register_;
|
|
intptr_t current_position_register_;
|
|
intptr_t clear_capture_count_;
|
|
intptr_t clear_capture_start_;
|
|
};
|
|
|
|
class Guard : public ZoneAllocated {
|
|
public:
|
|
enum Relation { LT, GEQ };
|
|
Guard(intptr_t reg, Relation op, intptr_t value)
|
|
: reg_(reg), op_(op), value_(value) {}
|
|
intptr_t reg() { return reg_; }
|
|
Relation op() { return op_; }
|
|
intptr_t value() { return value_; }
|
|
|
|
private:
|
|
intptr_t reg_;
|
|
Relation op_;
|
|
intptr_t value_;
|
|
};
|
|
|
|
class GuardedAlternative {
|
|
public:
|
|
explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) {}
|
|
void AddGuard(Guard* guard, Zone* zone);
|
|
RegExpNode* node() { return node_; }
|
|
void set_node(RegExpNode* node) { node_ = node; }
|
|
ZoneGrowableArray<Guard*>* guards() { return guards_; }
|
|
|
|
private:
|
|
RegExpNode* node_;
|
|
ZoneGrowableArray<Guard*>* guards_;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
struct AlternativeGeneration;
|
|
|
|
class ChoiceNode : public RegExpNode {
|
|
public:
|
|
explicit ChoiceNode(intptr_t expected_size, Zone* zone)
|
|
: RegExpNode(zone),
|
|
alternatives_(new (zone)
|
|
ZoneGrowableArray<GuardedAlternative>(expected_size)),
|
|
not_at_start_(false),
|
|
being_calculated_(false) {}
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
|
|
ZoneGrowableArray<GuardedAlternative>* alternatives() {
|
|
return alternatives_;
|
|
}
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start);
|
|
intptr_t EatsAtLeastHelper(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
RegExpNode* ignore_this_node,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start);
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start);
|
|
|
|
bool being_calculated() { return being_calculated_; }
|
|
bool not_at_start() { return not_at_start_; }
|
|
void set_not_at_start() { not_at_start_ = true; }
|
|
void set_being_calculated(bool b) { being_calculated_ = b; }
|
|
virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
|
|
return true;
|
|
}
|
|
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
|
|
|
|
protected:
|
|
intptr_t GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
|
|
ZoneGrowableArray<GuardedAlternative>* alternatives_;
|
|
|
|
private:
|
|
friend class Analysis;
|
|
void GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
|
Guard* guard,
|
|
Trace* trace);
|
|
intptr_t CalculatePreloadCharacters(RegExpCompiler* compiler,
|
|
intptr_t eats_at_least);
|
|
void EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
|
Trace* trace,
|
|
GuardedAlternative alternative,
|
|
AlternativeGeneration* alt_gen,
|
|
intptr_t preload_characters,
|
|
bool next_expects_preload);
|
|
void SetUpPreLoad(RegExpCompiler* compiler,
|
|
Trace* current_trace,
|
|
PreloadState* preloads);
|
|
void AssertGuardsMentionRegisters(Trace* trace);
|
|
intptr_t EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
|
Trace* trace);
|
|
Trace* EmitGreedyLoop(RegExpCompiler* compiler,
|
|
Trace* trace,
|
|
AlternativeGenerationList* alt_gens,
|
|
PreloadState* preloads,
|
|
GreedyLoopState* greedy_loop_state,
|
|
intptr_t text_length);
|
|
void EmitChoices(RegExpCompiler* compiler,
|
|
AlternativeGenerationList* alt_gens,
|
|
intptr_t first_choice,
|
|
Trace* trace,
|
|
PreloadState* preloads);
|
|
// If true, this node is never checked at the start of the input.
|
|
// Allows a new trace to start with at_start() set to false.
|
|
bool not_at_start_;
|
|
bool being_calculated_;
|
|
};
|
|
|
|
class NegativeLookaheadChoiceNode : public ChoiceNode {
|
|
public:
|
|
explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
|
|
GuardedAlternative then_do_this,
|
|
Zone* zone)
|
|
: ChoiceNode(2, zone) {
|
|
AddAlternative(this_must_fail);
|
|
AddAlternative(then_do_this);
|
|
}
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start);
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start) {
|
|
(*alternatives_)[1].node()->FillInBMInfo(offset, budget - 1, bm,
|
|
not_at_start);
|
|
if (offset == 0) set_bm_info(not_at_start, bm);
|
|
}
|
|
// For a negative lookahead we don't emit the quick check for the
|
|
// alternative that is expected to fail. This is because quick check code
|
|
// starts by loading enough characters for the alternative that takes fewest
|
|
// characters, but on a negative lookahead the negative branch did not take
|
|
// part in that calculation (EatsAtLeast) so the assumptions don't hold.
|
|
virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
|
|
return !is_first;
|
|
}
|
|
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
|
|
};
|
|
|
|
class LoopChoiceNode : public ChoiceNode {
|
|
public:
|
|
explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
|
|
: ChoiceNode(2, zone),
|
|
loop_node_(NULL),
|
|
continue_node_(NULL),
|
|
body_can_be_zero_length_(body_can_be_zero_length) {}
|
|
void AddLoopAlternative(GuardedAlternative alt);
|
|
void AddContinueAlternative(GuardedAlternative alt);
|
|
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
|
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
|
|
intptr_t budget,
|
|
bool not_at_start);
|
|
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
|
RegExpCompiler* compiler,
|
|
intptr_t characters_filled_in,
|
|
bool not_at_start);
|
|
virtual void FillInBMInfo(intptr_t offset,
|
|
intptr_t budget,
|
|
BoyerMooreLookahead* bm,
|
|
bool not_at_start);
|
|
RegExpNode* loop_node() { return loop_node_; }
|
|
RegExpNode* continue_node() { return continue_node_; }
|
|
bool body_can_be_zero_length() { return body_can_be_zero_length_; }
|
|
virtual void Accept(NodeVisitor* visitor);
|
|
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
|
|
|
|
private:
|
|
// AddAlternative is made private for loop nodes because alternatives
|
|
// should not be added freely, we need to keep track of which node
|
|
// goes back to the node itself.
|
|
void AddAlternative(GuardedAlternative node) {
|
|
ChoiceNode::AddAlternative(node);
|
|
}
|
|
|
|
RegExpNode* loop_node_;
|
|
RegExpNode* continue_node_;
|
|
bool body_can_be_zero_length_;
|
|
};
|
|
|
|
// Improve the speed that we scan for an initial point where a non-anchored
|
|
// regexp can match by using a Boyer-Moore-like table. This is done by
|
|
// identifying non-greedy non-capturing loops in the nodes that eat any
|
|
// character one at a time. For example in the middle of the regexp
|
|
// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
|
|
// inserted at the start of any non-anchored regexp.
|
|
//
|
|
// When we have found such a loop we look ahead in the nodes to find the set of
|
|
// characters that can come at given distances. For example for the regexp
|
|
// /.?foo/ we know that there are at least 3 characters ahead of us, and the
|
|
// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
|
|
// the lookahead info where the set of characters is reasonably constrained. In
|
|
// our example this is from index 1 to 2 (0 is not constrained). We can now
|
|
// look 3 characters ahead and if we don't find one of [f, o] (the union of
|
|
// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
|
|
//
|
|
// For Unicode input strings we do the same, but modulo 128.
|
|
//
|
|
// We also look at the first string fed to the regexp and use that to get a hint
|
|
// of the character frequencies in the inputs. This affects the assessment of
|
|
// whether the set of characters is 'reasonably constrained'.
|
|
//
|
|
// We also have another lookahead mechanism (called quick check in the code),
|
|
// which uses a wide load of multiple characters followed by a mask and compare
|
|
// to determine whether a match is possible at this point.
|
|
enum ContainedInLattice {
|
|
kNotYet = 0,
|
|
kLatticeIn = 1,
|
|
kLatticeOut = 2,
|
|
kLatticeUnknown = 3 // Can also mean both in and out.
|
|
};
|
|
|
|
inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
|
|
return static_cast<ContainedInLattice>(a | b);
|
|
}
|
|
|
|
ContainedInLattice AddRange(ContainedInLattice a,
|
|
const intptr_t* ranges,
|
|
intptr_t ranges_size,
|
|
Interval new_range);
|
|
|
|
class BoyerMoorePositionInfo : public ZoneAllocated {
|
|
public:
|
|
explicit BoyerMoorePositionInfo(Zone* zone)
|
|
: map_(new (zone) ZoneGrowableArray<bool>(kMapSize)),
|
|
map_count_(0),
|
|
w_(kNotYet),
|
|
s_(kNotYet),
|
|
d_(kNotYet),
|
|
surrogate_(kNotYet) {
|
|
for (intptr_t i = 0; i < kMapSize; i++) {
|
|
map_->Add(false);
|
|
}
|
|
}
|
|
|
|
bool& at(intptr_t i) { return (*map_)[i]; }
|
|
|
|
static const intptr_t kMapSize = 128;
|
|
static const intptr_t kMask = kMapSize - 1;
|
|
|
|
intptr_t map_count() const { return map_count_; }
|
|
|
|
void Set(intptr_t character);
|
|
void SetInterval(const Interval& interval);
|
|
void SetAll();
|
|
bool is_non_word() { return w_ == kLatticeOut; }
|
|
bool is_word() { return w_ == kLatticeIn; }
|
|
|
|
private:
|
|
ZoneGrowableArray<bool>* map_;
|
|
intptr_t map_count_; // Number of set bits in the map.
|
|
ContainedInLattice w_; // The \w character class.
|
|
ContainedInLattice s_; // The \s character class.
|
|
ContainedInLattice d_; // The \d character class.
|
|
ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
|
|
};
|
|
|
|
class BoyerMooreLookahead : public ZoneAllocated {
|
|
public:
|
|
BoyerMooreLookahead(intptr_t length, RegExpCompiler* compiler, Zone* Zone);
|
|
|
|
intptr_t length() { return length_; }
|
|
intptr_t max_char() { return max_char_; }
|
|
RegExpCompiler* compiler() { return compiler_; }
|
|
|
|
intptr_t Count(intptr_t map_number) {
|
|
return bitmaps_->At(map_number)->map_count();
|
|
}
|
|
|
|
BoyerMoorePositionInfo* at(intptr_t i) { return bitmaps_->At(i); }
|
|
|
|
void Set(intptr_t map_number, intptr_t character) {
|
|
if (character > max_char_) return;
|
|
BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
|
|
info->Set(character);
|
|
}
|
|
|
|
void SetInterval(intptr_t map_number, const Interval& interval) {
|
|
if (interval.from() > max_char_) return;
|
|
BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
|
|
if (interval.to() > max_char_) {
|
|
info->SetInterval(Interval(interval.from(), max_char_));
|
|
} else {
|
|
info->SetInterval(interval);
|
|
}
|
|
}
|
|
|
|
void SetAll(intptr_t map_number) { bitmaps_->At(map_number)->SetAll(); }
|
|
|
|
void SetRest(intptr_t from_map) {
|
|
for (intptr_t i = from_map; i < length_; i++)
|
|
SetAll(i);
|
|
}
|
|
void EmitSkipInstructions(RegExpMacroAssembler* masm);
|
|
|
|
private:
|
|
// This is the value obtained by EatsAtLeast. If we do not have at least this
|
|
// many characters left in the sample string then the match is bound to fail.
|
|
// Therefore it is OK to read a character this far ahead of the current match
|
|
// point.
|
|
intptr_t length_;
|
|
RegExpCompiler* compiler_;
|
|
// 0xff for Latin1, 0xffff for UTF-16.
|
|
intptr_t max_char_;
|
|
ZoneGrowableArray<BoyerMoorePositionInfo*>* bitmaps_;
|
|
|
|
intptr_t GetSkipTable(intptr_t min_lookahead,
|
|
intptr_t max_lookahead,
|
|
const TypedData& boolean_skip_table);
|
|
bool FindWorthwhileInterval(intptr_t* from, intptr_t* to);
|
|
intptr_t FindBestInterval(intptr_t max_number_of_chars,
|
|
intptr_t old_biggest_points,
|
|
intptr_t* from,
|
|
intptr_t* to);
|
|
};
|
|
|
|
// There are many ways to generate code for a node. This class encapsulates
|
|
// the current way we should be generating. In other words it encapsulates
|
|
// the current state of the code generator. The effect of this is that we
|
|
// generate code for paths that the matcher can take through the regular
|
|
// expression. A given node in the regexp can be code-generated several times
|
|
// as it can be part of several traces. For example for the regexp:
|
|
// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
|
|
// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
|
|
// to match foo is generated only once (the traces have a common prefix). The
|
|
// code to store the capture is deferred and generated (twice) after the places
|
|
// where baz has been matched.
|
|
class Trace {
|
|
public:
|
|
// A value for a property that is either known to be true, know to be false,
|
|
// or not known.
|
|
enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 };
|
|
|
|
class DeferredAction {
|
|
public:
|
|
DeferredAction(ActionNode::ActionType action_type, intptr_t reg)
|
|
: action_type_(action_type), reg_(reg), next_(NULL) {}
|
|
DeferredAction* next() { return next_; }
|
|
bool Mentions(intptr_t reg);
|
|
intptr_t reg() { return reg_; }
|
|
ActionNode::ActionType action_type() { return action_type_; }
|
|
|
|
private:
|
|
ActionNode::ActionType action_type_;
|
|
intptr_t reg_;
|
|
DeferredAction* next_;
|
|
friend class Trace;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
class DeferredCapture : public DeferredAction {
|
|
public:
|
|
DeferredCapture(intptr_t reg, bool is_capture, Trace* trace)
|
|
: DeferredAction(ActionNode::STORE_POSITION, reg),
|
|
cp_offset_(trace->cp_offset()),
|
|
is_capture_(is_capture) {}
|
|
intptr_t cp_offset() { return cp_offset_; }
|
|
bool is_capture() { return is_capture_; }
|
|
|
|
private:
|
|
intptr_t cp_offset_;
|
|
bool is_capture_;
|
|
void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
|
|
};
|
|
|
|
class DeferredSetRegister : public DeferredAction {
|
|
public:
|
|
DeferredSetRegister(intptr_t reg, intptr_t value)
|
|
: DeferredAction(ActionNode::SET_REGISTER, reg), value_(value) {}
|
|
intptr_t value() { return value_; }
|
|
|
|
private:
|
|
intptr_t value_;
|
|
};
|
|
|
|
class DeferredClearCaptures : public DeferredAction {
|
|
public:
|
|
explicit DeferredClearCaptures(Interval range)
|
|
: DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) {}
|
|
Interval range() { return range_; }
|
|
|
|
private:
|
|
Interval range_;
|
|
};
|
|
|
|
class DeferredIncrementRegister : public DeferredAction {
|
|
public:
|
|
explicit DeferredIncrementRegister(intptr_t reg)
|
|
: DeferredAction(ActionNode::INCREMENT_REGISTER, reg) {}
|
|
};
|
|
|
|
Trace()
|
|
: cp_offset_(0),
|
|
actions_(NULL),
|
|
backtrack_(NULL),
|
|
stop_node_(NULL),
|
|
loop_label_(NULL),
|
|
characters_preloaded_(0),
|
|
bound_checked_up_to_(0),
|
|
flush_budget_(100),
|
|
at_start_(UNKNOWN) {}
|
|
|
|
// End the trace. This involves flushing the deferred actions in the trace
|
|
// and pushing a backtrack location onto the backtrack stack. Once this is
|
|
// done we can start a new trace or go to one that has already been
|
|
// generated.
|
|
void Flush(RegExpCompiler* compiler, RegExpNode* successor);
|
|
intptr_t cp_offset() { return cp_offset_; }
|
|
DeferredAction* actions() { return actions_; }
|
|
// A trivial trace is one that has no deferred actions or other state that
|
|
// affects the assumptions used when generating code. There is no recorded
|
|
// backtrack location in a trivial trace, so with a trivial trace we will
|
|
// generate code that, on a failure to match, gets the backtrack location
|
|
// from the backtrack stack rather than using a direct jump instruction. We
|
|
// always start code generation with a trivial trace and non-trivial traces
|
|
// are created as we emit code for nodes or add to the list of deferred
|
|
// actions in the trace. The location of the code generated for a node using
|
|
// a trivial trace is recorded in a label in the node so that gotos can be
|
|
// generated to that code.
|
|
bool is_trivial() {
|
|
return backtrack_ == NULL && actions_ == NULL && cp_offset_ == 0 &&
|
|
characters_preloaded_ == 0 && bound_checked_up_to_ == 0 &&
|
|
quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN;
|
|
}
|
|
TriBool at_start() { return at_start_; }
|
|
void set_at_start(bool at_start) {
|
|
at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
|
|
}
|
|
BlockLabel* backtrack() { return backtrack_; }
|
|
BlockLabel* loop_label() { return loop_label_; }
|
|
RegExpNode* stop_node() { return stop_node_; }
|
|
intptr_t characters_preloaded() { return characters_preloaded_; }
|
|
intptr_t bound_checked_up_to() { return bound_checked_up_to_; }
|
|
intptr_t flush_budget() { return flush_budget_; }
|
|
QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
|
|
bool mentions_reg(intptr_t reg);
|
|
// Returns true if a deferred position store exists to the specified
|
|
// register and stores the offset in the out-parameter. Otherwise
|
|
// returns false.
|
|
bool GetStoredPosition(intptr_t reg, intptr_t* cp_offset);
|
|
// These set methods and AdvanceCurrentPositionInTrace should be used only on
|
|
// new traces - the intention is that traces are immutable after creation.
|
|
void add_action(DeferredAction* new_action) {
|
|
ASSERT(new_action->next_ == NULL);
|
|
new_action->next_ = actions_;
|
|
actions_ = new_action;
|
|
}
|
|
void set_backtrack(BlockLabel* backtrack) { backtrack_ = backtrack; }
|
|
void set_stop_node(RegExpNode* node) { stop_node_ = node; }
|
|
void set_loop_label(BlockLabel* label) { loop_label_ = label; }
|
|
void set_characters_preloaded(intptr_t count) {
|
|
characters_preloaded_ = count;
|
|
}
|
|
void set_bound_checked_up_to(intptr_t to) { bound_checked_up_to_ = to; }
|
|
void set_flush_budget(intptr_t to) { flush_budget_ = to; }
|
|
void set_quick_check_performed(QuickCheckDetails* d) {
|
|
quick_check_performed_ = *d;
|
|
}
|
|
void InvalidateCurrentCharacter();
|
|
void AdvanceCurrentPositionInTrace(intptr_t by, RegExpCompiler* compiler);
|
|
|
|
private:
|
|
intptr_t FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
|
|
void PerformDeferredActions(RegExpMacroAssembler* macro,
|
|
intptr_t max_register,
|
|
const OutSet& affected_registers,
|
|
OutSet* registers_to_pop,
|
|
OutSet* registers_to_clear,
|
|
Zone* zone);
|
|
void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
|
|
intptr_t max_register,
|
|
const OutSet& registers_to_pop,
|
|
const OutSet& registers_to_clear);
|
|
intptr_t cp_offset_;
|
|
DeferredAction* actions_;
|
|
BlockLabel* backtrack_;
|
|
RegExpNode* stop_node_;
|
|
BlockLabel* loop_label_;
|
|
intptr_t characters_preloaded_;
|
|
intptr_t bound_checked_up_to_;
|
|
QuickCheckDetails quick_check_performed_;
|
|
intptr_t flush_budget_;
|
|
TriBool at_start_;
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
class GreedyLoopState {
|
|
public:
|
|
explicit GreedyLoopState(bool not_at_start);
|
|
|
|
BlockLabel* label() { return &label_; }
|
|
Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
|
|
|
|
private:
|
|
BlockLabel label_;
|
|
Trace counter_backtrack_trace_;
|
|
};
|
|
|
|
struct PreloadState {
|
|
static const intptr_t kEatsAtLeastNotYetInitialized = -1;
|
|
bool preload_is_current_;
|
|
bool preload_has_checked_bounds_;
|
|
intptr_t preload_characters_;
|
|
intptr_t eats_at_least_;
|
|
void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; }
|
|
|
|
DISALLOW_ALLOCATION();
|
|
};
|
|
|
|
class NodeVisitor : public ValueObject {
|
|
public:
|
|
virtual ~NodeVisitor() {}
|
|
#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that) = 0;
|
|
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
|
#undef DECLARE_VISIT
|
|
virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
|
|
};
|
|
|
|
// Assertion propagation moves information about assertions such as
|
|
// \b to the affected nodes. For instance, in /.\b./ information must
|
|
// be propagated to the first '.' that whatever follows needs to know
|
|
// if it matched a word or a non-word, and to the second '.' that it
|
|
// has to check if it succeeds a word or non-word. In this case the
|
|
// result will be something like:
|
|
//
|
|
// +-------+ +------------+
|
|
// | . | | . |
|
|
// +-------+ ---> +------------+
|
|
// | word? | | check word |
|
|
// +-------+ +------------+
|
|
class Analysis : public NodeVisitor {
|
|
public:
|
|
Analysis(bool ignore_case, bool is_one_byte)
|
|
: ignore_case_(ignore_case),
|
|
is_one_byte_(is_one_byte),
|
|
error_message_(NULL) {}
|
|
void EnsureAnalyzed(RegExpNode* node);
|
|
|
|
#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that);
|
|
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
|
#undef DECLARE_VISIT
|
|
virtual void VisitLoopChoice(LoopChoiceNode* that);
|
|
|
|
bool has_failed() { return error_message_ != NULL; }
|
|
const char* error_message() {
|
|
ASSERT(error_message_ != NULL);
|
|
return error_message_;
|
|
}
|
|
void fail(const char* error_message) { error_message_ = error_message; }
|
|
|
|
private:
|
|
bool ignore_case_;
|
|
bool is_one_byte_;
|
|
const char* error_message_;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
|
|
};
|
|
|
|
struct RegExpCompileData : public ZoneAllocated {
|
|
RegExpCompileData()
|
|
: tree(NULL),
|
|
node(NULL),
|
|
simple(true),
|
|
contains_anchor(false),
|
|
error(String::Handle(String::null())),
|
|
capture_count(0) {}
|
|
RegExpTree* tree;
|
|
RegExpNode* node;
|
|
bool simple;
|
|
bool contains_anchor;
|
|
String& error;
|
|
intptr_t capture_count;
|
|
};
|
|
|
|
class RegExpEngine : public AllStatic {
|
|
public:
|
|
struct CompilationResult {
|
|
explicit CompilationResult(const char* error_message)
|
|
: error_message(error_message),
|
|
#if !defined(DART_PRECOMPILED_RUNTIME)
|
|
backtrack_goto(NULL),
|
|
graph_entry(NULL),
|
|
num_blocks(-1),
|
|
num_stack_locals(-1),
|
|
#endif
|
|
bytecode(NULL),
|
|
num_registers(-1) {
|
|
}
|
|
|
|
CompilationResult(TypedData* bytecode, intptr_t num_registers)
|
|
: error_message(NULL),
|
|
#if !defined(DART_PRECOMPILED_RUNTIME)
|
|
backtrack_goto(NULL),
|
|
graph_entry(NULL),
|
|
num_blocks(-1),
|
|
num_stack_locals(-1),
|
|
#endif
|
|
bytecode(bytecode),
|
|
num_registers(num_registers) {
|
|
}
|
|
|
|
#if !defined(DART_PRECOMPILED_RUNTIME)
|
|
CompilationResult(IndirectGotoInstr* backtrack_goto,
|
|
GraphEntryInstr* graph_entry,
|
|
intptr_t num_blocks,
|
|
intptr_t num_stack_locals,
|
|
intptr_t num_registers)
|
|
: error_message(NULL),
|
|
backtrack_goto(backtrack_goto),
|
|
graph_entry(graph_entry),
|
|
num_blocks(num_blocks),
|
|
num_stack_locals(num_stack_locals),
|
|
bytecode(NULL) {}
|
|
#endif
|
|
|
|
const char* error_message;
|
|
|
|
NOT_IN_PRECOMPILED(IndirectGotoInstr* backtrack_goto);
|
|
NOT_IN_PRECOMPILED(GraphEntryInstr* graph_entry);
|
|
NOT_IN_PRECOMPILED(const intptr_t num_blocks);
|
|
NOT_IN_PRECOMPILED(const intptr_t num_stack_locals);
|
|
|
|
TypedData* bytecode;
|
|
intptr_t num_registers;
|
|
};
|
|
|
|
#if !defined(DART_PRECOMPILED_RUNTIME)
|
|
static CompilationResult CompileIR(
|
|
RegExpCompileData* input,
|
|
const ParsedFunction* parsed_function,
|
|
const ZoneGrowableArray<const ICData*>& ic_data_array,
|
|
intptr_t osr_id);
|
|
#endif
|
|
|
|
static CompilationResult CompileBytecode(RegExpCompileData* data,
|
|
const RegExp& regexp,
|
|
bool is_one_byte,
|
|
bool sticky,
|
|
Zone* zone);
|
|
|
|
static RawRegExp* CreateRegExp(Thread* thread,
|
|
const String& pattern,
|
|
bool multi_line,
|
|
bool ignore_case);
|
|
|
|
static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
|
|
};
|
|
|
|
} // namespace dart
|
|
|
|
#endif // RUNTIME_VM_REGEXP_H_
|