dart-sdk/runtime/vm/regexp.cc
Ryan Macnak 04ba20aa98 [vm] Support RISC-V.
Implements a backend targeting RV32GC and RV64GC, based on Linux standardizing around GC. The assembler is written to make it easy to disable usage of C, but because the sizes of some instruction sequences are compile-time constants, an additional build configuration would need to be defined to make use of it.

The assembler and disassembler cover every RV32/64GC instruction. The simulator covers all instructions except accessing CSRs and the floating point state accessible through such, include accrued exceptions and dynamic rounding mode.

Quirks:
  - RISC-V is a compare-and-branch architecture, but some existing "architecture-independent" parts of the Dart compiler assume a condition code architecture. To avoid rewriting these parts, we use a peephole in the assembler to map to compare-and-branch. See Assembler::BranchIf. Luckily nothing depended on taking multiple branches on the same condition code set.
  - There are no hardware overflow checks, so we must use Hacker's Delight style software checks. Often these are very cheap: if the sign of one operand is known, a single branch is needed.
  - The ranges of RISC-V branches and jumps are such that we use 3 levels of generation for forward branches, instead of the 2 levels of near and far branches used on ARM[64]. Nearly all code is handled by the first two levels with 20-bits of range, with enormous regex matchers triggering the third level that uses aupic+jalr to get 32-bits of range.
  - For PC-relative calls in AOT, we always generate auipc+jalr pairs with 32-bits of range, so we never generate trampolines.
  - Only a subset of registers are available in some compressed instructions, so we assign the most popular uses to these registers. In particular, THR, TMP[2], CODE and PP. This has the effect of assigning CODE and PP to volatile registers in the C calling convention, whereas they are assigned preserved registers on the other architectures. As on ARM64, PP is untagged; this is so short indices can be accessed with a compressed instruction.
  - There are no push or pop instructions, so combining pushes and pops is preferred so we can update SP once.
  - The C calling convention has a strongly aligned stack, but unlike on ARM64 we don't need to use an alternate stack pointer. The author ensured language was added to the RISC-V psABI making the OS responsible for realigning the stack pointer for signal handlers, allowing Dart to leave the stack pointer misaligned from the C calling convention's point of view until a foreign call.
  - We don't bother with the link register tracking done on ARM[64]. Instead we make use of an alternate link register to avoid inline spilling in the write barrier.

Unimplemented:
 - non-trivial FFI cases
 - Compressed pointers - No intention to implement.
 - Unboxed SIMD - We might make use of the V extension registers when the V extension is ratified.
 - BigInt intrinsics

TEST=existing tests for IL level, new tests for assembler/disassembler/simulator
Bug: https://github.com/dart-lang/sdk/issues/38587
Bug: https://github.com/dart-lang/sdk/issues/48164
Change-Id: I991d1df4be5bf55efec5371b767b332d37dfa3e0
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/217289
Reviewed-by: Alexander Markov <alexmarkov@google.com>
Reviewed-by: Daco Harkes <dacoharkes@google.com>
Reviewed-by: Slava Egorov <vegorov@google.com>
Commit-Queue: Ryan Macnak <rmacnak@google.com>
2022-01-20 00:57:57 +00:00

5599 lines
212 KiB
C++

// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/regexp.h"
#include <memory>
#include "platform/splay-tree-inl.h"
#include "platform/unicode.h"
#include "unicode/uniset.h"
#include "vm/dart_entry.h"
#include "vm/regexp_assembler.h"
#include "vm/regexp_assembler_bytecode.h"
#include "vm/regexp_ast.h"
#include "vm/symbols.h"
#include "vm/thread.h"
#include "vm/unibrow-inl.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/regexp_assembler_ir.h"
#endif // !defined(DART_PRECOMPILED_RUNTIME)
#define Z (zone())
namespace dart {
// Default to generating optimized regexp code.
static const bool kRegexpOptimization = true;
// More makes code generation slower, less makes V8 benchmark score lower.
static const intptr_t kMaxLookaheadForBoyerMoore = 8;
ContainedInLattice AddRange(ContainedInLattice containment,
const int32_t* ranges,
intptr_t ranges_length,
Interval new_range) {
ASSERT((ranges_length & 1) == 1);
ASSERT(ranges[ranges_length - 1] == Utf::kMaxCodePoint + 1);
if (containment == kLatticeUnknown) return containment;
bool inside = false;
int32_t last = 0;
for (intptr_t i = 0; i < ranges_length;
inside = !inside, last = ranges[i], i++) {
// Consider the range from last to ranges[i].
// We haven't got to the new range yet.
if (ranges[i] <= new_range.from()) continue;
// New range is wholly inside last-ranges[i]. Note that new_range.to() is
// inclusive, but the values in ranges are not.
if (last <= new_range.from() && new_range.to() < ranges[i]) {
return Combine(containment, inside ? kLatticeIn : kLatticeOut);
}
return kLatticeUnknown;
}
return containment;
}
// -------------------------------------------------------------------
// Implementation of the Irregexp regular expression engine.
//
// The Irregexp regular expression engine is intended to be a complete
// implementation of ECMAScript regular expressions. It generates
// IR code that is subsequently compiled to native code.
// The Irregexp regexp engine is structured in three steps.
// 1) The parser generates an abstract syntax tree. See regexp_ast.cc.
// 2) From the AST a node network is created. The nodes are all
// subclasses of RegExpNode. The nodes represent states when
// executing a regular expression. Several optimizations are
// performed on the node network.
// 3) From the nodes we generate IR instructions that can actually
// execute the regular expression (perform the search). The
// code generation step is described in more detail below.
// Code generation.
//
// The nodes are divided into four main categories.
// * Choice nodes
// These represent places where the regular expression can
// match in more than one way. For example on entry to an
// alternation (foo|bar) or a repetition (*, +, ? or {}).
// * Action nodes
// These represent places where some action should be
// performed. Examples include recording the current position
// in the input string to a register (in order to implement
// captures) or other actions on register for example in order
// to implement the counters needed for {} repetitions.
// * Matching nodes
// These attempt to match some element part of the input string.
// Examples of elements include character classes, plain strings
// or back references.
// * End nodes
// These are used to implement the actions required on finding
// a successful match or failing to find a match.
//
// The code generated maintains some state as it runs. This consists of the
// following elements:
//
// * The capture registers. Used for string captures.
// * Other registers. Used for counters etc.
// * The current position.
// * The stack of backtracking information. Used when a matching node
// fails to find a match and needs to try an alternative.
//
// Conceptual regular expression execution model:
//
// There is a simple conceptual model of regular expression execution
// which will be presented first. The actual code generated is a more
// efficient simulation of the simple conceptual model:
//
// * Choice nodes are implemented as follows:
// For each choice except the last {
// push current position
// push backtrack code location
// <generate code to test for choice>
// backtrack code location:
// pop current position
// }
// <generate code to test for last choice>
//
// * Actions nodes are generated as follows
// <push affected registers on backtrack stack>
// <generate code to perform action>
// push backtrack code location
// <generate code to test for following nodes>
// backtrack code location:
// <pop affected registers to restore their state>
// <pop backtrack location from stack and go to it>
//
// * Matching nodes are generated as follows:
// if input string matches at current position
// update current position
// <generate code to test for following nodes>
// else
// <pop backtrack location from stack and go to it>
//
// Thus it can be seen that the current position is saved and restored
// by the choice nodes, whereas the registers are saved and restored by
// by the action nodes that manipulate them.
//
// The other interesting aspect of this model is that nodes are generated
// at the point where they are needed by a recursive call to Emit(). If
// the node has already been code generated then the Emit() call will
// generate a jump to the previously generated code instead. In order to
// limit recursion it is possible for the Emit() function to put the node
// on a work list for later generation and instead generate a jump. The
// destination of the jump is resolved later when the code is generated.
//
// Actual regular expression code generation.
//
// Code generation is actually more complicated than the above. In order
// to improve the efficiency of the generated code some optimizations are
// performed
//
// * Choice nodes have 1-character lookahead.
// A choice node looks at the following character and eliminates some of
// the choices immediately based on that character. This is not yet
// implemented.
// * Simple greedy loops store reduced backtracking information.
// A quantifier like /.*foo/m will greedily match the whole input. It will
// then need to backtrack to a point where it can match "foo". The naive
// implementation of this would push each character position onto the
// backtracking stack, then pop them off one by one. This would use space
// proportional to the length of the input string. However since the "."
// can only match in one way and always has a constant length (in this case
// of 1) it suffices to store the current position on the top of the stack
// once. Matching now becomes merely incrementing the current position and
// backtracking becomes decrementing the current position and checking the
// result against the stored current position. This is faster and saves
// space.
// * The current state is virtualized.
// This is used to defer expensive operations until it is clear that they
// are needed and to generate code for a node more than once, allowing
// specialized an efficient versions of the code to be created. This is
// explained in the section below.
//
// Execution state virtualization.
//
// Instead of emitting code, nodes that manipulate the state can record their
// manipulation in an object called the Trace. The Trace object can record a
// current position offset, an optional backtrack code location on the top of
// the virtualized backtrack stack and some register changes. When a node is
// to be emitted it can flush the Trace or update it. Flushing the Trace
// will emit code to bring the actual state into line with the virtual state.
// Avoiding flushing the state can postpone some work (e.g. updates of capture
// registers). Postponing work can save time when executing the regular
// expression since it may be found that the work never has to be done as a
// failure to match can occur. In addition it is much faster to jump to a
// known backtrack code location than it is to pop an unknown backtrack
// location from the stack and jump there.
//
// The virtual state found in the Trace affects code generation. For example
// the virtual state contains the difference between the actual current
// position and the virtual current position, and matching code needs to use
// this offset to attempt a match in the correct location of the input
// string. Therefore code generated for a non-trivial trace is specialized
// to that trace. The code generator therefore has the ability to generate
// code for each node several times. In order to limit the size of the
// generated code there is an arbitrary limit on how many specialized sets of
// code may be generated for a given node. If the limit is reached, the
// trace is flushed and a generic version of the code for a node is emitted.
// This is subsequently used for that node. The code emitted for non-generic
// trace is not recorded in the node and so it cannot currently be reused in
// the event that code generation is requested for an identical trace.
void RegExpTree::AppendToText(RegExpText* text) {
UNREACHABLE();
}
void RegExpAtom::AppendToText(RegExpText* text) {
text->AddElement(TextElement::Atom(this));
}
void RegExpCharacterClass::AppendToText(RegExpText* text) {
text->AddElement(TextElement::CharClass(this));
}
void RegExpText::AppendToText(RegExpText* text) {
for (intptr_t i = 0; i < elements()->length(); i++)
text->AddElement((*elements())[i]);
}
TextElement TextElement::Atom(RegExpAtom* atom) {
return TextElement(ATOM, atom);
}
TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
return TextElement(CHAR_CLASS, char_class);
}
intptr_t TextElement::length() const {
switch (text_type()) {
case ATOM:
return atom()->length();
case CHAR_CLASS:
return 1;
}
UNREACHABLE();
return 0;
}
class FrequencyCollator : public ValueObject {
public:
FrequencyCollator() : total_samples_(0) {
for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
frequencies_[i] = CharacterFrequency(i);
}
}
void CountCharacter(intptr_t character) {
intptr_t index = (character & RegExpMacroAssembler::kTableMask);
frequencies_[index].Increment();
total_samples_++;
}
// Does not measure in percent, but rather per-128 (the table size from the
// regexp macro assembler).
intptr_t Frequency(intptr_t in_character) {
ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character);
if (total_samples_ < 1) return 1; // Division by zero.
intptr_t freq_in_per128 =
(frequencies_[in_character].counter() * 128) / total_samples_;
return freq_in_per128;
}
private:
class CharacterFrequency {
public:
CharacterFrequency() : counter_(0), character_(-1) {}
explicit CharacterFrequency(intptr_t character)
: counter_(0), character_(character) {}
void Increment() { counter_++; }
intptr_t counter() { return counter_; }
intptr_t character() { return character_; }
private:
intptr_t counter_;
intptr_t character_;
DISALLOW_ALLOCATION();
};
private:
CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
intptr_t total_samples_;
};
class RegExpCompiler : public ValueObject {
public:
RegExpCompiler(intptr_t capture_count, bool is_one_byte);
intptr_t AllocateRegister() { return next_register_++; }
// Lookarounds to match lone surrogates for unicode character class matches
// are never nested. We can therefore reuse registers.
intptr_t UnicodeLookaroundStackRegister() {
if (unicode_lookaround_stack_register_ == kNoRegister) {
unicode_lookaround_stack_register_ = AllocateRegister();
}
return unicode_lookaround_stack_register_;
}
intptr_t UnicodeLookaroundPositionRegister() {
if (unicode_lookaround_position_register_ == kNoRegister) {
unicode_lookaround_position_register_ = AllocateRegister();
}
return unicode_lookaround_position_register_;
}
#if !defined(DART_PRECOMPILED_RUNTIME)
RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler,
RegExpNode* start,
intptr_t capture_count,
const String& pattern);
#endif
RegExpEngine::CompilationResult Assemble(
BytecodeRegExpMacroAssembler* assembler,
RegExpNode* start,
intptr_t capture_count,
const String& pattern);
inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
static const intptr_t kImplementationOffset = 0;
static const intptr_t kNumberOfRegistersOffset = 0;
static const intptr_t kCodeOffset = 1;
RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
EndNode* accept() { return accept_; }
static const intptr_t kMaxRecursion = 100;
inline intptr_t recursion_depth() { return recursion_depth_; }
inline void IncrementRecursionDepth() { recursion_depth_++; }
inline void DecrementRecursionDepth() { recursion_depth_--; }
void SetRegExpTooBig() { reg_exp_too_big_ = true; }
inline bool one_byte() const { return is_one_byte_; }
bool read_backward() { return read_backward_; }
void set_read_backward(bool value) { read_backward_ = value; }
FrequencyCollator* frequency_collator() { return &frequency_collator_; }
intptr_t current_expansion_factor() { return current_expansion_factor_; }
void set_current_expansion_factor(intptr_t value) {
current_expansion_factor_ = value;
}
Zone* zone() const { return zone_; }
static const intptr_t kNoRegister = -1;
private:
EndNode* accept_;
intptr_t next_register_;
intptr_t unicode_lookaround_stack_register_;
intptr_t unicode_lookaround_position_register_;
ZoneGrowableArray<RegExpNode*>* work_list_;
intptr_t recursion_depth_;
RegExpMacroAssembler* macro_assembler_;
bool is_one_byte_;
bool reg_exp_too_big_;
bool read_backward_;
intptr_t current_expansion_factor_;
FrequencyCollator frequency_collator_;
Zone* zone_;
};
class RecursionCheck : public ValueObject {
public:
explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
compiler->IncrementRecursionDepth();
}
~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
private:
RegExpCompiler* compiler_;
};
static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
return RegExpEngine::CompilationResult("RegExp too big");
}
// Attempts to compile the regexp using an Irregexp code generator. Returns
// a fixed array or a null handle depending on whether it succeeded.
RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool is_one_byte)
: next_register_(2 * (capture_count + 1)),
unicode_lookaround_stack_register_(kNoRegister),
unicode_lookaround_position_register_(kNoRegister),
work_list_(NULL),
recursion_depth_(0),
is_one_byte_(is_one_byte),
reg_exp_too_big_(false),
read_backward_(false),
current_expansion_factor_(1),
zone_(Thread::Current()->zone()) {
accept_ = new (Z) EndNode(EndNode::ACCEPT, Z);
}
#if !defined(DART_PRECOMPILED_RUNTIME)
RegExpEngine::CompilationResult RegExpCompiler::Assemble(
IRRegExpMacroAssembler* macro_assembler,
RegExpNode* start,
intptr_t capture_count,
const String& pattern) {
macro_assembler->set_slow_safe(false /* use_slow_safe_regexp_compiler */);
macro_assembler_ = macro_assembler;
ZoneGrowableArray<RegExpNode*> work_list(0);
work_list_ = &work_list;
BlockLabel fail;
macro_assembler_->PushBacktrack(&fail);
Trace new_trace;
start->Emit(this, &new_trace);
macro_assembler_->BindBlock(&fail);
macro_assembler_->Fail();
while (!work_list.is_empty()) {
work_list.RemoveLast()->Emit(this, &new_trace);
}
if (reg_exp_too_big_) return IrregexpRegExpTooBig();
macro_assembler->GenerateBacktrackBlock();
macro_assembler->FinalizeRegistersArray();
return RegExpEngine::CompilationResult(
macro_assembler->backtrack_goto(), macro_assembler->graph_entry(),
macro_assembler->num_blocks(), macro_assembler->num_stack_locals(),
next_register_);
}
#endif
RegExpEngine::CompilationResult RegExpCompiler::Assemble(
BytecodeRegExpMacroAssembler* macro_assembler,
RegExpNode* start,
intptr_t capture_count,
const String& pattern) {
macro_assembler->set_slow_safe(false /* use_slow_safe_regexp_compiler */);
macro_assembler_ = macro_assembler;
ZoneGrowableArray<RegExpNode*> work_list(0);
work_list_ = &work_list;
BlockLabel fail;
macro_assembler_->PushBacktrack(&fail);
Trace new_trace;
start->Emit(this, &new_trace);
macro_assembler_->BindBlock(&fail);
macro_assembler_->Fail();
while (!work_list.is_empty()) {
work_list.RemoveLast()->Emit(this, &new_trace);
}
if (reg_exp_too_big_) return IrregexpRegExpTooBig();
TypedData& bytecode = TypedData::ZoneHandle(macro_assembler->GetBytecode());
return RegExpEngine::CompilationResult(&bytecode, next_register_);
}
bool Trace::DeferredAction::Mentions(intptr_t that) {
if (action_type() == ActionNode::CLEAR_CAPTURES) {
Interval range = static_cast<DeferredClearCaptures*>(this)->range();
return range.Contains(that);
} else {
return reg() == that;
}
}
bool Trace::mentions_reg(intptr_t reg) {
for (DeferredAction* action = actions_; action != NULL;
action = action->next()) {
if (action->Mentions(reg)) return true;
}
return false;
}
bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
ASSERT(*cp_offset == 0);
for (DeferredAction* action = actions_; action != NULL;
action = action->next()) {
if (action->Mentions(reg)) {
if (action->action_type() == ActionNode::STORE_POSITION) {
*cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
return true;
} else {
return false;
}
}
}
return false;
}
// This is called as we come into a loop choice node and some other tricky
// nodes. It normalizes the state of the code generator to ensure we can
// generate generic code.
intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers, Zone* zone) {
intptr_t max_register = RegExpCompiler::kNoRegister;
for (DeferredAction* action = actions_; action != NULL;
action = action->next()) {
if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
Interval range = static_cast<DeferredClearCaptures*>(action)->range();
for (intptr_t i = range.from(); i <= range.to(); i++)
affected_registers->Set(i, zone);
if (range.to() > max_register) max_register = range.to();
} else {
affected_registers->Set(action->reg(), zone);
if (action->reg() > max_register) max_register = action->reg();
}
}
return max_register;
}
void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
intptr_t max_register,
const OutSet& registers_to_pop,
const OutSet& registers_to_clear) {
for (intptr_t reg = max_register; reg >= 0; reg--) {
if (registers_to_pop.Get(reg)) {
assembler->PopRegister(reg);
} else if (registers_to_clear.Get(reg)) {
intptr_t clear_to = reg;
while (reg > 0 && registers_to_clear.Get(reg - 1)) {
reg--;
}
assembler->ClearRegisters(reg, clear_to);
}
}
}
void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
intptr_t max_register,
const OutSet& affected_registers,
OutSet* registers_to_pop,
OutSet* registers_to_clear,
Zone* zone) {
for (intptr_t reg = 0; reg <= max_register; reg++) {
if (!affected_registers.Get(reg)) {
continue;
}
// The chronologically first deferred action in the trace
// is used to infer the action needed to restore a register
// to its previous state (or not, if it's safe to ignore it).
enum DeferredActionUndoType { ACTION_IGNORE, ACTION_RESTORE, ACTION_CLEAR };
DeferredActionUndoType undo_action = ACTION_IGNORE;
intptr_t value = 0;
bool absolute = false;
bool clear = false;
static const intptr_t kNoStore = kMinInt32;
intptr_t store_position = kNoStore;
// This is a little tricky because we are scanning the actions in reverse
// historical order (newest first).
for (DeferredAction* action = actions_; action != NULL;
action = action->next()) {
if (action->Mentions(reg)) {
switch (action->action_type()) {
case ActionNode::SET_REGISTER: {
Trace::DeferredSetRegister* psr =
static_cast<Trace::DeferredSetRegister*>(action);
if (!absolute) {
value += psr->value();
absolute = true;
}
// SET_REGISTER is currently only used for newly introduced loop
// counters. They can have a significant previous value if they
// occour in a loop. TODO(lrn): Propagate this information, so we
// can set undo_action to ACTION_IGNORE if we know there is no
// value to restore.
undo_action = ACTION_RESTORE;
ASSERT(store_position == kNoStore);
ASSERT(!clear);
break;
}
case ActionNode::INCREMENT_REGISTER:
if (!absolute) {
value++;
}
ASSERT(store_position == kNoStore);
ASSERT(!clear);
undo_action = ACTION_RESTORE;
break;
case ActionNode::STORE_POSITION: {
Trace::DeferredCapture* pc =
static_cast<Trace::DeferredCapture*>(action);
if (!clear && store_position == kNoStore) {
store_position = pc->cp_offset();
}
// For captures we know that stores and clears alternate.
// Other register, are never cleared, and if the occur
// inside a loop, they might be assigned more than once.
if (reg <= 1) {
// Registers zero and one, aka "capture zero", is
// always set correctly if we succeed. There is no
// need to undo a setting on backtrack, because we
// will set it again or fail.
undo_action = ACTION_IGNORE;
} else {
undo_action = pc->is_capture() ? ACTION_CLEAR : ACTION_RESTORE;
}
ASSERT(!absolute);
ASSERT(value == 0);
break;
}
case ActionNode::CLEAR_CAPTURES: {
// Since we're scanning in reverse order, if we've already
// set the position we have to ignore historically earlier
// clearing operations.
if (store_position == kNoStore) {
clear = true;
}
undo_action = ACTION_RESTORE;
ASSERT(!absolute);
ASSERT(value == 0);
break;
}
default:
UNREACHABLE();
break;
}
}
}
// Prepare for the undo-action (e.g., push if it's going to be popped).
if (undo_action == ACTION_RESTORE) {
assembler->PushRegister(reg);
registers_to_pop->Set(reg, zone);
} else if (undo_action == ACTION_CLEAR) {
registers_to_clear->Set(reg, zone);
}
// Perform the chronologically last action (or accumulated increment)
// for the register.
if (store_position != kNoStore) {
assembler->WriteCurrentPositionToRegister(reg, store_position);
} else if (clear) {
assembler->ClearRegisters(reg, reg);
} else if (absolute) {
assembler->SetRegister(reg, value);
} else if (value != 0) {
assembler->AdvanceRegister(reg, value);
}
}
}
// This is called as we come into a loop choice node and some other tricky
// nodes. It normalizes the state of the code generator to ensure we can
// generate generic code.
void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
ASSERT(!is_trivial());
if (actions_ == NULL && backtrack() == NULL) {
// Here we just have some deferred cp advances to fix and we are back to
// a normal situation. We may also have to forget some information gained
// through a quick check that was already performed.
if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
// Create a new trivial state and generate the node with that.
Trace new_state;
successor->Emit(compiler, &new_state);
return;
}
// Generate deferred actions here along with code to undo them again.
OutSet affected_registers;
if (backtrack() != NULL) {
// Here we have a concrete backtrack location. These are set up by choice
// nodes and so they indicate that we have a deferred save of the current
// position which we may need to emit here.
assembler->PushCurrentPosition();
}
Zone* zone = successor->zone();
intptr_t max_register = FindAffectedRegisters(&affected_registers, zone);
OutSet registers_to_pop;
OutSet registers_to_clear;
PerformDeferredActions(assembler, max_register, affected_registers,
&registers_to_pop, &registers_to_clear, zone);
if (cp_offset_ != 0) {
assembler->AdvanceCurrentPosition(cp_offset_);
}
// Create a new trivial state and generate the node with that.
BlockLabel undo;
assembler->PushBacktrack(&undo);
Trace new_state;
successor->Emit(compiler, &new_state);
// On backtrack we need to restore state.
assembler->BindBlock(&undo);
RestoreAffectedRegisters(assembler, max_register, registers_to_pop,
registers_to_clear);
if (backtrack() == NULL) {
assembler->Backtrack();
} else {
assembler->PopCurrentPosition();
assembler->GoTo(backtrack());
}
}
void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
// Omit flushing the trace. We discard the entire stack frame anyway.
if (!label()->is_bound()) {
// We are completely independent of the trace, since we ignore it,
// so this code can be used as the generic version.
assembler->BindBlock(label());
}
// Throw away everything on the backtrack stack since the start
// of the negative submatch and restore the character position.
assembler->ReadCurrentPositionFromRegister(current_position_register_);
assembler->ReadStackPointerFromRegister(stack_pointer_register_);
if (clear_capture_count_ > 0) {
// Clear any captures that might have been performed during the success
// of the body of the negative look-ahead.
int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
}
// Now that we have unwound the stack we find at the top of the stack the
// backtrack that the BeginSubmatch node got.
assembler->Backtrack();
}
void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
return;
}
RegExpMacroAssembler* assembler = compiler->macro_assembler();
if (!label()->is_bound()) {
assembler->BindBlock(label());
}
switch (action_) {
case ACCEPT:
assembler->Succeed();
return;
case BACKTRACK:
assembler->GoTo(trace->backtrack());
return;
case NEGATIVE_SUBMATCH_SUCCESS:
// This case is handled in a different virtual method.
UNREACHABLE();
}
UNIMPLEMENTED();
}
void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
if (guards_ == NULL) guards_ = new (zone) ZoneGrowableArray<Guard*>(1);
guards_->Add(guard);
}
ActionNode* ActionNode::SetRegister(intptr_t reg,
intptr_t val,
RegExpNode* on_success) {
ActionNode* result =
new (on_success->zone()) ActionNode(SET_REGISTER, on_success);
result->data_.u_store_register.reg = reg;
result->data_.u_store_register.value = val;
return result;
}
ActionNode* ActionNode::IncrementRegister(intptr_t reg,
RegExpNode* on_success) {
ActionNode* result =
new (on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
result->data_.u_increment_register.reg = reg;
return result;
}
ActionNode* ActionNode::StorePosition(intptr_t reg,
bool is_capture,
RegExpNode* on_success) {
ActionNode* result =
new (on_success->zone()) ActionNode(STORE_POSITION, on_success);
result->data_.u_position_register.reg = reg;
result->data_.u_position_register.is_capture = is_capture;
return result;
}
ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) {
ActionNode* result =
new (on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
result->data_.u_clear_captures.range_from = range.from();
result->data_.u_clear_captures.range_to = range.to();
return result;
}
ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg,
intptr_t position_reg,
RegExpNode* on_success) {
ActionNode* result =
new (on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
result->data_.u_submatch.stack_pointer_register = stack_reg;
result->data_.u_submatch.current_position_register = position_reg;
return result;
}
ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg,
intptr_t position_reg,
intptr_t clear_register_count,
intptr_t clear_register_from,
RegExpNode* on_success) {
ActionNode* result = new (on_success->zone())
ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
result->data_.u_submatch.stack_pointer_register = stack_reg;
result->data_.u_submatch.current_position_register = position_reg;
result->data_.u_submatch.clear_register_count = clear_register_count;
result->data_.u_submatch.clear_register_from = clear_register_from;
return result;
}
ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register,
intptr_t repetition_register,
intptr_t repetition_limit,
RegExpNode* on_success) {
ActionNode* result =
new (on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
result->data_.u_empty_match_check.start_register = start_register;
result->data_.u_empty_match_check.repetition_register = repetition_register;
result->data_.u_empty_match_check.repetition_limit = repetition_limit;
return result;
}
#define DEFINE_ACCEPT(Type) \
void Type##Node::Accept(NodeVisitor* visitor) { visitor->Visit##Type(this); }
FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
#undef DEFINE_ACCEPT
void LoopChoiceNode::Accept(NodeVisitor* visitor) {
visitor->VisitLoopChoice(this);
}
// -------------------------------------------------------------------
// Emit code.
void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
Guard* guard,
Trace* trace) {
switch (guard->op()) {
case Guard::LT:
ASSERT(!trace->mentions_reg(guard->reg()));
macro_assembler->IfRegisterGE(guard->reg(), guard->value(),
trace->backtrack());
break;
case Guard::GEQ:
ASSERT(!trace->mentions_reg(guard->reg()));
macro_assembler->IfRegisterLT(guard->reg(), guard->value(),
trace->backtrack());
break;
}
}
// Returns the number of characters in the equivalence class, omitting those
// that cannot occur in the source string because it is ASCII.
static intptr_t GetCaseIndependentLetters(uint16_t character,
bool one_byte_subject,
int32_t* letters) {
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters);
// Unibrow returns 0 or 1 for characters where case independence is
// trivial.
if (length == 0) {
letters[0] = character;
length = 1;
}
if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) {
return length;
}
// The standard requires that non-ASCII characters cannot have ASCII
// character codes in their equivalence class.
// TODO(dcarney): issue 3550 this is not actually true for Latin1 anymore,
// is it? For example, \u00C5 is equivalent to \u212B.
return 0;
}
static inline bool EmitSimpleCharacter(Zone* zone,
RegExpCompiler* compiler,
uint16_t c,
BlockLabel* on_failure,
intptr_t cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
bool bound_checked = false;
if (!preloaded) {
assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
bound_checked = true;
}
assembler->CheckNotCharacter(c, on_failure);
return bound_checked;
}
// Only emits non-letters (things that don't have case). Only used for case
// independent matches.
static inline bool EmitAtomNonLetter(Zone* zone,
RegExpCompiler* compiler,
uint16_t c,
BlockLabel* on_failure,
intptr_t cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
if (length < 1) {
// This can't match. Must be an one-byte subject and a non-one-byte
// character. We do not need to do anything since the one-byte pass
// already handled this.
return false; // Bounds not checked.
}
bool checked = false;
// We handle the length > 1 case in a later pass.
if (length == 1) {
if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) {
// Can't match - see above.
return false; // Bounds not checked.
}
if (!preloaded) {
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
checked = check;
}
macro_assembler->CheckNotCharacter(c, on_failure);
}
return checked;
}
static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
bool one_byte,
uint16_t c1,
uint16_t c2,
BlockLabel* on_failure) {
uint16_t char_mask;
if (one_byte) {
char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
char_mask = Utf16::kMaxCodeUnit;
}
uint16_t exor = c1 ^ c2;
// Check whether exor has only one bit set.
if (((exor - 1) & exor) == 0) {
// If c1 and c2 differ only by one bit.
// Ecma262UnCanonicalize always gives the highest number last.
ASSERT(c2 > c1);
uint16_t mask = char_mask ^ exor;
macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
return true;
}
ASSERT(c2 > c1);
uint16_t diff = c2 - c1;
if (((diff - 1) & diff) == 0 && c1 >= diff) {
// If the characters differ by 2^n but don't differ by one bit then
// subtract the difference from the found character, then do the or
// trick. We avoid the theoretical case where negative numbers are
// involved in order to simplify code generation.
uint16_t mask = char_mask ^ diff;
macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask,
on_failure);
return true;
}
return false;
}
typedef bool EmitCharacterFunction(Zone* zone,
RegExpCompiler* compiler,
uint16_t c,
BlockLabel* on_failure,
intptr_t cp_offset,
bool check,
bool preloaded);
// Only emits letters (things that have case). Only used for case independent
// matches.
static inline bool EmitAtomLetter(Zone* zone,
RegExpCompiler* compiler,
uint16_t c,
BlockLabel* on_failure,
intptr_t cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
if (length <= 1) return false;
// We may not need to check against the end of the input string
// if this character lies before a character that matched.
if (!preloaded) {
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
}
BlockLabel ok;
ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
switch (length) {
case 2: {
if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
chars[1], on_failure)) {
} else {
macro_assembler->CheckCharacter(chars[0], &ok);
macro_assembler->CheckNotCharacter(chars[1], on_failure);
macro_assembler->BindBlock(&ok);
}
break;
}
case 4:
macro_assembler->CheckCharacter(chars[3], &ok);
FALL_THROUGH;
case 3:
macro_assembler->CheckCharacter(chars[0], &ok);
macro_assembler->CheckCharacter(chars[1], &ok);
macro_assembler->CheckNotCharacter(chars[2], on_failure);
macro_assembler->BindBlock(&ok);
break;
default:
UNREACHABLE();
break;
}
return true;
}
static void EmitBoundaryTest(RegExpMacroAssembler* masm,
uint16_t border,
BlockLabel* fall_through,
BlockLabel* above_or_equal,
BlockLabel* below) {
if (below != fall_through) {
masm->CheckCharacterLT(border, below);
if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
} else {
masm->CheckCharacterGT(border - 1, above_or_equal);
}
}
static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
uint16_t first,
uint16_t last,
BlockLabel* fall_through,
BlockLabel* in_range,
BlockLabel* out_of_range) {
if (in_range == fall_through) {
if (first == last) {
masm->CheckNotCharacter(first, out_of_range);
} else {
masm->CheckCharacterNotInRange(first, last, out_of_range);
}
} else {
if (first == last) {
masm->CheckCharacter(first, in_range);
} else {
masm->CheckCharacterInRange(first, last, in_range);
}
if (out_of_range != fall_through) masm->GoTo(out_of_range);
}
}
// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
static void EmitUseLookupTable(RegExpMacroAssembler* masm,
ZoneGrowableArray<uint16_t>* ranges,
intptr_t start_index,
intptr_t end_index,
uint16_t min_char,
BlockLabel* fall_through,
BlockLabel* even_label,
BlockLabel* odd_label) {
static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
intptr_t base = (min_char & ~kMask);
// Assert that everything is on one kTableSize page.
for (intptr_t i = start_index; i <= end_index; i++) {
ASSERT((ranges->At(i) & ~kMask) == base);
}
ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base);
char templ[kSize];
BlockLabel* on_bit_set;
BlockLabel* on_bit_clear;
intptr_t bit;
if (even_label == fall_through) {
on_bit_set = odd_label;
on_bit_clear = even_label;
bit = 1;
} else {
on_bit_set = even_label;
on_bit_clear = odd_label;
bit = 0;
}
for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize;
i++) {
templ[i] = bit;
}
intptr_t j = 0;
bit ^= 1;
for (intptr_t i = start_index; i < end_index; i++) {
for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) {
templ[j] = bit;
}
bit ^= 1;
}
for (intptr_t i = j; i < kSize; i++) {
templ[i] = bit;
}
// TODO(erikcorry): Cache these.
const TypedData& ba = TypedData::ZoneHandle(
masm->zone(), TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
for (intptr_t i = 0; i < kSize; i++) {
ba.SetUint8(i, templ[i]);
}
masm->CheckBitInTable(ba, on_bit_set);
if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
}
static void CutOutRange(RegExpMacroAssembler* masm,
ZoneGrowableArray<uint16_t>* ranges,
intptr_t start_index,
intptr_t end_index,
intptr_t cut_index,
BlockLabel* even_label,
BlockLabel* odd_label) {
bool odd = (((cut_index - start_index) & 1) == 1);
BlockLabel* in_range_label = odd ? odd_label : even_label;
BlockLabel dummy;
EmitDoubleBoundaryTest(masm, ranges->At(cut_index),
ranges->At(cut_index + 1) - 1, &dummy, in_range_label,
&dummy);
ASSERT(!dummy.is_linked());
// Cut out the single range by rewriting the array. This creates a new
// range that is a merger of the two ranges on either side of the one we
// are cutting out. The oddity of the labels is preserved.
for (intptr_t j = cut_index; j > start_index; j--) {
(*ranges)[j] = ranges->At(j - 1);
}
for (intptr_t j = cut_index + 1; j < end_index; j++) {
(*ranges)[j] = ranges->At(j + 1);
}
}
// Unicode case. Split the search space into kSize spaces that are handled
// with recursion.
static void SplitSearchSpace(ZoneGrowableArray<uint16_t>* ranges,
intptr_t start_index,
intptr_t end_index,
intptr_t* new_start_index,
intptr_t* new_end_index,
uint16_t* border) {
static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
uint16_t first = ranges->At(start_index);
uint16_t last = ranges->At(end_index) - 1;
*new_start_index = start_index;
*border = (ranges->At(start_index) & ~kMask) + kSize;
while (*new_start_index < end_index) {
if (ranges->At(*new_start_index) > *border) break;
(*new_start_index)++;
}
// new_start_index is the index of the first edge that is beyond the
// current kSize space.
// For very large search spaces we do a binary chop search of the non-Latin1
// space instead of just going to the end of the current kSize space. The
// heuristics are complicated a little by the fact that any 128-character
// encoding space can be quickly tested with a table lookup, so we don't
// wish to do binary chop search at a smaller granularity than that. A
// 128-character space can take up a lot of space in the ranges array if,
// for example, we only want to match every second character (eg. the lower
// case characters on some Unicode pages).
intptr_t binary_chop_index = (end_index + start_index) / 2;
// The first test ensures that we get to the code that handles the Latin1
// range with a single not-taken branch, speeding up this important
// character range (even non-Latin1 charset-based text has spaces and
// punctuation).
if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case.
end_index - start_index > (*new_start_index - start_index) * 2 &&
last - first > kSize * 2 && binary_chop_index > *new_start_index &&
ranges->At(binary_chop_index) >= first + 2 * kSize) {
intptr_t scan_forward_for_section_border = binary_chop_index;
intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1;
while (scan_forward_for_section_border < end_index) {
if (ranges->At(scan_forward_for_section_border) > new_border) {
*new_start_index = scan_forward_for_section_border;
*border = new_border;
break;
}
scan_forward_for_section_border++;
}
}
ASSERT(*new_start_index > start_index);
*new_end_index = *new_start_index - 1;
if (ranges->At(*new_end_index) == *border) {
(*new_end_index)--;
}
if (*border >= ranges->At(end_index)) {
*border = ranges->At(end_index);
*new_start_index = end_index; // Won't be used.
*new_end_index = end_index - 1;
}
}
// Gets a series of segment boundaries representing a character class. If the
// character is in the range between an even and an odd boundary (counting from
// start_index) then go to even_label, otherwise go to odd_label. We already
// know that the character is in the range of min_char to max_char inclusive.
// Either label can be NULL indicating backtracking. Either label can also be
// equal to the fall_through label.
static void GenerateBranches(RegExpMacroAssembler* masm,
ZoneGrowableArray<uint16_t>* ranges,
intptr_t start_index,
intptr_t end_index,
uint16_t min_char,
uint16_t max_char,
BlockLabel* fall_through,
BlockLabel* even_label,
BlockLabel* odd_label) {
uint16_t first = ranges->At(start_index);
uint16_t last = ranges->At(end_index) - 1;
ASSERT(min_char < first);
// Just need to test if the character is before or on-or-after
// a particular character.
if (start_index == end_index) {
EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
return;
}
// Another almost trivial case: There is one interval in the middle that is
// different from the end intervals.
if (start_index + 1 == end_index) {
EmitDoubleBoundaryTest(masm, first, last, fall_through, even_label,
odd_label);
return;
}
// It's not worth using table lookup if there are very few intervals in the
// character class.
if (end_index - start_index <= 6) {
// It is faster to test for individual characters, so we look for those
// first, then try arbitrary ranges in the second round.
static intptr_t kNoCutIndex = -1;
intptr_t cut = kNoCutIndex;
for (intptr_t i = start_index; i < end_index; i++) {
if (ranges->At(i) == ranges->At(i + 1) - 1) {
cut = i;
break;
}
}
if (cut == kNoCutIndex) cut = start_index;
CutOutRange(masm, ranges, start_index, end_index, cut, even_label,
odd_label);
ASSERT(end_index - start_index >= 2);
GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char,
max_char, fall_through, even_label, odd_label);
return;
}
// If there are a lot of intervals in the regexp, then we will use tables to
// determine whether the character is inside or outside the character class.
static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits;
if ((max_char >> kBits) == (min_char >> kBits)) {
EmitUseLookupTable(masm, ranges, start_index, end_index, min_char,
fall_through, even_label, odd_label);
return;
}
if ((min_char >> kBits) != (first >> kBits)) {
masm->CheckCharacterLT(first, odd_label);
GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char,
fall_through, odd_label, even_label);
return;
}
intptr_t new_start_index = 0;
intptr_t new_end_index = 0;
uint16_t border = 0;
SplitSearchSpace(ranges, start_index, end_index, &new_start_index,
&new_end_index, &border);
BlockLabel handle_rest;
BlockLabel* above = &handle_rest;
if (border == last + 1) {
// We didn't find any section that started after the limit, so everything
// above the border is one of the terminal labels.
above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
ASSERT(new_end_index == end_index - 1);
}
ASSERT(start_index <= new_end_index);
ASSERT(new_start_index <= end_index);
ASSERT(start_index < new_start_index);
ASSERT(new_end_index < end_index);
ASSERT(new_end_index + 1 == new_start_index ||
(new_end_index + 2 == new_start_index &&
border == ranges->At(new_end_index + 1)));
ASSERT(min_char < border - 1);
ASSERT(border < max_char);
ASSERT(ranges->At(new_end_index) < border);
ASSERT(border < ranges->At(new_start_index) ||
(border == ranges->At(new_start_index) &&
new_start_index == end_index && new_end_index == end_index - 1 &&
border == last + 1));
ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1));
masm->CheckCharacterGT(border - 1, above);
BlockLabel dummy;
GenerateBranches(masm, ranges, start_index, new_end_index, min_char,
border - 1, &dummy, even_label, odd_label);
if (handle_rest.is_linked()) {
masm->BindBlock(&handle_rest);
bool flip = (new_start_index & 1) != (start_index & 1);
GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char,
&dummy, flip ? odd_label : even_label,
flip ? even_label : odd_label);
}
}
static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
RegExpCharacterClass* cc,
bool one_byte,
BlockLabel* on_failure,
intptr_t cp_offset,
bool check_offset,
bool preloaded,
Zone* zone) {
ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
uint16_t max_char;
if (one_byte) {
max_char = Symbols::kMaxOneCharCodeSymbol;
} else {
max_char = Utf16::kMaxCodeUnit;
}
intptr_t range_count = ranges->length();
intptr_t last_valid_range = range_count - 1;
while (last_valid_range >= 0) {
const CharacterRange& range = ranges->At(last_valid_range);
if (range.from() <= max_char) {
break;
}
last_valid_range--;
}
if (last_valid_range < 0) {
if (!cc->is_negated()) {
macro_assembler->GoTo(on_failure);
}
if (check_offset) {
macro_assembler->CheckPosition(cp_offset, on_failure);
}
return;
}
if (last_valid_range == 0 && ranges->At(0).IsEverything(max_char)) {
if (cc->is_negated()) {
macro_assembler->GoTo(on_failure);
} else {
// This is a common case hit by non-anchored expressions.
if (check_offset) {
macro_assembler->CheckPosition(cp_offset, on_failure);
}
}
return;
}
if (!preloaded) {
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
}
if (cc->is_standard() && macro_assembler->CheckSpecialCharacterClass(
cc->standard_type(), on_failure)) {
return;
}
// A new list with ascending entries. Each entry is a code unit
// where there is a boundary between code units that are part of
// the class and code units that are not. Normally we insert an
// entry at zero which goes to the failure label, but if there
// was already one there we fall through for success on that entry.
// Subsequent entries have alternating meaning (success/failure).
ZoneGrowableArray<uint16_t>* range_boundaries =
new (zone) ZoneGrowableArray<uint16_t>(last_valid_range);
bool zeroth_entry_is_failure = !cc->is_negated();
for (intptr_t i = 0; i <= last_valid_range; i++) {
const CharacterRange& range = ranges->At(i);
if (range.from() == 0) {
ASSERT(i == 0);
zeroth_entry_is_failure = !zeroth_entry_is_failure;
} else {
range_boundaries->Add(range.from());
}
if (range.to() + 1 <= max_char) {
range_boundaries->Add(range.to() + 1);
}
}
intptr_t end_index = range_boundaries->length() - 1;
BlockLabel fall_through;
GenerateBranches(macro_assembler, range_boundaries,
0, // start_index.
end_index,
0, // min_char.
max_char, &fall_through,
zeroth_entry_is_failure ? &fall_through : on_failure,
zeroth_entry_is_failure ? on_failure : &fall_through);
macro_assembler->BindBlock(&fall_through);
}
RegExpNode::~RegExpNode() {}
RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
Trace* trace) {
// If we are generating a greedy loop then don't stop and don't reuse code.
if (trace->stop_node() != NULL) {
return CONTINUE;
}
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
if (trace->is_trivial()) {
if (label_.is_bound()) {
// We are being asked to generate a generic version, but that's already
// been done so just go to it.
macro_assembler->GoTo(&label_);
return DONE;
}
if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
// To avoid too deep recursion we push the node to the work queue and just
// generate a goto here.
compiler->AddWork(this);
macro_assembler->GoTo(&label_);
return DONE;
}
// Generate generic version of the node and bind the label for later use.
macro_assembler->BindBlock(&label_);
return CONTINUE;
}
// We are being asked to make a non-generic version. Keep track of how many
// non-generic versions we generate so as not to overdo it.
trace_count_++;
if (kRegexpOptimization && trace_count_ < kMaxCopiesCodeGenerated &&
compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
return CONTINUE;
}
// If we get here code has been generated for this node too many times or
// recursion is too deep. Time to switch to a generic version. The code for
// generic versions above can handle deep recursion properly.
trace->Flush(compiler, this);
return DONE;
}
intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
if (budget <= 0) return 0;
if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start);
}
void ActionNode::FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (action_type_ == BEGIN_SUBMATCH) {
bm->SetRest(offset);
} else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
}
SaveBMInfo(bm, not_at_start, offset);
}
intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
if (budget <= 0) return 0;
// If we know we are not at the start and we are asked "how many characters
// will you match if you succeed?" then we can answer anything since false
// implies false. So lets just return the max answer (still_to_find) since
// that won't prevent us from preloading a lot of characters for the other
// branches in the node graph.
if (assertion_type() == AT_START && not_at_start) return still_to_find;
return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start);
}
void AssertionNode::FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Match the behaviour of EatsAtLeast on this node.
if (assertion_type() == AT_START && not_at_start) return;
on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
SaveBMInfo(bm, not_at_start, offset);
}
intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
if (read_backward()) return 0;
if (budget <= 0) return 0;
return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start);
}
intptr_t TextNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
if (read_backward()) return 0;
intptr_t answer = Length();
if (answer >= still_to_find) return answer;
if (budget <= 0) return answer;
// We are not at start after this node so we set the last argument to 'true'.
return answer +
on_success()->EatsAtLeast(still_to_find - answer, budget - 1, true);
}
intptr_t NegativeLookaroundChoiceNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
if (budget <= 0) return 0;
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
RegExpNode* node = (*alternatives_)[1].node();
return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
}
void NegativeLookaroundChoiceNode::GetQuickCheckDetails(
QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t filled_in,
bool not_at_start) {
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
RegExpNode* node = (*alternatives_)[1].node();
return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
}
intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find,
intptr_t budget,
RegExpNode* ignore_this_node,
bool not_at_start) {
if (budget <= 0) return 0;
intptr_t min = 100;
intptr_t choice_count = alternatives_->length();
budget = (budget - 1) / choice_count;
for (intptr_t i = 0; i < choice_count; i++) {
RegExpNode* node = (*alternatives_)[i].node();
if (node == ignore_this_node) continue;
intptr_t node_eats_at_least =
node->EatsAtLeast(still_to_find, budget, not_at_start);
if (node_eats_at_least < min) min = node_eats_at_least;
if (min == 0) return 0;
}
return min;
}
intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
return EatsAtLeastHelper(still_to_find, budget - 1, loop_node_, not_at_start);
}
intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) {
return EatsAtLeastHelper(still_to_find, budget, NULL, not_at_start);
}
// Takes the left-most 1-bit and smears it out, setting all bits to its right.
static inline uint32_t SmearBitsRight(uint32_t v) {
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return v;
}
bool QuickCheckDetails::Rationalize(bool asc) {
bool found_useful_op = false;
uint32_t char_mask;
if (asc) {
char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
char_mask = Utf16::kMaxCodeUnit;
}
mask_ = 0;
value_ = 0;
intptr_t char_shift = 0;
for (intptr_t i = 0; i < characters_; i++) {
Position* pos = &positions_[i];
if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) {
found_useful_op = true;
}
mask_ |= (pos->mask & char_mask) << char_shift;
value_ |= (pos->value & char_mask) << char_shift;
char_shift += asc ? 8 : 16;
}
return found_useful_op;
}
bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
Trace* bounds_check_trace,
Trace* trace,
bool preload_has_checked_bounds,
BlockLabel* on_possible_success,
QuickCheckDetails* details,
bool fall_through_on_failure) {
if (details->characters() == 0) return false;
GetQuickCheckDetails(details, compiler, 0,
trace->at_start() == Trace::FALSE_VALUE);
if (details->cannot_match()) return false;
if (!details->Rationalize(compiler->one_byte())) return false;
ASSERT(details->characters() == 1 ||
compiler->macro_assembler()->CanReadUnaligned());
uint32_t mask = details->mask();
uint32_t value = details->value();
RegExpMacroAssembler* assembler = compiler->macro_assembler();
if (trace->characters_preloaded() != details->characters()) {
ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset());
// We are attempting to preload the minimum number of characters
// any choice would eat, so if the bounds check fails, then none of the
// choices can succeed, so we can just immediately backtrack, rather
// than go to the next choice.
assembler->LoadCurrentCharacter(
trace->cp_offset(), bounds_check_trace->backtrack(),
!preload_has_checked_bounds, details->characters());
}
bool need_mask = true;
if (details->characters() == 1) {
// If number of characters preloaded is 1 then we used a byte or 16 bit
// load so the value is already masked down.
uint32_t char_mask;
if (compiler->one_byte()) {
char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
char_mask = Utf16::kMaxCodeUnit;
}
if ((mask & char_mask) == char_mask) need_mask = false;
mask &= char_mask;
} else {
// For 2-character preloads in one-byte mode or 1-character preloads in
// two-byte mode we also use a 16 bit load with zero extend.
if (details->characters() == 2 && compiler->one_byte()) {
if ((mask & 0xffff) == 0xffff) need_mask = false;
} else if (details->characters() == 1 && !compiler->one_byte()) {
if ((mask & 0xffff) == 0xffff) need_mask = false;
} else {
if (mask == 0xffffffff) need_mask = false;
}
}
if (fall_through_on_failure) {
if (need_mask) {
assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
} else {
assembler->CheckCharacter(value, on_possible_success);
}
} else {
if (need_mask) {
assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
} else {
assembler->CheckNotCharacter(value, trace->backtrack());
}
}
return true;
}
// Here is the meat of GetQuickCheckDetails (see also the comment on the
// super-class in the .h file).
//
// We iterate along the text object, building up for each character a
// mask and value that can be used to test for a quick failure to match.
// The masks and values for the positions will be combined into a single
// machine word for the current character width in order to be used in
// generating a quick check.
void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
#if defined(__GNUC__) && defined(__BYTE_ORDER__)
// TODO(zerny): Make the combination code byte-order independent.
ASSERT(details->characters() == 1 ||
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__));
#endif
// Do not collect any quick check details if the text node reads backward,
// since it reads in the opposite direction than we use for quick checks.
if (read_backward()) return;
ASSERT(characters_filled_in < details->characters());
intptr_t characters = details->characters();
int32_t char_mask;
if (compiler->one_byte()) {
char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
char_mask = Utf16::kMaxCodeUnit;
}
for (intptr_t k = 0; k < elms_->length(); k++) {
TextElement elm = elms_->At(k);
if (elm.text_type() == TextElement::ATOM) {
ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
for (intptr_t i = 0; i < characters && i < quarks->length(); i++) {
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
uint16_t c = quarks->At(i);
if (c > char_mask) {
// If we expect a non-Latin1 character from an one-byte string,
// there is no way we can match. Not even case independent
// matching can turn an Latin1 character into non-Latin1 or
// vice versa.
// TODO(dcarney): issue 3550. Verify that this works as expected.
// For example, \u0178 is uppercase of \u00ff (y-umlaut).
details->set_cannot_match();
pos->determines_perfectly = false;
return;
}
if (elm.atom()->ignore_case()) {
int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
intptr_t length =
GetCaseIndependentLetters(c, compiler->one_byte(), chars);
ASSERT(length != 0); // Can only happen if c > char_mask (see above).
if (length == 1) {
// This letter has no case equivalents, so it's nice and simple
// and the mask-compare will determine definitely whether we have
// a match at this character position.
pos->mask = char_mask;
pos->value = c;
pos->determines_perfectly = true;
} else {
uint32_t common_bits = char_mask;
uint32_t bits = chars[0];
for (intptr_t j = 1; j < length; j++) {
uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
common_bits ^= differing_bits;
bits &= common_bits;
}
// If length is 2 and common bits has only one zero in it then
// our mask and compare instruction will determine definitely
// whether we have a match at this character position. Otherwise
// it can only be an approximate check.
uint32_t one_zero = (common_bits | ~char_mask);
if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
pos->determines_perfectly = true;
}
pos->mask = common_bits;
pos->value = bits;
}
} else {
// Don't ignore case. Nice simple case where the mask-compare will
// determine definitely whether we have a match at this character
// position.
pos->mask = char_mask;
pos->value = c;
pos->determines_perfectly = true;
}
characters_filled_in++;
ASSERT(characters_filled_in <= details->characters());
if (characters_filled_in == details->characters()) {
return;
}
}
} else {
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
RegExpCharacterClass* tree = elm.char_class();
ZoneGrowableArray<CharacterRange>* ranges = tree->ranges();
ASSERT(!ranges->is_empty());
if (tree->is_negated()) {
// A quick check uses multi-character mask and compare. There is no
// useful way to incorporate a negative char class into this scheme
// so we just conservatively create a mask and value that will always
// succeed.
pos->mask = 0;
pos->value = 0;
} else {
intptr_t first_range = 0;
while (ranges->At(first_range).from() > char_mask) {
first_range++;
if (first_range == ranges->length()) {
details->set_cannot_match();
pos->determines_perfectly = false;
return;
}
}
CharacterRange range = ranges->At(first_range);
uint16_t from = range.from();
uint16_t to = range.to();
if (to > char_mask) {
to = char_mask;
}
uint32_t differing_bits = (from ^ to);
// A mask and compare is only perfect if the differing bits form a
// number like 00011111 with one single block of trailing 1s.
if ((differing_bits & (differing_bits + 1)) == 0 &&
from + differing_bits == to) {
pos->determines_perfectly = true;
}
uint32_t common_bits = ~SmearBitsRight(differing_bits);
uint32_t bits = (from & common_bits);
for (intptr_t i = first_range + 1; i < ranges->length(); i++) {
CharacterRange range = ranges->At(i);
uint16_t from = range.from();
uint16_t to = range.to();
if (from > char_mask) continue;
if (to > char_mask) to = char_mask;
// Here we are combining more ranges into the mask and compare
// value. With each new range the mask becomes more sparse and
// so the chances of a false positive rise. A character class
// with multiple ranges is assumed never to be equivalent to a
// mask and compare operation.
pos->determines_perfectly = false;
uint32_t new_common_bits = (from ^ to);
new_common_bits = ~SmearBitsRight(new_common_bits);
common_bits &= new_common_bits;
bits &= new_common_bits;
uint32_t differing_bits = (from & common_bits) ^ bits;
common_bits ^= differing_bits;
bits &= common_bits;
}
pos->mask = common_bits;
pos->value = bits;
}
characters_filled_in++;
ASSERT(characters_filled_in <= details->characters());
if (characters_filled_in == details->characters()) {
return;
}
}
}
ASSERT(characters_filled_in != details->characters());
if (!details->cannot_match()) {
on_success()->GetQuickCheckDetails(details, compiler, characters_filled_in,
true);
}
}
void QuickCheckDetails::Clear() {
for (int i = 0; i < characters_; i++) {
positions_[i].mask = 0;
positions_[i].value = 0;
positions_[i].determines_perfectly = false;
}
characters_ = 0;
}
void QuickCheckDetails::Advance(intptr_t by, bool one_byte) {
if (by >= characters_ || by < 0) {
// check that by < 0 => characters_ == 0
ASSERT(by >= 0 || characters_ == 0);
Clear();
return;
}
for (intptr_t i = 0; i < characters_ - by; i++) {
positions_[i] = positions_[by + i];
}
for (intptr_t i = characters_ - by; i < characters_; i++) {
positions_[i].mask = 0;
positions_[i].value = 0;
positions_[i].determines_perfectly = false;
}
characters_ -= by;
// We could change mask_ and value_ here but we would never advance unless
// they had already been used in a check and they won't be used again because
// it would gain us nothing. So there's no point.
}
void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
ASSERT(characters_ == other->characters_);
if (other->cannot_match_) {
return;
}
if (cannot_match_) {
*this = *other;
return;
}
for (intptr_t i = from_index; i < characters_; i++) {
QuickCheckDetails::Position* pos = positions(i);
QuickCheckDetails::Position* other_pos = other->positions(i);
if (pos->mask != other_pos->mask || pos->value != other_pos->value ||
!other_pos->determines_perfectly) {
// Our mask-compare operation will be approximate unless we have the
// exact same operation on both sides of the alternation.
pos->determines_perfectly = false;
}
pos->mask &= other_pos->mask;
pos->value &= pos->mask;
other_pos->value &= pos->mask;
uint16_t differing_bits = (pos->value ^ other_pos->value);
pos->mask &= ~differing_bits;
pos->value &= pos->mask;
}
}
class VisitMarker : public ValueObject {
public:
explicit VisitMarker(NodeInfo* info) : info_(info) {
ASSERT(!info->visited);
info->visited = true;
}
~VisitMarker() { info_->visited = false; }
private:
NodeInfo* info_;
};
RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
ASSERT(!info()->visited);
VisitMarker marker(info());
return FilterSuccessor(depth - 1);
}
RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth) {
RegExpNode* next = on_success_->FilterOneByte(depth - 1);
if (next == NULL) return set_replacement(NULL);
on_success_ = next;
return set_replacement(this);
}
// We need to check for the following characters: 0x39c 0x3bc 0x178.
static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
// TODO(dcarney): this could be a lot more efficient.
return range.Contains(0x39c) || range.Contains(0x3bc) ||
range.Contains(0x178);
}
static bool RangesContainLatin1Equivalents(
ZoneGrowableArray<CharacterRange>* ranges) {
for (intptr_t i = 0; i < ranges->length(); i++) {
// TODO(dcarney): this could be a lot more efficient.
if (RangeContainsLatin1Equivalents(ranges->At(i))) return true;
}
return false;
}
static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) {
ASSERT(c > Symbols::kMaxOneCharCodeSymbol);
switch (c) {
// This are equivalent characters in unicode.
case 0x39c:
case 0x3bc:
return 0xb5;
// This is an uppercase of a Latin-1 character
// outside of Latin-1.
case 0x178:
return 0xff;
}
return 0;
}
RegExpNode* TextNode::FilterOneByte(intptr_t depth) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
ASSERT(!info()->visited);
VisitMarker marker(info());
intptr_t element_count = elms_->length();
for (intptr_t i = 0; i < element_count; i++) {
TextElement elm = elms_->At(i);
if (elm.text_type() == TextElement::ATOM) {
ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
for (intptr_t j = 0; j < quarks->length(); j++) {
uint16_t c = quarks->At(j);
if (c <= Symbols::kMaxOneCharCodeSymbol) continue;
if (!elm.atom()->ignore_case()) return set_replacement(NULL);
// Here, we need to check for characters whose upper and lower cases
// are outside the Latin-1 range.
uint16_t converted = ConvertNonLatin1ToLatin1(c);
// Character is outside Latin-1 completely
if (converted == 0) return set_replacement(NULL);
// Convert quark to Latin-1 in place.
(*quarks)[0] = converted;
}
} else {
ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
RegExpCharacterClass* cc = elm.char_class();
ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
// Now they are in order so we only need to look at the first.
intptr_t range_count = ranges->length();
if (cc->is_negated()) {
if (range_count != 0 && ranges->At(0).from() == 0 &&
ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) {
// This will be handled in a later filter.
if (cc->flags().IgnoreCase() &&
RangesContainLatin1Equivalents(ranges)) {
continue;
}
return set_replacement(NULL);
}
} else {
if (range_count == 0 ||
ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) {
// This will be handled in a later filter.
if (cc->flags().IgnoreCase() &&
RangesContainLatin1Equivalents(ranges))
continue;
return set_replacement(NULL);
}
}
}
}
return FilterSuccessor(depth - 1);
}
RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
{
VisitMarker marker(info());
RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1);
// If we can't continue after the loop then there is no sense in doing the
// loop.
if (continue_replacement == NULL) return set_replacement(NULL);
}
return ChoiceNode::FilterOneByte(depth - 1);
}
RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
VisitMarker marker(info());
intptr_t choice_count = alternatives_->length();
for (intptr_t i = 0; i < choice_count; i++) {
GuardedAlternative alternative = alternatives_->At(i);
if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
set_replacement(this);
return this;
}
}
intptr_t surviving = 0;
RegExpNode* survivor = NULL;
for (intptr_t i = 0; i < choice_count; i++) {
GuardedAlternative alternative = alternatives_->At(i);
RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1);
ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK.
if (replacement != NULL) {
(*alternatives_)[i].set_node(replacement);
surviving++;
survivor = replacement;
}
}
if (surviving < 2) return set_replacement(survivor);
set_replacement(this);
if (surviving == choice_count) {
return this;
}
// Only some of the nodes survived the filtering. We need to rebuild the
// alternatives list.
ZoneGrowableArray<GuardedAlternative>* new_alternatives =
new (Z) ZoneGrowableArray<GuardedAlternative>(surviving);
for (intptr_t i = 0; i < choice_count; i++) {
RegExpNode* replacement =
(*alternatives_)[i].node()->FilterOneByte(depth - 1);
if (replacement != NULL) {
(*alternatives_)[i].set_node(replacement);
new_alternatives->Add((*alternatives_)[i]);
}
}
alternatives_ = new_alternatives;
return this;
}
RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(intptr_t depth) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
VisitMarker marker(info());
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
RegExpNode* node = (*alternatives_)[1].node();
RegExpNode* replacement = node->FilterOneByte(depth - 1);
if (replacement == NULL) return set_replacement(NULL);
(*alternatives_)[1].set_node(replacement);
RegExpNode* neg_node = (*alternatives_)[0].node();
RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1);
// If the negative lookahead is always going to fail then
// we don't need to check it.
if (neg_replacement == NULL) return set_replacement(replacement);
(*alternatives_)[0].set_node(neg_replacement);
return set_replacement(this);
}
void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
if (body_can_be_zero_length_ || info()->visited) return;
VisitMarker marker(info());
return ChoiceNode::GetQuickCheckDetails(details, compiler,
characters_filled_in, not_at_start);
}
void LoopChoiceNode::FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (body_can_be_zero_length_ || budget <= 0) {
bm->SetRest(offset);
SaveBMInfo(bm, not_at_start, offset);
return;
}
ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start);
SaveBMInfo(bm, not_at_start, offset);
}
void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
not_at_start = (not_at_start || not_at_start_);
intptr_t choice_count = alternatives_->length();
ASSERT(choice_count > 0);
(*alternatives_)[0].node()->GetQuickCheckDetails(
details, compiler, characters_filled_in, not_at_start);
for (intptr_t i = 1; i < choice_count; i++) {
QuickCheckDetails new_details(details->characters());
RegExpNode* node = (*alternatives_)[i].node();
node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in,
not_at_start);
// Here we merge the quick match details of the two branches.
details->Merge(&new_details, characters_filled_in);
}
}
// Check for [0-9A-Z_a-z].
static void EmitWordCheck(RegExpMacroAssembler* assembler,
BlockLabel* word,
BlockLabel* non_word,
bool fall_through_on_word) {
if (assembler->CheckSpecialCharacterClass(
fall_through_on_word ? 'w' : 'W',
fall_through_on_word ? non_word : word)) {
// Optimized implementation available.
return;
}
assembler->CheckCharacterGT('z', non_word);
assembler->CheckCharacterLT('0', non_word);
assembler->CheckCharacterGT('a' - 1, word);
assembler->CheckCharacterLT('9' + 1, word);
assembler->CheckCharacterLT('A', non_word);
assembler->CheckCharacterLT('Z' + 1, word);
if (fall_through_on_word) {
assembler->CheckNotCharacter('_', non_word);
} else {
assembler->CheckCharacter('_', word);
}
}
// Emit the code to check for a ^ in multiline mode (1-character lookbehind
// that matches newline or the start of input).
static void EmitHat(RegExpCompiler* compiler,
RegExpNode* on_success,
Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
// We will be loading the previous character into the current character
// register.
Trace new_trace(*trace);
new_trace.InvalidateCurrentCharacter();
BlockLabel ok;
if (new_trace.cp_offset() == 0) {
// The start of input counts as a newline in this context, so skip to
// ok if we are at the start.
assembler->CheckAtStart(&ok);
}
// We already checked that we are not at the start of input so it must be
// OK to load the previous character.
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
new_trace.backtrack(), false);
if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) {
// Newline means \n, \r, 0x2028 or 0x2029.
if (!compiler->one_byte()) {
assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
}
assembler->CheckCharacter('\n', &ok);
assembler->CheckNotCharacter('\r', new_trace.backtrack());
}
assembler->BindBlock(&ok);
on_success->Emit(compiler, &new_trace);
}
// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
Trace::TriBool next_is_word_character = Trace::UNKNOWN;
bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
BoyerMooreLookahead* lookahead = bm_info(not_at_start);
if (lookahead == NULL) {
intptr_t eats_at_least =
Utils::Minimum(kMaxLookaheadForBoyerMoore,
EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget,
not_at_start));
if (eats_at_least >= 1) {
BoyerMooreLookahead* bm =
new (Z) BoyerMooreLookahead(eats_at_least, compiler, Z);
FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE;
if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
}
} else {
if (lookahead->at(0)->is_non_word())
next_is_word_character = Trace::FALSE_VALUE;
if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
}
bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
if (next_is_word_character == Trace::UNKNOWN) {
BlockLabel before_non_word;
BlockLabel before_word;
if (trace->characters_preloaded() != 1) {
assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
}
// Fall through on non-word.
EmitWordCheck(assembler, &before_word, &before_non_word, false);
// Next character is not a word character.
assembler->BindBlock(&before_non_word);
BlockLabel ok;
// Backtrack on \B (non-boundary check) if previous is a word,
// since we know next *is not* a word and this would be a boundary.
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
if (!assembler->IsClosed()) {
assembler->GoTo(&ok);
}
assembler->BindBlock(&before_word);
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
assembler->BindBlock(&ok);
} else if (next_is_word_character == Trace::TRUE_VALUE) {
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
} else {
ASSERT(next_is_word_character == Trace::FALSE_VALUE);
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
}
}
void AssertionNode::BacktrackIfPrevious(
RegExpCompiler* compiler,
Trace* trace,
AssertionNode::IfPrevious backtrack_if_previous) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
Trace new_trace(*trace);
new_trace.InvalidateCurrentCharacter();
BlockLabel fall_through, dummy;
BlockLabel* non_word = backtrack_if_previous == kIsNonWord
? new_trace.backtrack()
: &fall_through;
BlockLabel* word = backtrack_if_previous == kIsNonWord
? &fall_through
: new_trace.backtrack();
if (new_trace.cp_offset() == 0) {
// The start of input counts as a non-word character, so the question is
// decided if we are at the start.
assembler->CheckAtStart(non_word);
}
// We already checked that we are not at the start of input so it must be
// OK to load the previous character.
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
assembler->BindBlock(&fall_through);
on_success()->Emit(compiler, &new_trace);
}
void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t filled_in,
bool not_at_start) {
if (assertion_type_ == AT_START && not_at_start) {
details->set_cannot_match();
return;
}
return on_success()->GetQuickCheckDetails(details, compiler, filled_in,
not_at_start);
}
void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
switch (assertion_type_) {
case AT_END: {
BlockLabel ok;
assembler->CheckPosition(trace->cp_offset(), &ok);
assembler->GoTo(trace->backtrack());
assembler->BindBlock(&ok);
break;
}
case AT_START: {
if (trace->at_start() == Trace::FALSE_VALUE) {
assembler->GoTo(trace->backtrack());
return;
}
if (trace->at_start() == Trace::UNKNOWN) {
assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack());
Trace at_start_trace = *trace;
at_start_trace.set_at_start(Trace::TRUE_VALUE);
on_success()->Emit(compiler, &at_start_trace);
return;
}
} break;
case AFTER_NEWLINE:
EmitHat(compiler, on_success(), trace);
return;
case AT_BOUNDARY:
case AT_NON_BOUNDARY: {
EmitBoundaryCheck(compiler, trace);
return;
}
}
on_success()->Emit(compiler, trace);
}
static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) {
if (quick_check == NULL) return false;
if (offset >= quick_check->characters()) return false;
return quick_check->positions(offset)->determines_perfectly;
}
static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) {
if (index > *checked_up_to) {
*checked_up_to = index;
}
}
// We call this repeatedly to generate code for each pass over the text node.
// The passes are in increasing order of difficulty because we hope one
// of the first passes will fail in which case we are saved the work of the
// later passes. for example for the case independent regexp /%[asdfghjkl]a/
// we will check the '%' in the first pass, the case independent 'a' in the
// second pass and the character class in the last pass.
//
// The passes are done from right to left, so for example to test for /bar/
// we will first test for an 'r' with offset 2, then an 'a' with offset 1
// and then a 'b' with offset 0. This means we can avoid the end-of-input
// bounds check most of the time. In the example we only need to check for
// end-of-input when loading the putative 'r'.
//
// A slight complication involves the fact that the first character may already
// be fetched into a register by the previous node. In this case we want to
// do the test for that character first. We do this in separate passes. The
// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
// pass has been performed then subsequent passes will have true in
// first_element_checked to indicate that that character does not need to be
// checked again.
//
// In addition to all this we are passed a Trace, which can
// contain an AlternativeGeneration object. In this AlternativeGeneration
// object we can see details of any quick check that was already passed in
// order to get to the code we are now generating. The quick check can involve
// loading characters, which means we do not need to recheck the bounds
// up to the limit the quick check already checked. In addition the quick
// check can have involved a mask and compare operation which may simplify
// or obviate the need for further checks at some character positions.
void TextNode::TextEmitPass(RegExpCompiler* compiler,
TextEmitPassType pass,
bool preloaded,
Trace* trace,
bool first_element_checked,
intptr_t* checked_up_to) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
BlockLabel* backtrack = trace->backtrack();
QuickCheckDetails* quick_check = trace->quick_check_performed();
intptr_t element_count = elms_->length();
intptr_t backward_offset = read_backward() ? -Length() : 0;
for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
TextElement elm = elms_->At(i);
intptr_t cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
if (elm.text_type() == TextElement::ATOM) {
ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) {
if (SkipPass(pass, elm.atom()->ignore_case())) continue;
if (first_element_checked && i == 0 && j == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
EmitCharacterFunction* emit_function = NULL;
uint16_t quark = quarks->At(j);
if (elm.atom()->ignore_case()) {
// Everywhere else we assume that a non-Latin-1 character cannot match
// a Latin-1 character. Avoid the cases where this is assumption is
// invalid by using the Latin1 equivalent instead.
quark = Latin1::TryConvertToLatin1(quark);
}
switch (pass) {
case NON_LATIN1_MATCH:
ASSERT(one_byte);
if (quark > Symbols::kMaxOneCharCodeSymbol) {
assembler->GoTo(backtrack);
return;
}
break;
case NON_LETTER_CHARACTER_MATCH:
emit_function = &EmitAtomNonLetter;
break;
case SIMPLE_CHARACTER_MATCH:
emit_function = &EmitSimpleCharacter;
break;
case CASE_CHARACTER_MATCH:
emit_function = &EmitAtomLetter;
break;
default:
break;
}
if (emit_function != NULL) {
const bool bounds_check =
*checked_up_to < (cp_offset + j) || read_backward();
bool bound_checked =
emit_function(Z, compiler, quarks->At(j), backtrack,
cp_offset + j, bounds_check, preloaded);
if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
}
}
} else {
ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
if (pass == CHARACTER_CLASS_MATCH) {
if (first_element_checked && i == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
RegExpCharacterClass* cc = elm.char_class();
bool bounds_check = *checked_up_to < cp_offset || read_backward();
EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
bounds_check, preloaded, Z);
UpdateBoundsCheck(cp_offset, checked_up_to);
}
}
}
}
intptr_t TextNode::Length() {
TextElement elm = elms_->Last();
ASSERT(elm.cp_offset() >= 0);
return elm.cp_offset() + elm.length();
}
bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) {
TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass);
if (ignore_case) {
return pass == SIMPLE_CHARACTER_MATCH;
} else {
return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
}
}
TextNode* TextNode::CreateForCharacterRanges(
ZoneGrowableArray<CharacterRange>* ranges,
bool read_backward,
RegExpNode* on_success,
RegExpFlags flags) {
ASSERT(ranges != nullptr);
ZoneGrowableArray<TextElement>* elms = new ZoneGrowableArray<TextElement>(1);
elms->Add(TextElement::CharClass(new RegExpCharacterClass(ranges, flags)));
return new TextNode(elms, read_backward, on_success);
}
TextNode* TextNode::CreateForSurrogatePair(CharacterRange lead,
CharacterRange trail,
bool read_backward,
RegExpNode* on_success,
RegExpFlags flags) {
auto lead_ranges = CharacterRange::List(on_success->zone(), lead);
auto trail_ranges = CharacterRange::List(on_success->zone(), trail);
auto elms = new ZoneGrowableArray<TextElement>(2);
elms->Add(
TextElement::CharClass(new RegExpCharacterClass(lead_ranges, flags)));
elms->Add(
TextElement::CharClass(new RegExpCharacterClass(trail_ranges, flags)));
return new TextNode(elms, read_backward, on_success);
}
// This generates the code to match a text node. A text node can contain
// straight character sequences (possibly to be matched in a case-independent
// way) and character classes. For efficiency we do not do this in a single
// pass from left to right. Instead we pass over the text node several times,
// emitting code for some character positions every time. See the comment on
// TextEmitPass for details.
void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
ASSERT(limit_result == CONTINUE);
if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
compiler->SetRegExpTooBig();
return;
}
if (compiler->one_byte()) {
intptr_t dummy = 0;
TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
}
bool first_elt_done = false;
intptr_t bound_checked_to = trace->cp_offset() - 1;
bound_checked_to += trace->bound_checked_up_to();
// If a character is preloaded into the current character register then
// check that now.
if (trace->characters_preloaded() == 1) {
for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), true, trace,
false, &bound_checked_to);
}
first_elt_done = true;
}
for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), false, trace,
first_elt_done, &bound_checked_to);
}
Trace successor_trace(*trace);
// If we advance backward, we may end up at the start.
successor_trace.AdvanceCurrentPositionInTrace(
read_backward() ? -Length() : Length(), compiler);
successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN
: Trace::FALSE_VALUE);
RecursionCheck rc(compiler);
on_success()->Emit(compiler, &successor_trace);
}
void Trace::InvalidateCurrentCharacter() {
characters_preloaded_ = 0;
}
void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
RegExpCompiler* compiler) {
// We don't have an instruction for shifting the current character register
// down or for using a shifted value for anything so lets just forget that
// we preloaded any characters into it.
characters_preloaded_ = 0;
// Adjust the offsets of the quick check performed information. This
// information is used to find out what we already determined about the
// characters by means of mask and compare.
quick_check_performed_.Advance(by, compiler->one_byte());
cp_offset_ += by;
if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
compiler->SetRegExpTooBig();
cp_offset_ = 0;
}
bound_checked_up_to_ =
Utils::Maximum(static_cast<intptr_t>(0), bound_checked_up_to_ - by);
}
void TextNode::MakeCaseIndependent(bool is_one_byte) {
intptr_t element_count = elms_->length();
for (intptr_t i = 0; i < element_count; i++) {
TextElement elm = elms_->At(i);
if (elm.text_type() == TextElement::CHAR_CLASS) {
RegExpCharacterClass* cc = elm.char_class();
bool case_equivalents_already_added =
cc->flags().NeedsUnicodeCaseEquivalents();
if (cc->flags().IgnoreCase() && !case_equivalents_already_added) {
// None of the standard character classes is different in the case
// independent case and it slows us down if we don't know that.
if (cc->is_standard()) continue;
CharacterRange::AddCaseEquivalents(cc->ranges(), is_one_byte, Z);
}
}
}
}
intptr_t TextNode::GreedyLoopTextLength() {
TextElement elm = elms_->At(elms_->length() - 1);
return elm.cp_offset() + elm.length();
}
RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
RegExpCompiler* compiler) {
if (read_backward()) return nullptr;
if (elms_->length() != 1) return NULL;
TextElement elm = elms_->At(0);
if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
RegExpCharacterClass* node = elm.char_class();
ZoneGrowableArray<CharacterRange>* ranges = node->ranges();
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
if (node->is_negated()) {
return ranges->length() == 0 ? on_success() : NULL;
}
if (ranges->length() != 1) return NULL;
uint32_t max_char;
if (compiler->one_byte()) {
max_char = Symbols::kMaxOneCharCodeSymbol;
} else {
max_char = Utf16::kMaxCodeUnit;
}
return ranges->At(0).IsEverything(max_char) ? on_success() : NULL;
}
// Finds the fixed match length of a sequence of nodes that goes from
// this alternative and back to this choice node. If there are variable
// length nodes or other complications in the way then return a sentinel
// value indicating that a greedy loop cannot be constructed.
intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative(
const GuardedAlternative* alternative) {
intptr_t length = 0;
RegExpNode* node = alternative->node();
// Later we will generate code for all these text nodes using recursion
// so we have to limit the max number.
intptr_t recursion_depth = 0;
while (node != this) {
if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
return kNodeIsTooComplexForGreedyLoops;
}
intptr_t node_length = node->GreedyLoopTextLength();
if (node_length == kNodeIsTooComplexForGreedyLoops) {
return kNodeIsTooComplexForGreedyLoops;
}
length += node_length;
SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
node = seq_node->on_success();
}
return read_backward() ? -length : length;
}
void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
ASSERT(loop_node_ == NULL);
AddAlternative(alt);
loop_node_ = alt.node();
}
void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
ASSERT(continue_node_ == NULL);
AddAlternative(alt);
continue_node_ = alt.node();
}
void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
if (trace->stop_node() == this) {
// Back edge of greedy optimized loop node graph.
intptr_t text_length =
GreedyLoopTextLengthForAlternative(&alternatives_->At(0));
ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
// Update the counter-based backtracking info on the stack. This is an
// optimization for greedy loops (see below).
ASSERT(trace->cp_offset() == text_length);
macro_assembler->AdvanceCurrentPosition(text_length);
macro_assembler->GoTo(trace->loop_label());
return;
}
ASSERT(trace->stop_node() == NULL);
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
return;
}
ChoiceNode::Emit(compiler, trace);
}
intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
intptr_t eats_at_least) {
intptr_t preload_characters =
Utils::Minimum(static_cast<intptr_t>(4), eats_at_least);
if (compiler->one_byte()) {
#if !defined(DART_COMPRESSED_POINTERS) && !defined(TARGET_ARCH_RISCV32)
if (preload_characters > 4) preload_characters = 4;
// We can't preload 3 characters because there is no machine instruction
// to do that. We can't just load 4 because we could be reading
// beyond the end of the string, which could cause a memory fault.
if (preload_characters == 3) preload_characters = 2;
#else
// Ensure LoadCodeUnitsInstr can always produce a Smi. See
// https://github.com/dart-lang/sdk/issues/29951
if (preload_characters > 2) preload_characters = 2;
#endif
} else {
#if !defined(DART_COMPRESSED_POINTERS) && !defined(TARGET_ARCH_RISCV32)
if (preload_characters > 2) preload_characters = 2;
#else
// Ensure LoadCodeUnitsInstr can always produce a Smi. See
// https://github.com/dart-lang/sdk/issues/29951
if (preload_characters > 1) preload_characters = 1;
#endif
}
if (!compiler->macro_assembler()->CanReadUnaligned()) {
if (preload_characters > 1) preload_characters = 1;
}
return preload_characters;
}
// This structure is used when generating the alternatives in a choice node. It
// records the way the alternative is being code generated.
struct AlternativeGeneration {
AlternativeGeneration()
: possible_success(),
expects_preload(false),
after(),
quick_check_details() {}
BlockLabel possible_success;
bool expects_preload;
BlockLabel after;
QuickCheckDetails quick_check_details;
};
// Creates a list of AlternativeGenerations. If the list has a reasonable
// size then it is on the stack, otherwise the excess is on the heap.
class AlternativeGenerationList {
public:
explicit AlternativeGenerationList(intptr_t count) : count_(count) {
ASSERT(count >= 0);
if (count > kAFew) {
excess_alt_gens_.reset(new AlternativeGeneration[count - kAFew]);
}
}
AlternativeGeneration* at(intptr_t i) {
ASSERT(0 <= i);
ASSERT(i < count_);
if (i < kAFew) {
return &a_few_alt_gens_[i];
}
return &excess_alt_gens_[i - kAFew];
}
private:
static const intptr_t kAFew = 10;
intptr_t count_;
AlternativeGeneration a_few_alt_gens_[kAFew];
std::unique_ptr<AlternativeGeneration[]> excess_alt_gens_;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(AlternativeGenerationList);
};
static const int32_t kRangeEndMarker = Utf::kMaxCodePoint + 1;
// The '2' variant is inclusive from and exclusive to.
// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
// 0x180E has been removed from Unicode's Zs category and thus
// from ECMAScript's WhiteSpace category as of Unicode 6.3.
static const int32_t kSpaceRanges[] = {
'\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680,
0x1681, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030,
0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, kRangeEndMarker};
static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges);
static const int32_t kWordRanges[] = {
'0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker};
static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges);
static const int32_t kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker};
static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges);
static const int32_t kSurrogateRanges[] = {0xd800, 0xe000, kRangeEndMarker};
static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges);
static const int32_t kLineTerminatorRanges[] = {
0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker};
static const intptr_t kLineTerminatorRangeCount =
ARRAY_SIZE(kLineTerminatorRanges);
void BoyerMoorePositionInfo::Set(intptr_t character) {
SetInterval(Interval(character, character));
}
void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
surrogate_ =
AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
if (interval.to() - interval.from() >= kMapSize - 1) {
if (map_count_ != kMapSize) {
map_count_ = kMapSize;
for (intptr_t i = 0; i < kMapSize; i++)
(*map_)[i] = true;
}
return;
}
for (intptr_t i = interval.from(); i <= interval.to(); i++) {
intptr_t mod_character = (i & kMask);
if (!map_->At(mod_character)) {
map_count_++;
(*map_)[mod_character] = true;
}
if (map_count_ == kMapSize) return;
}
}
void BoyerMoorePositionInfo::SetAll() {
s_ = w_ = d_ = kLatticeUnknown;
if (map_count_ != kMapSize) {
map_count_ = kMapSize;
for (intptr_t i = 0; i < kMapSize; i++)
(*map_)[i] = true;
}
}
BoyerMooreLookahead::BoyerMooreLookahead(intptr_t length,
RegExpCompiler* compiler,
Zone* zone)
: length_(length), compiler_(compiler) {
if (compiler->one_byte()) {
max_char_ = Symbols::kMaxOneCharCodeSymbol;
} else {
max_char_ = Utf16::kMaxCodeUnit;
}
bitmaps_ = new (zone) ZoneGrowableArray<BoyerMoorePositionInfo*>(length);
for (intptr_t i = 0; i < length; i++) {
bitmaps_->Add(new (zone) BoyerMoorePositionInfo(zone));
}
}
// Find the longest range of lookahead that has the fewest number of different
// characters that can occur at a given position. Since we are optimizing two
// different parameters at once this is a tradeoff.
bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
intptr_t biggest_points = 0;
// If more than 32 characters out of 128 can occur it is unlikely that we can
// be lucky enough to step forwards much of the time.
const intptr_t kMaxMax = 32;
for (intptr_t max_number_of_chars = 4; max_number_of_chars < kMaxMax;
max_number_of_chars *= 2) {
biggest_points =
FindBestInterval(max_number_of_chars, biggest_points, from, to);
}
if (biggest_points == 0) return false;
return true;
}
// Find the highest-points range between 0 and length_ where the character
// information is not too vague. 'Too vague' means that there are more than
// max_number_of_chars that can occur at this position. Calculates the number
// of points as the product of width-of-the-range and
// probability-of-finding-one-of-the-characters, where the probability is
// calculated using the frequency distribution of the sample subject string.
intptr_t BoyerMooreLookahead::FindBestInterval(intptr_t max_number_of_chars,
intptr_t old_biggest_points,
intptr_t* from,
intptr_t* to) {
intptr_t biggest_points = old_biggest_points;
static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
for (intptr_t i = 0; i < length_;) {
while (i < length_ && Count(i) > max_number_of_chars)
i++;
if (i == length_) break;
intptr_t remembered_from = i;
bool union_map[kSize];
for (intptr_t j = 0; j < kSize; j++)
union_map[j] = false;
while (i < length_ && Count(i) <= max_number_of_chars) {
BoyerMoorePositionInfo* map = bitmaps_->At(i);
for (intptr_t j = 0; j < kSize; j++)
union_map[j] |= map->at(j);
i++;
}
intptr_t frequency = 0;
for (intptr_t j = 0; j < kSize; j++) {
if (union_map[j]) {
// Add 1 to the frequency to give a small per-character boost for
// the cases where our sampling is not good enough and many
// characters have a frequency of zero. This means the frequency
// can theoretically be up to 2*kSize though we treat it mostly as
// a fraction of kSize.
frequency += compiler_->frequency_collator()->Frequency(j) + 1;
}
}
// We use the probability of skipping times the distance we are skipping to
// judge the effectiveness of this. Actually we have a cut-off: By
// dividing by 2 we switch off the skipping if the probability of skipping
// is less than 50%. This is because the multibyte mask-and-compare
// skipping in quickcheck is more likely to do well on this case.
bool in_quickcheck_range =
((i - remembered_from < 4) ||
(compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
// Called 'probability' but it is only a rough estimate and can actually
// be outside the 0-kSize range.
intptr_t probability =
(in_quickcheck_range ? kSize / 2 : kSize) - frequency;
intptr_t points = (i - remembered_from) * probability;
if (points > biggest_points) {
*from = remembered_from;
*to = i - 1;
biggest_points = points;
}
}
return biggest_points;
}
// Take all the characters that will not prevent a successful match if they
// occur in the subject string in the range between min_lookahead and
// max_lookahead (inclusive) measured from the current position. If the
// character at max_lookahead offset is not one of these characters, then we
// can safely skip forwards by the number of characters in the range.
intptr_t BoyerMooreLookahead::GetSkipTable(
intptr_t min_lookahead,
intptr_t max_lookahead,
const TypedData& boolean_skip_table) {
const intptr_t kSize = RegExpMacroAssembler::kTableSize;
const intptr_t kSkipArrayEntry = 0;
const intptr_t kDontSkipArrayEntry = 1;
for (intptr_t i = 0; i < kSize; i++) {
boolean_skip_table.SetUint8(i, kSkipArrayEntry);
}
intptr_t skip = max_lookahead + 1 - min_lookahead;
for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
BoyerMoorePositionInfo* map = bitmaps_->At(i);
for (intptr_t j = 0; j < kSize; j++) {
if (map->at(j)) {
boolean_skip_table.SetUint8(j, kDontSkipArrayEntry);
}
}
}
return skip;
}
// See comment above on the implementation of GetSkipTable.
void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
const intptr_t kSize = RegExpMacroAssembler::kTableSize;
intptr_t min_lookahead = 0;
intptr_t max_lookahead = 0;
if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
bool found_single_character = false;
intptr_t single_character = 0;
for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
BoyerMoorePositionInfo* map = bitmaps_->At(i);
if (map->map_count() > 1 ||
(found_single_character && map->map_count() != 0)) {
found_single_character = false;
break;
}
for (intptr_t j = 0; j < kSize; j++) {
if (map->at(j)) {
found_single_character = true;
single_character = j;
break;
}
}
}
intptr_t lookahead_width = max_lookahead + 1 - min_lookahead;
if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
// The mask-compare can probably handle this better.
return;
}
if (found_single_character) {
BlockLabel cont, again;
masm->BindBlock(&again);
masm->LoadCurrentCharacter(max_lookahead, &cont, true);
if (max_char_ > kSize) {
masm->CheckCharacterAfterAnd(single_character,
RegExpMacroAssembler::kTableMask, &cont);
} else {
masm->CheckCharacter(single_character, &cont);
}
masm->AdvanceCurrentPosition(lookahead_width);
masm->GoTo(&again);
masm->BindBlock(&cont);
return;
}
const TypedData& boolean_skip_table = TypedData::ZoneHandle(
compiler_->zone(),
TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
intptr_t skip_distance =
GetSkipTable(min_lookahead, max_lookahead, boolean_skip_table);
ASSERT(skip_distance != 0);
BlockLabel cont, again;
masm->BindBlock(&again);
masm->CheckPreemption(/*is_backtrack=*/false);
masm->LoadCurrentCharacter(max_lookahead, &cont, true);
masm->CheckBitInTable(boolean_skip_table, &cont);
masm->AdvanceCurrentPosition(skip_distance);
masm->GoTo(&again);
masm->BindBlock(&cont);
return;
}
/* Code generation for choice nodes.
*
* We generate quick checks that do a mask and compare to eliminate a
* choice. If the quick check succeeds then it jumps to the continuation to
* do slow checks and check subsequent nodes. If it fails (the common case)
* it falls through to the next choice.
*
* Here is the desired flow graph. Nodes directly below each other imply
* fallthrough. Alternatives 1 and 2 have quick checks. Alternative
* 3 doesn't have a quick check so we have to call the slow check.
* Nodes are marked Qn for quick checks and Sn for slow checks. The entire
* regexp continuation is generated directly after the Sn node, up to the
* next GoTo if we decide to reuse some already generated code. Some
* nodes expect preload_characters to be preloaded into the current
* character register. R nodes do this preloading. Vertices are marked
* F for failures and S for success (possible success in the case of quick
* nodes). L, V, < and > are used as arrow heads.
*
* ----------> R
* |
* V
* Q1 -----> S1
* | S /
* F| /
* | F/
* | /
* | R
* | /
* V L
* Q2 -----> S2
* | S /
* F| /
* | F/
* | /
* | R
* | /
* V L
* S3
* |
* F|
* |
* R
* |
* backtrack V
* <----------Q4
* \ F |
* \ |S
* \ F V
* \-----S4
*
* For greedy loops we push the current position, then generate the code that
* eats the input specially in EmitGreedyLoop. The other choice (the
* continuation) is generated by the normal code in EmitChoices, and steps back
* in the input to the starting position when it fails to match. The loop code
* looks like this (U is the unwind code that steps back in the greedy loop).
*
* _____
* / \
* V |
* ----------> S1 |
* /| |
* / |S |
* F/ \_____/
* /
* |<-----
* | \
* V |S
* Q2 ---> U----->backtrack
* | F /
* S| /
* V F /
* S2--/
*/
GreedyLoopState::GreedyLoopState(bool not_at_start) {
counter_backtrack_trace_.set_backtrack(&label_);
if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE);
}
void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
#ifdef DEBUG
intptr_t choice_count = alternatives_->length();
for (intptr_t i = 0; i < choice_count - 1; i++) {
GuardedAlternative alternative = alternatives_->At(i);
ZoneGrowableArray<Guard*>* guards = alternative.guards();
intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
for (intptr_t j = 0; j < guard_count; j++) {
ASSERT(!trace->mentions_reg(guards->At(j)->reg()));
}
}
#endif
}
void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
Trace* current_trace,
PreloadState* state) {
if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
// Save some time by looking at most one machine word ahead.
state->eats_at_least_ =
EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
current_trace->at_start() == Trace::FALSE_VALUE);
}
state->preload_characters_ =
CalculatePreloadCharacters(compiler, state->eats_at_least_);
state->preload_is_current_ =
(current_trace->characters_preloaded() == state->preload_characters_);
state->preload_has_checked_bounds_ = state->preload_is_current_;
}
void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
intptr_t choice_count = alternatives_->length();
if (choice_count == 1 && alternatives_->At(0).guards() == nullptr) {
alternatives_->At(0).node()->Emit(compiler, trace);
return;
}
AssertGuardsMentionRegisters(trace);
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
ASSERT(limit_result == CONTINUE);
// For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
// other choice nodes we only flush if we are out of code size budget.
if (trace->flush_budget() == 0 && trace->actions() != NULL) {
trace->Flush(compiler, this);
return;
}
RecursionCheck rc(compiler);
PreloadState preload;
preload.init();
GreedyLoopState greedy_loop_state(not_at_start());
intptr_t text_length =
GreedyLoopTextLengthForAlternative(&alternatives_->At(0));
AlternativeGenerationList alt_gens(choice_count);
if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
trace = EmitGreedyLoop(compiler, trace, &alt_gens, &preload,
&greedy_loop_state, text_length);
} else {
// TODO(erikcorry): Delete this. We don't need this label, but it makes us
// match the traces produced pre-cleanup.
BlockLabel second_choice;
compiler->macro_assembler()->BindBlock(&second_choice);
preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
EmitChoices(compiler, &alt_gens, 0, trace, &preload);
}
// At this point we need to generate slow checks for the alternatives where
// the quick check was inlined. We can recognize these because the associated
// label was bound.
intptr_t new_flush_budget = trace->flush_budget() / choice_count;
for (intptr_t i = 0; i < choice_count; i++) {
AlternativeGeneration* alt_gen = alt_gens.at(i);
Trace new_trace(*trace);
// If there are actions to be flushed we have to limit how many times
// they are flushed. Take the budget of the parent trace and distribute
// it fairly amongst the children.
if (new_trace.actions() != NULL) {
new_trace.set_flush_budget(new_flush_budget);
}
bool next_expects_preload =
i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
EmitOutOfLineContinuation(compiler, &new_trace, alternatives_->At(i),
alt_gen, preload.preload_characters_,
next_expects_preload);
}
}
Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
Trace* trace,
AlternativeGenerationList* alt_gens,
PreloadState* preload,
GreedyLoopState* greedy_loop_state,
intptr_t text_length) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
// Here we have special handling for greedy loops containing only text nodes
// and other simple nodes. These are handled by pushing the current
// position on the stack and then incrementing the current position each
// time around the switch. On backtrack we decrement the current position
// and check it against the pushed value. This avoids pushing backtrack
// information for each iteration of the loop, which could take up a lot of
// space.
ASSERT(trace->stop_node() == NULL);
macro_assembler->PushCurrentPosition();
BlockLabel greedy_match_failed;
Trace greedy_match_trace;
if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE);
greedy_match_trace.set_backtrack(&greedy_match_failed);
BlockLabel loop_label;
macro_assembler->BindBlock(&loop_label);
macro_assembler->CheckPreemption(/*is_backtrack=*/false);
greedy_match_trace.set_stop_node(this);
greedy_match_trace.set_loop_label(&loop_label);
(*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace);
macro_assembler->BindBlock(&greedy_match_failed);
BlockLabel second_choice; // For use in greedy matches.
macro_assembler->BindBlock(&second_choice);
Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
EmitChoices(compiler, alt_gens, 1, new_trace, preload);
macro_assembler->BindBlock(greedy_loop_state->label());
// If we have unwound to the bottom then backtrack.
macro_assembler->CheckGreedyLoop(trace->backtrack());
// Otherwise try the second priority at an earlier position.
macro_assembler->AdvanceCurrentPosition(-text_length);
macro_assembler->GoTo(&second_choice);
return new_trace;
}
intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
Trace* trace) {
intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
if (alternatives_->length() != 2) return eats_at_least;
GuardedAlternative alt1 = alternatives_->At(1);
if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
return eats_at_least;
}
RegExpNode* eats_anything_node = alt1.node();
if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
return eats_at_least;
}
// Really we should be creating a new trace when we execute this function,
// but there is no need, because the code it generates cannot backtrack, and
// we always arrive here with a trivial trace (since it's the entry to a
// loop. That also implies that there are no preloaded characters, which is
// good, because it means we won't be violating any assumptions by
// overwriting those characters with new load instructions.
ASSERT(trace->is_trivial());
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
// At this point we know that we are at a non-greedy loop that will eat
// any character one at a time. Any non-anchored regexp has such a
// loop prepended to it in order to find where it starts. We look for
// a pattern of the form ...abc... where we can look 6 characters ahead
// and step forwards 3 if the character is not one of abc. Abc need
// not be atoms, they can be any reasonably limited character class or
// small alternation.
BoyerMooreLookahead* bm = bm_info(false);
if (bm == NULL) {
eats_at_least = Utils::Minimum(
kMaxLookaheadForBoyerMoore,
EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, false));
if (eats_at_least >= 1) {
bm = new (Z) BoyerMooreLookahead(eats_at_least, compiler, Z);
GuardedAlternative alt0 = alternatives_->At(0);
alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false);
}
}
if (bm != NULL) {
bm->EmitSkipInstructions(macro_assembler);
}
return eats_at_least;
}
void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
AlternativeGenerationList* alt_gens,
intptr_t first_choice,
Trace* trace,
PreloadState* preload) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
SetUpPreLoad(compiler, trace, preload);
// For now we just call all choices one after the other. The idea ultimately
// is to use the Dispatch table to try only the relevant ones.
intptr_t choice_count = alternatives_->length();
intptr_t new_flush_budget = trace->flush_budget() / choice_count;
for (intptr_t i = first_choice; i < choice_count; i++) {
bool is_last = i == choice_count - 1;
bool fall_through_on_failure = !is_last;
GuardedAlternative alternative = alternatives_->At(i);
AlternativeGeneration* alt_gen = alt_gens->at(i);
alt_gen->quick_check_details.set_characters(preload->preload_characters_);
ZoneGrowableArray<Guard*>* guards = alternative.guards();
intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
Trace new_trace(*trace);
new_trace.set_characters_preloaded(
preload->preload_is_current_ ? preload->preload_characters_ : 0);
if (preload->preload_has_checked_bounds_) {
new_trace.set_bound_checked_up_to(preload->preload_characters_);
}
new_trace.quick_check_performed()->Clear();
if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
if (!is_last) {
new_trace.set_backtrack(&alt_gen->after);
}
alt_gen->expects_preload = preload->preload_is_current_;
bool generate_full_check_inline = false;
if (kRegexpOptimization &&
try_to_emit_quick_check_for_alternative(i == 0) &&
alternative.node()->EmitQuickCheck(
compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
&alt_gen->possible_success, &alt_gen->quick_check_details,
fall_through_on_failure)) {
// Quick check was generated for this choice.
preload->preload_is_current_ = true;
preload->preload_has_checked_bounds_ = true;
// If we generated the quick check to fall through on possible success,
// we now need to generate the full check inline.
if (!fall_through_on_failure) {
macro_assembler->BindBlock(&alt_gen->possible_success);
new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
new_trace.set_characters_preloaded(preload->preload_characters_);
new_trace.set_bound_checked_up_to(preload->preload_characters_);
generate_full_check_inline = true;
}
} else if (alt_gen->quick_check_details.cannot_match()) {
if (!fall_through_on_failure) {
macro_assembler->GoTo(trace->backtrack());
}
continue;
} else {
// No quick check was generated. Put the full code here.
// If this is not the first choice then there could be slow checks from
// previous cases that go here when they fail. There's no reason to
// insist that they preload characters since the slow check we are about
// to generate probably can't use it.
if (i != first_choice) {
alt_gen->expects_preload = false;
new_trace.InvalidateCurrentCharacter();
}
generate_full_check_inline = true;
}
if (generate_full_check_inline) {
if (new_trace.actions() != NULL) {
new_trace.set_flush_budget(new_flush_budget);
}
for (intptr_t j = 0; j < guard_count; j++) {
GenerateGuard(macro_assembler, guards->At(j), &new_trace);
}
alternative.node()->Emit(compiler, &new_trace);
preload->preload_is_current_ = false;
}
macro_assembler->BindBlock(&alt_gen->after);
}
}
void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
Trace* trace,
GuardedAlternative alternative,
AlternativeGeneration* alt_gen,
intptr_t preload_characters,
bool next_expects_preload) {
if (!alt_gen->possible_success.is_linked()) return;
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
macro_assembler->BindBlock(&alt_gen->possible_success);
Trace out_of_line_trace(*trace);
out_of_line_trace.set_characters_preloaded(preload_characters);
out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
ZoneGrowableArray<Guard*>* guards = alternative.guards();
intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
if (next_expects_preload) {
BlockLabel reload_current_char;
out_of_line_trace.set_backtrack(&reload_current_char);
for (intptr_t j = 0; j < guard_count; j++) {
GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
}
alternative.node()->Emit(compiler, &out_of_line_trace);
macro_assembler->BindBlock(&reload_current_char);
// Reload the current character, since the next quick check expects that.
// We don't need to check bounds here because we only get into this
// code through a quick check which already did the checked load.
macro_assembler->LoadCurrentCharacter(trace->cp_offset(), NULL, false,
preload_characters);
macro_assembler->GoTo(&(alt_gen->after));
} else {
out_of_line_trace.set_backtrack(&(alt_gen->after));
for (intptr_t j = 0; j < guard_count; j++) {
GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
}
alternative.node()->Emit(compiler, &out_of_line_trace);
}
}
void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
ASSERT(limit_result == CONTINUE);
RecursionCheck rc(compiler);
switch (action_type_) {
case STORE_POSITION: {
Trace::DeferredCapture new_capture(data_.u_position_register.reg,
data_.u_position_register.is_capture,
trace);
Trace new_trace = *trace;
new_trace.add_action(&new_capture);
on_success()->Emit(compiler, &new_trace);
break;
}
case INCREMENT_REGISTER: {
Trace::DeferredIncrementRegister new_increment(
data_.u_increment_register.reg);
Trace new_trace = *trace;
new_trace.add_action(&new_increment);
on_success()->Emit(compiler, &new_trace);
break;
}
case SET_REGISTER: {
Trace::DeferredSetRegister new_set(data_.u_store_register.reg,
data_.u_store_register.value);
Trace new_trace = *trace;
new_trace.add_action(&new_set);
on_success()->Emit(compiler, &new_trace);
break;
}
case CLEAR_CAPTURES: {
Trace::DeferredClearCaptures new_capture(Interval(
data_.u_clear_captures.range_from, data_.u_clear_captures.range_to));
Trace new_trace = *trace;
new_trace.add_action(&new_capture);
on_success()->Emit(compiler, &new_trace);
break;
}
case BEGIN_SUBMATCH:
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
} else {
assembler->WriteCurrentPositionToRegister(
data_.u_submatch.current_position_register, 0);
assembler->WriteStackPointerToRegister(
data_.u_submatch.stack_pointer_register);
on_success()->Emit(compiler, trace);
}
break;
case EMPTY_MATCH_CHECK: {
intptr_t start_pos_reg = data_.u_empty_match_check.start_register;
intptr_t stored_pos = 0;
intptr_t rep_reg = data_.u_empty_match_check.repetition_register;
bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
// If we know we haven't advanced and there is no minimum we
// can just backtrack immediately.
assembler->GoTo(trace->backtrack());
} else if (know_dist && stored_pos < trace->cp_offset()) {
// If we know we've advanced we can generate the continuation
// immediately.
on_success()->Emit(compiler, trace);
} else if (!trace->is_trivial()) {
trace->Flush(compiler, this);
} else {
BlockLabel skip_empty_check;
// If we have a minimum number of repetitions we check the current
// number first and skip the empty check if it's not enough.
if (has_minimum) {
intptr_t limit = data_.u_empty_match_check.repetition_limit;
assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
}
// If the match is empty we bail out, otherwise we fall through
// to the on-success continuation.
assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
trace->backtrack());
assembler->BindBlock(&skip_empty_check);
on_success()->Emit(compiler, trace);
}
break;
}
case POSITIVE_SUBMATCH_SUCCESS: {
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
return;
}
assembler->ReadCurrentPositionFromRegister(
data_.u_submatch.current_position_register);
assembler->ReadStackPointerFromRegister(
data_.u_submatch.stack_pointer_register);
intptr_t clear_register_count = data_.u_submatch.clear_register_count;
if (clear_register_count == 0) {
on_success()->Emit(compiler, trace);
return;
}
intptr_t clear_registers_from = data_.u_submatch.clear_register_from;
BlockLabel clear_registers_backtrack;
Trace new_trace = *trace;
new_trace.set_backtrack(&clear_registers_backtrack);
on_success()->Emit(compiler, &new_trace);
assembler->BindBlock(&clear_registers_backtrack);
intptr_t clear_registers_to =
clear_registers_from + clear_register_count - 1;
assembler->ClearRegisters(clear_registers_from, clear_registers_to);
ASSERT(trace->backtrack() == NULL);
assembler->Backtrack();
return;
}
default:
UNREACHABLE();
}
}
void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
return;
}
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
ASSERT(limit_result == CONTINUE);
RecursionCheck rc(compiler);
ASSERT(start_reg_ + 1 == end_reg_);
if (flags_.IgnoreCase()) {
assembler->CheckNotBackReferenceIgnoreCase(
start_reg_, read_backward(), flags_.IsUnicode(), trace->backtrack());
} else {
assembler->CheckNotBackReference(start_reg_, read_backward(),
trace->backtrack());
}
// We are going to advance backward, so we may end up at the start.
if (read_backward()) trace->set_at_start(Trace::UNKNOWN);
// Check that the back reference does not end inside a surrogate pair.
if (flags_.IsUnicode() && !compiler->one_byte()) {
assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack());
}
on_success()->Emit(compiler, trace);
}
// -------------------------------------------------------------------
// Dot/dotty output
#ifdef DEBUG
class DotPrinter : public NodeVisitor {
public:
explicit DotPrinter(bool ignore_case) {}
void PrintNode(const char* label, RegExpNode* node);
void Visit(RegExpNode* node);
void PrintAttributes(RegExpNode* from);
void PrintOnFailure(RegExpNode* from, RegExpNode* to);
#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
};
void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
OS::PrintErr("digraph G {\n graph [label=\"");
for (intptr_t i = 0; label[i] != '\0'; i++) {
switch (label[i]) {
case '\\':
OS::PrintErr("\\\\");
break;
case '"':
OS::PrintErr("\"");
break;
default:
OS::PrintErr("%c", label[i]);
break;
}
}
OS::PrintErr("\"];\n");
Visit(node);
OS::PrintErr("}\n");
}
void DotPrinter::Visit(RegExpNode* node) {
if (node->info()->visited) return;
node->info()->visited = true;
node->Accept(this);
}
void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
OS::PrintErr(" n%p -> n%p [style=dotted];\n", from, on_failure);
Visit(on_failure);
}
class AttributePrinter : public ValueObject {
public:
AttributePrinter() : first_(true) {}
void PrintSeparator() {
if (first_) {
first_ = false;
} else {
OS::PrintErr("|");
}
}
void PrintBit(const char* name, bool value) {
if (!value) return;
PrintSeparator();
OS::PrintErr("{%s}", name);
}
void PrintPositive(const char* name, intptr_t value) {
if (value < 0) return;
PrintSeparator();
OS::PrintErr("{%s|%" Pd "}", name, value);
}
private:
bool first_;
};
void DotPrinter::PrintAttributes(RegExpNode* that) {
OS::PrintErr(
" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
"margin=0.1, fontsize=10, label=\"{",
that);
AttributePrinter printer;
NodeInfo* info = that->info();
printer.PrintBit("NI", info->follows_newline_interest);
printer.PrintBit("WI", info->follows_word_interest);
printer.PrintBit("SI", info->follows_start_interest);
BlockLabel* label = that->label();
if (label->is_bound()) printer.PrintPositive("@", label->pos());
OS::PrintErr(
"}\"];\n"
" a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n",
that, that);
}
void DotPrinter::VisitChoice(ChoiceNode* that) {
OS::PrintErr(" n%p [shape=Mrecord, label=\"?\"];\n", that);
for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
GuardedAlternative alt = that->alternatives()->At(i);
OS::PrintErr(" n%p -> n%p", that, alt.node());
}
for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
GuardedAlternative alt = that->alternatives()->At(i);
alt.node()->Accept(this);
}
}
void DotPrinter::VisitText(TextNode* that) {
OS::PrintErr(" n%p [label=\"", that);
for (intptr_t i = 0; i < that->elements()->length(); i++) {
if (i > 0) OS::PrintErr(" ");
TextElement elm = that->elements()->At(i);
switch (elm.text_type()) {
case TextElement::ATOM: {
ZoneGrowableArray<uint16_t>* data = elm.atom()->data();
for (intptr_t i = 0; i < data->length(); i++) {
OS::PrintErr("%c", static_cast<char>(data->At(i)));
}
break;
}
case TextElement::CHAR_CLASS: {
RegExpCharacterClass* node = elm.char_class();
OS::PrintErr("[");
if (node->is_negated()) OS::PrintErr("^");
for (intptr_t j = 0; j < node->ranges()->length(); j++) {
CharacterRange range = node->ranges()->At(j);
PrintUtf16(range.from());
OS::PrintErr("-");
PrintUtf16(range.to());
}
OS::PrintErr("]");
break;
}
default:
UNREACHABLE();
}
}
OS::PrintErr("\", shape=box, peripheries=2];\n");
PrintAttributes(that);
OS::PrintErr(" n%p -> n%p;\n", that, that->on_success());
Visit(that->on_success());
}
void DotPrinter::VisitBackReference(BackReferenceNode* that) {
OS::PrintErr(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n",
that, that->start_register(), that->end_register());
PrintAttributes(that);
OS::PrintErr(" n%p -> n%p;\n", that, that->on_success());
Visit(that->on_success());
}
void DotPrinter::VisitEnd(EndNode* that) {
OS::PrintErr(" n%p [style=bold, shape=point];\n", that);
PrintAttributes(that);
}
void DotPrinter::VisitAssertion(AssertionNode* that) {
OS::PrintErr(" n%p [", that);
switch (that->assertion_type()) {
case AssertionNode::AT_END:
OS::PrintErr("label=\"$\", shape=septagon");
break;
case AssertionNode::AT_START:
OS::PrintErr("label=\"^\", shape=septagon");
break;
case AssertionNode::AT_BOUNDARY:
OS::PrintErr("label=\"\\b\", shape=septagon");
break;
case AssertionNode::AT_NON_BOUNDARY:
OS::PrintErr("label=\"\\B\", shape=septagon");
break;
case AssertionNode::AFTER_NEWLINE:
OS::PrintErr("label=\"(?<=\\n)\", shape=septagon");
break;
}
OS::PrintErr("];\n");
PrintAttributes(that);
RegExpNode* successor = that->on_success();
OS::PrintErr(" n%p -> n%p;\n", that, successor);
Visit(successor);
}
void DotPrinter::VisitAction(ActionNode* that) {
OS::PrintErr(" n%p [", that);
switch (that->action_type_) {
case ActionNode::SET_REGISTER:
OS::PrintErr("label=\"$%" Pd ":=%" Pd "\", shape=octagon",
that->data_.u_store_register.reg,
that->data_.u_store_register.value);
break;
case ActionNode::INCREMENT_REGISTER:
OS::PrintErr("label=\"$%" Pd "++\", shape=octagon",
that->data_.u_increment_register.reg);
break;
case ActionNode::STORE_POSITION:
OS::PrintErr("label=\"$%" Pd ":=$pos\", shape=octagon",
that->data_.u_position_register.reg);
break;
case ActionNode::BEGIN_SUBMATCH:
OS::PrintErr("label=\"$%" Pd ":=$pos,begin\", shape=septagon",
that->data_.u_submatch.current_position_register);
break;
case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
OS::PrintErr("label=\"escape\", shape=septagon");
break;
case ActionNode::EMPTY_MATCH_CHECK:
OS::PrintErr("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon",
that->data_.u_empty_match_check.start_register,
that->data_.u_empty_match_check.repetition_register,
that->data_.u_empty_match_check.repetition_limit);
break;
case ActionNode::CLEAR_CAPTURES: {
OS::PrintErr("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon",
that->data_.u_clear_captures.range_from,
that->data_.u_clear_captures.range_to);
break;
}
}
OS::PrintErr("];\n");
PrintAttributes(that);
RegExpNode* successor = that->on_success();
OS::PrintErr(" n%p -> n%p;\n", that, successor);
Visit(successor);
}
void RegExpEngine::DotPrint(const char* label,
RegExpNode* node,
bool ignore_case) {
DotPrinter printer(ignore_case);
printer.PrintNode(label, node);
}
#endif // DEBUG
// -------------------------------------------------------------------
// Tree to graph conversion
// The zone in which we allocate graph nodes.
#define OZ (on_success->zone())
RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneGrowableArray<TextElement>* elms =
new (OZ) ZoneGrowableArray<TextElement>(1);
elms->Add(TextElement::Atom(this));
return new (OZ) TextNode(elms, compiler->read_backward(), on_success);
}
RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneGrowableArray<TextElement>* elms =
new (OZ) ZoneGrowableArray<TextElement>(1);
for (intptr_t i = 0; i < elements()->length(); i++) {
elms->Add(elements()->At(i));
}
return new (OZ) TextNode(elms, compiler->read_backward(), on_success);
}
static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges,
const int32_t* special_class,
intptr_t length) {
length--; // Remove final kRangeEndMarker.
ASSERT(special_class[length] == kRangeEndMarker);
ASSERT(ranges->length() != 0);
ASSERT(length != 0);
ASSERT(special_class[0] != 0);
if (ranges->length() != (length >> 1) + 1) {
return false;
}
CharacterRange range = ranges->At(0);
if (range.from() != 0) {
return false;
}
for (intptr_t i = 0; i < length; i += 2) {
if (special_class[i] != (range.to() + 1)) {
return false;
}
range = ranges->At((i >> 1) + 1);
if (special_class[i + 1] != range.from()) {
return false;
}
}
if (range.to() != Utf::kMaxCodePoint) {
return false;
}
return true;
}
static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges,
const int32_t* special_class,
intptr_t length) {
length--; // Remove final kRangeEndMarker.
ASSERT(special_class[length] == kRangeEndMarker);
if (ranges->length() * 2 != length) {
return false;
}
for (intptr_t i = 0; i < length; i += 2) {
CharacterRange range = ranges->At(i >> 1);
if (range.from() != special_class[i] ||
range.to() != special_class[i + 1] - 1) {
return false;
}
}
return true;
}
bool RegExpCharacterClass::is_standard() {
// TODO(lrn): Remove need for this function, by not throwing away information
// along the way.
if (is_negated()) {
return false;
}
if (set_.is_standard()) {
return true;
}
if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('s');
return true;
}
if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('S');
return true;
}
if (CompareInverseRanges(set_.ranges(), kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('.');
return true;
}
if (CompareRanges(set_.ranges(), kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('n');
return true;
}
if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('w');
return true;
}
if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('W');
return true;
}
return false;
}
UnicodeRangeSplitter::UnicodeRangeSplitter(
Zone* zone,
ZoneGrowableArray<CharacterRange>* base)
: zone_(zone),
table_(zone),
bmp_(nullptr),
lead_surrogates_(nullptr),
trail_surrogates_(nullptr),
non_bmp_(nullptr) {
// The unicode range splitter categorizes given character ranges into:
// - Code points from the BMP representable by one code unit.
// - Code points outside the BMP that need to be split into surrogate pairs.
// - Lone lead surrogates.
// - Lone trail surrogates.
// Lone surrogates are valid code points, even though no actual characters.
// They require special matching to make sure we do not split surrogate pairs.
// We use the dispatch table to accomplish this. The base range is split up
// by the table by the overlay ranges, and the Call callback is used to
// filter and collect ranges for each category.
for (intptr_t i = 0; i < base->length(); i++) {
table_.AddRange(base->At(i), kBase, zone_);
}
// Add overlay ranges.
table_.AddRange(CharacterRange::Range(0, Utf16::kLeadSurrogateStart - 1),
kBmpCodePoints, zone_);
table_.AddRange(CharacterRange::Range(Utf16::kLeadSurrogateStart,
Utf16::kLeadSurrogateEnd),
kLeadSurrogates, zone_);
table_.AddRange(CharacterRange::Range(Utf16::kTrailSurrogateStart,
Utf16::kTrailSurrogateEnd),
kTrailSurrogates, zone_);
table_.AddRange(
CharacterRange::Range(Utf16::kTrailSurrogateEnd + 1, Utf16::kMaxCodeUnit),
kBmpCodePoints, zone_);
table_.AddRange(
CharacterRange::Range(Utf16::kMaxCodeUnit + 1, Utf::kMaxCodePoint),
kNonBmpCodePoints, zone_);
table_.ForEach(this);
}
void UnicodeRangeSplitter::Call(uint32_t from, ChoiceTable::Entry entry) {
OutSet* outset = entry.out_set();
if (!outset->Get(kBase)) return;
ZoneGrowableArray<CharacterRange>** target = nullptr;
if (outset->Get(kBmpCodePoints)) {
target = &bmp_;
} else if (outset->Get(kLeadSurrogates)) {
target = &lead_surrogates_;
} else if (outset->Get(kTrailSurrogates)) {
target = &trail_surrogates_;
} else {
ASSERT(outset->Get(kNonBmpCodePoints));
target = &non_bmp_;
}
if (*target == nullptr) {
*target = new (zone_) ZoneGrowableArray<CharacterRange>(2);
}
(*target)->Add(CharacterRange::Range(entry.from(), entry.to()));
}
void AddBmpCharacters(RegExpCompiler* compiler,
ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
ZoneGrowableArray<CharacterRange>* bmp = splitter->bmp();
if (bmp == nullptr) return;
result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
bmp, compiler->read_backward(), on_success, RegExpFlags())));
}
void AddNonBmpSurrogatePairs(RegExpCompiler* compiler,
ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
ZoneGrowableArray<CharacterRange>* non_bmp = splitter->non_bmp();
if (non_bmp == nullptr) return;
ASSERT(!compiler->one_byte());
CharacterRange::Canonicalize(non_bmp);
for (int i = 0; i < non_bmp->length(); i++) {
// Match surrogate pair.
// E.g. [\u10005-\u11005] becomes
// \ud800[\udc05-\udfff]|
// [\ud801-\ud803][\udc00-\udfff]|
// \ud804[\udc00-\udc05]
uint32_t from = non_bmp->At(i).from();
uint32_t to = non_bmp->At(i).to();
uint16_t from_points[2];
Utf16::Encode(from, from_points);
uint16_t to_points[2];
Utf16::Encode(to, to_points);
if (from_points[0] == to_points[0]) {
// The lead surrogate is the same.
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
CharacterRange::Singleton(from_points[0]),
CharacterRange::Range(from_points[1], to_points[1]),
compiler->read_backward(), on_success, RegExpFlags())));
} else {
if (from_points[1] != Utf16::kTrailSurrogateStart) {
// Add [from_l][from_t-\udfff]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
CharacterRange::Singleton(from_points[0]),
CharacterRange::Range(from_points[1],
Utf16::kTrailSurrogateEnd),
compiler->read_backward(), on_success, RegExpFlags())));
from_points[0]++;
}
if (to_points[1] != Utf16::kTrailSurrogateEnd) {
// Add [to_l][\udc00-to_t]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
CharacterRange::Singleton(to_points[0]),
CharacterRange::Range(Utf16::kTrailSurrogateStart,
to_points[1]),
compiler->read_backward(), on_success, RegExpFlags())));
to_points[0]--;
}
if (from_points[0] <= to_points[0]) {
// Add [from_l-to_l][\udc00-\udfff]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
CharacterRange::Range(from_points[0], to_points[0]),
CharacterRange::Range(Utf16::kTrailSurrogateStart,
Utf16::kTrailSurrogateEnd),
compiler->read_backward(), on_success, RegExpFlags())));
}
}
}
}
RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
RegExpCompiler* compiler,
ZoneGrowableArray<CharacterRange>* lookbehind,
ZoneGrowableArray<CharacterRange>* match,
RegExpNode* on_success,
bool read_backward,
RegExpFlags flags) {
RegExpNode* match_node = TextNode::CreateForCharacterRanges(
match, read_backward, on_success, flags);
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpLookaround::Builder lookaround(false, match_node, stack_register,
position_register);
RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
lookbehind, !read_backward, lookaround.on_match_success(), flags);
return lookaround.ForMatch(negative_match);
}
RegExpNode* MatchAndNegativeLookaroundInReadDirection(
RegExpCompiler* compiler,
ZoneGrowableArray<CharacterRange>* match,
ZoneGrowableArray<CharacterRange>* lookahead,
RegExpNode* on_success,
bool read_backward,
RegExpFlags flags) {
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpLookaround::Builder lookaround(false, on_success, stack_register,
position_register);
RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
lookahead, read_backward, lookaround.on_match_success(), flags);
return TextNode::CreateForCharacterRanges(
match, read_backward, lookaround.ForMatch(negative_match), flags);
}
void AddLoneLeadSurrogates(RegExpCompiler* compiler,
ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
auto lead_surrogates = splitter->lead_surrogates();
if (lead_surrogates == nullptr) return;
// E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
auto trail_surrogates = CharacterRange::List(
on_success->zone(), CharacterRange::Range(Utf16::kTrailSurrogateStart,
Utf16::kTrailSurrogateEnd));
RegExpNode* match;
if (compiler->read_backward()) {
// Reading backward. Assert that reading forward, there is no trail
// surrogate, and then backward match the lead surrogate.
match = NegativeLookaroundAgainstReadDirectionAndMatch(
compiler, trail_surrogates, lead_surrogates, on_success, true,
RegExpFlags());
} else {
// Reading forward. Forward match the lead surrogate and assert that
// no trail surrogate follows.
match = MatchAndNegativeLookaroundInReadDirection(
compiler, lead_surrogates, trail_surrogates, on_success, false,
RegExpFlags());
}
result->AddAlternative(GuardedAlternative(match));
}
void AddLoneTrailSurrogates(RegExpCompiler* compiler,
ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
auto trail_surrogates = splitter->trail_surrogates();
if (trail_surrogates == nullptr) return;
// E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
auto lead_surrogates = CharacterRange::List(
on_success->zone(), CharacterRange::Range(Utf16::kLeadSurrogateStart,
Utf16::kLeadSurrogateEnd));
RegExpNode* match;
if (compiler->read_backward()) {
// Reading backward. Backward match the trail surrogate and assert that no
// lead surrogate precedes it.
match = MatchAndNegativeLookaroundInReadDirection(
compiler, trail_surrogates, lead_surrogates, on_success, true,
RegExpFlags());
} else {
// Reading forward. Assert that reading backward, there is no lead
// surrogate, and then forward match the trail surrogate.
match = NegativeLookaroundAgainstReadDirectionAndMatch(
compiler, lead_surrogates, trail_surrogates, on_success, false,
RegExpFlags());
}
result->AddAlternative(GuardedAlternative(match));
}
RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
RegExpNode* on_success) {
// This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
ASSERT(!compiler->read_backward());
// Advance any character. If the character happens to be a lead surrogate and
// we advanced into the middle of a surrogate pair, it will work out, as
// nothing will match from there. We will have to advance again, consuming
// the associated trail surrogate.
auto range = CharacterRange::List(
on_success->zone(), CharacterRange::Range(0, Utf16::kMaxCodeUnit));
return TextNode::CreateForCharacterRanges(range, false, on_success,
RegExpFlags());
}
void AddUnicodeCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges) {
ASSERT(CharacterRange::IsCanonical(ranges));
// Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver.
// See also https://crbug.com/v8/6727.
// TODO(sstrickl): This only covers the special case of the {0,0x10FFFF}
// range, which we use frequently internally. But large ranges can also easily
// be created by the user. We might want to have a more general caching
// mechanism for such ranges.
if (ranges->length() == 1 && ranges->At(0).IsEverything(Utf::kMaxCodePoint)) {
return;
}
icu::UnicodeSet set;
for (int i = 0; i < ranges->length(); i++) {
set.add(ranges->At(i).from(), ranges->At(i).to());
}
ranges->Clear();
set.closeOver(USET_CASE_INSENSITIVE);
// Full case mapping map single characters to multiple characters.
// Those are represented as strings in the set. Remove them so that
// we end up with only simple and common case mappings.
set.removeAllStrings();
for (int i = 0; i < set.getRangeCount(); i++) {
ranges->Add(
CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i)));
}
// No errors and everything we collected have been ranges.
CharacterRange::Canonicalize(ranges);
}
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
set_.Canonicalize();
ZoneGrowableArray<CharacterRange>* ranges = this->ranges();
if (flags_.NeedsUnicodeCaseEquivalents()) {
AddUnicodeCaseEquivalents(ranges);
}
if (flags_.IsUnicode() && !compiler->one_byte() &&
!contains_split_surrogate()) {
if (is_negated()) {
ZoneGrowableArray<CharacterRange>* negated =
new ZoneGrowableArray<CharacterRange>(2);
CharacterRange::Negate(ranges, negated);
ranges = negated;
}
if (ranges->length() == 0) {
RegExpCharacterClass* fail =
new RegExpCharacterClass(ranges, RegExpFlags());
return new TextNode(fail, compiler->read_backward(), on_success);
}
if (standard_type() == '*') {
return UnanchoredAdvance(compiler, on_success);
} else {
ChoiceNode* result = new (OZ) ChoiceNode(2, OZ);
UnicodeRangeSplitter splitter(OZ, ranges);
AddBmpCharacters(compiler, result, on_success, &splitter);
AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
return result;
}
} else {
return new TextNode(this, compiler->read_backward(), on_success);
}
return new (OZ) TextNode(this, compiler->read_backward(), on_success);
}
RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
intptr_t length = alternatives->length();
ChoiceNode* result = new (OZ) ChoiceNode(length, OZ);
for (intptr_t i = 0; i < length; i++) {
GuardedAlternative alternative(
alternatives->At(i)->ToNode(compiler, on_success));
result->AddAlternative(alternative);
}
return result;
}
RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return ToNode(min(), max(), is_greedy(), body(), compiler, on_success);
}
// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
class RegExpExpansionLimiter : public ValueObject {
public:
static const intptr_t kMaxExpansionFactor = 6;
RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor)
: compiler_(compiler),
saved_expansion_factor_(compiler->current_expansion_factor()),
ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
ASSERT(factor > 0);
if (ok_to_expand_) {
if (factor > kMaxExpansionFactor) {
// Avoid integer overflow of the current expansion factor.
ok_to_expand_ = false;
compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
} else {
intptr_t new_factor = saved_expansion_factor_ * factor;
ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
compiler->set_current_expansion_factor(new_factor);
}
}
}
~RegExpExpansionLimiter() {
compiler_->set_current_expansion_factor(saved_expansion_factor_);
}
bool ok_to_expand() { return ok_to_expand_; }
private:
RegExpCompiler* compiler_;
intptr_t saved_expansion_factor_;
bool ok_to_expand_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
};
RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
intptr_t max,
bool is_greedy,
RegExpTree* body,
RegExpCompiler* compiler,
RegExpNode* on_success,
bool not_at_start) {
// x{f, t} becomes this:
//
// (r++)<-.
// | `
// | (x)
// v ^
// (r=0)-->(?)---/ [if r < t]
// |
// [if r >= f] \----> ...
//
// 15.10.2.5 RepeatMatcher algorithm.
// The parser has already eliminated the case where max is 0. In the case
// where max_match is zero the parser has removed the quantifier if min was
// > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
// If we know that we cannot match zero length then things are a little
// simpler since we don't need to make the special zero length match check
// from step 2.1. If the min and max are small we can unroll a little in
// this case.
// Unroll (foo)+ and (foo){3,}
static const intptr_t kMaxUnrolledMinMatches = 3;
// Unroll (foo)? and (foo){x,3}
static const intptr_t kMaxUnrolledMaxMatches = 3;
if (max == 0) return on_success; // This can happen due to recursion.
bool body_can_be_empty = (body->min_match() == 0);
intptr_t body_start_reg = RegExpCompiler::kNoRegister;
Interval capture_registers = body->CaptureRegisters();
bool needs_capture_clearing = !capture_registers.is_empty();
Zone* zone = compiler->zone();
if (body_can_be_empty) {
body_start_reg = compiler->AllocateRegister();
} else if (kRegexpOptimization && !needs_capture_clearing) {
// Only unroll if there are no captures and the body can't be
// empty.
{
RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0));
if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
intptr_t new_max = (max == kInfinity) ? max : max - min;
// Recurse once to get the loop or optional matches after the fixed
// ones.
RegExpNode* answer =
ToNode(0, new_max, is_greedy, body, compiler, on_success, true);
// Unroll the forced matches from 0 to min. This can cause chains of
// TextNodes (which the parser does not generate). These should be
// combined if it turns out they hinder good code generation.
for (intptr_t i = 0; i < min; i++) {
answer = body->ToNode(compiler, answer);
}
return answer;
}
}
if (max <= kMaxUnrolledMaxMatches && min == 0) {
ASSERT(max > 0); // Due to the 'if' above.
RegExpExpansionLimiter limiter(compiler, max);
if (limiter.ok_to_expand()) {
// Unroll the optional matches up to max.
RegExpNode* answer = on_success;
for (intptr_t i = 0; i < max; i++) {
ChoiceNode* alternation = new (zone) ChoiceNode(2, zone);
if (is_greedy) {
alternation->AddAlternative(
GuardedAlternative(body->ToNode(compiler, answer)));
alternation->AddAlternative(GuardedAlternative(on_success));
} else {
alternation->AddAlternative(GuardedAlternative(on_success));
alternation->AddAlternative(
GuardedAlternative(body->ToNode(compiler, answer)));
}
answer = alternation;
if (not_at_start && !compiler->read_backward()) {
alternation->set_not_at_start();
}
}
return answer;
}
}
}
bool has_min = min > 0;
bool has_max = max < RegExpTree::kInfinity;
bool needs_counter = has_min || has_max;
intptr_t reg_ctr = needs_counter ? compiler->AllocateRegister()
: RegExpCompiler::kNoRegister;
LoopChoiceNode* center = new (zone)
LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone);
if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
RegExpNode* loop_return =
needs_counter ? static_cast<RegExpNode*>(
ActionNode::IncrementRegister(reg_ctr, center))
: static_cast<RegExpNode*>(center);
if (body_can_be_empty) {
// If the body can be empty we need to check if it was and then
// backtrack.
loop_return =
ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return);
}
RegExpNode* body_node = body->ToNode(compiler, loop_return);
if (body_can_be_empty) {
// If the body can be empty we need to store the start position
// so we can bail out if it was empty.
body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
}
if (needs_capture_clearing) {
// Before entering the body of this loop we need to clear captures.
body_node = ActionNode::ClearCaptures(capture_registers, body_node);
}
GuardedAlternative body_alt(body_node);
if (has_max) {
Guard* body_guard = new (zone) Guard(reg_ctr, Guard::LT, max);
body_alt.AddGuard(body_guard, zone);
}
GuardedAlternative rest_alt(on_success);
if (has_min) {
Guard* rest_guard = new (zone) Guard(reg_ctr, Guard::GEQ, min);
rest_alt.AddGuard(rest_guard, zone);
}
if (is_greedy) {
center->AddLoopAlternative(body_alt);
center->AddContinueAlternative(rest_alt);
} else {
center->AddContinueAlternative(rest_alt);
center->AddLoopAlternative(body_alt);
}
if (needs_counter) {
return ActionNode::SetRegister(reg_ctr, 0, center);
} else {
return center;
}
}
namespace {
// Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and
// \B to (?<=\w)(?=\w)|(?<=\W)(?=\W)
RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler,
RegExpNode* on_success,
RegExpAssertion::AssertionType type,
RegExpFlags flags) {
ASSERT(flags.NeedsUnicodeCaseEquivalents());
ZoneGrowableArray<CharacterRange>* word_range =
new ZoneGrowableArray<CharacterRange>(2);
CharacterRange::AddClassEscape('w', word_range, true);
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
ChoiceNode* result = new (OZ) ChoiceNode(2, OZ);
// Add two choices. The (non-)boundary could start with a word or
// a non-word-character.
for (int i = 0; i < 2; i++) {
bool lookbehind_for_word = i == 0;
bool lookahead_for_word =
(type == RegExpAssertion::BOUNDARY) ^ lookbehind_for_word;
// Look to the left.
RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success,
stack_register, position_register);
RegExpNode* backward = TextNode::CreateForCharacterRanges(
word_range, true, lookbehind.on_match_success(), flags);
// Look to the right.
RegExpLookaround::Builder lookahead(lookahead_for_word,
lookbehind.ForMatch(backward),
stack_register, position_register);
RegExpNode* forward = TextNode::CreateForCharacterRanges(
word_range, false, lookahead.on_match_success(), flags);
result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward)));
}
return result;
}
} // anonymous namespace
RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
switch (assertion_type()) {
case START_OF_LINE:
return AssertionNode::AfterNewline(on_success);
case START_OF_INPUT:
return AssertionNode::AtStart(on_success);
case BOUNDARY:
return flags_.NeedsUnicodeCaseEquivalents()
? BoundaryAssertionAsLookaround(compiler, on_success, BOUNDARY,
flags_)
: AssertionNode::AtBoundary(on_success);
case NON_BOUNDARY:
return flags_.NeedsUnicodeCaseEquivalents()
? BoundaryAssertionAsLookaround(compiler, on_success,
NON_BOUNDARY, flags_)
: AssertionNode::AtNonBoundary(on_success);
case END_OF_INPUT:
return AssertionNode::AtEnd(on_success);
case END_OF_LINE: {
// Compile $ in multiline regexps as an alternation with a positive
// lookahead in one side and an end-of-input on the other side.
// We need two registers for the lookahead.
intptr_t stack_pointer_register = compiler->AllocateRegister();
intptr_t position_register = compiler->AllocateRegister();
// The ChoiceNode to distinguish between a newline and end-of-input.
ChoiceNode* result = new ChoiceNode(2, on_success->zone());
// Create a newline atom.
ZoneGrowableArray<CharacterRange>* newline_ranges =
new ZoneGrowableArray<CharacterRange>(3);
CharacterRange::AddClassEscape('n', newline_ranges);
RegExpCharacterClass* newline_atom =
new RegExpCharacterClass('n', RegExpFlags());
TextNode* newline_matcher =
new TextNode(newline_atom, /*read_backwards=*/false,
ActionNode::PositiveSubmatchSuccess(
stack_pointer_register, position_register,
0, // No captures inside.
-1, // Ignored if no captures.
on_success));
// Create an end-of-input matcher.
RegExpNode* end_of_line = ActionNode::BeginSubmatch(
stack_pointer_register, position_register, newline_matcher);
// Add the two alternatives to the ChoiceNode.
GuardedAlternative eol_alternative(end_of_line);
result->AddAlternative(eol_alternative);
GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
result->AddAlternative(end_alternative);
return result;
}
default:
UNREACHABLE();
}
return on_success;
}
RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return new (OZ) BackReferenceNode(RegExpCapture::StartRegister(index()),
RegExpCapture::EndRegister(index()), flags_,
compiler->read_backward(), on_success);
}
RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return on_success;
}
RegExpLookaround::Builder::Builder(bool is_positive,
RegExpNode* on_success,
intptr_t stack_pointer_register,
intptr_t position_register,
intptr_t capture_register_count,
intptr_t capture_register_start)
: is_positive_(is_positive),
on_success_(on_success),
stack_pointer_register_(stack_pointer_register),
position_register_(position_register) {
if (is_positive_) {
on_match_success_ = ActionNode::PositiveSubmatchSuccess(
stack_pointer_register, position_register, capture_register_count,
capture_register_start, on_success);
} else {
on_match_success_ = new (OZ) NegativeSubmatchSuccess(
stack_pointer_register, position_register, capture_register_count,
capture_register_start, OZ);
}
}
RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
if (is_positive_) {
return ActionNode::BeginSubmatch(stack_pointer_register_,
position_register_, match);
} else {
Zone* zone = on_success_->zone();
// We use a ChoiceNode to represent the negative lookaround. The first
// alternative is the negative match. On success, the end node backtracks.
// On failure, the second alternative is tried and leads to success.
// NegativeLookaroundChoiceNode is a special ChoiceNode that ignores the
// first exit when calculating quick checks.
ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
GuardedAlternative(match), GuardedAlternative(on_success_), zone);
return ActionNode::BeginSubmatch(stack_pointer_register_,
position_register_, choice_node);
}
}
RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
intptr_t stack_pointer_register = compiler->AllocateRegister();
intptr_t position_register = compiler->AllocateRegister();
const intptr_t registers_per_capture = 2;
const intptr_t register_of_first_capture = 2;
intptr_t register_count = capture_count_ * registers_per_capture;
intptr_t register_start =
register_of_first_capture + capture_from_ * registers_per_capture;
RegExpNode* result;
bool was_reading_backward = compiler->read_backward();
compiler->set_read_backward(type() == LOOKBEHIND);
Builder builder(is_positive(), on_success, stack_pointer_register,
position_register, register_count, register_start);
RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
result = builder.ForMatch(match);
compiler->set_read_backward(was_reading_backward);
return result;
}
RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
return ToNode(body(), index(), compiler, on_success);
}
RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
intptr_t index,
RegExpCompiler* compiler,
RegExpNode* on_success) {
ASSERT(body != nullptr);
intptr_t start_reg = RegExpCapture::StartRegister(index);
intptr_t end_reg = RegExpCapture::EndRegister(index);
if (compiler->read_backward()) {
intptr_t tmp = end_reg;
end_reg = start_reg;
start_reg = tmp;
}
RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
RegExpNode* body_node = body->ToNode(compiler, store_end);
return ActionNode::StorePosition(start_reg, true, body_node);
}
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
ZoneGrowableArray<RegExpTree*>* children = nodes();
RegExpNode* current = on_success;
if (compiler->read_backward()) {
for (intptr_t i = 0; i < children->length(); i++) {
current = children->At(i)->ToNode(compiler, current);
}
} else {
for (intptr_t i = children->length() - 1; i >= 0; i--) {
current = children->At(i)->ToNode(compiler, current);
}
}
return current;
}
static void AddClass(const int32_t* elmv,
intptr_t elmc,
ZoneGrowableArray<CharacterRange>* ranges) {
elmc--;
ASSERT(elmv[elmc] == kRangeEndMarker);
for (intptr_t i = 0; i < elmc; i += 2) {
ASSERT(elmv[i] < elmv[i + 1]);
ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1));
}
}
static void AddClassNegated(const int32_t* elmv,
intptr_t elmc,
ZoneGrowableArray<CharacterRange>* ranges) {
elmc--;
ASSERT(elmv[elmc] == kRangeEndMarker);
ASSERT(elmv[0] != 0x0000);
ASSERT(elmv[elmc - 1] != Utf::kMaxCodePoint);
uint16_t last = 0x0000;
for (intptr_t i = 0; i < elmc; i += 2) {
ASSERT(last <= elmv[i] - 1);
ASSERT(elmv[i] < elmv[i + 1]);
ranges->Add(CharacterRange(last, elmv[i] - 1));
last = elmv[i + 1];
}
ranges->Add(CharacterRange(last, Utf::kMaxCodePoint));
}
void CharacterRange::AddClassEscape(uint16_t type,
ZoneGrowableArray<CharacterRange>* ranges,
bool add_unicode_case_equivalents) {
if (add_unicode_case_equivalents && (type == 'w' || type == 'W')) {
// See #sec-runtime-semantics-wordcharacters-abstract-operation
// In case of unicode and ignore_case, we need to create the closure over
// case equivalent characters before negating.
ZoneGrowableArray<CharacterRange>* new_ranges =
new ZoneGrowableArray<CharacterRange>(2);
AddClass(kWordRanges, kWordRangeCount, new_ranges);
AddUnicodeCaseEquivalents(new_ranges);
if (type == 'W') {
ZoneGrowableArray<CharacterRange>* negated =
new ZoneGrowableArray<CharacterRange>(2);
CharacterRange::Negate(new_ranges, negated);
new_ranges = negated;
}
ranges->AddArray(*new_ranges);
return;
}
AddClassEscape(type, ranges);
}
void CharacterRange::AddClassEscape(uint16_t type,
ZoneGrowableArray<CharacterRange>* ranges) {
switch (type) {
case 's':
AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
break;
case 'S':
AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
break;
case 'w':
AddClass(kWordRanges, kWordRangeCount, ranges);
break;
case 'W':
AddClassNegated(kWordRanges, kWordRangeCount, ranges);
break;
case 'd':
AddClass(kDigitRanges, kDigitRangeCount, ranges);
break;
case 'D':
AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
break;
case '.':
AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges);
break;
// This is not a character range as defined by the spec but a
// convenient shorthand for a character class that matches any
// character.
case '*':
ranges->Add(CharacterRange::Everything());
break;
// This is the set of characters matched by the $ and ^ symbols
// in multiline mode.
case 'n':
AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges);
break;
default:
UNREACHABLE();
}
}
void CharacterRange::AddCaseEquivalents(
ZoneGrowableArray<CharacterRange>* ranges,
bool is_one_byte,
Zone* zone) {
CharacterRange::Canonicalize(ranges);
int range_count = ranges->length();
for (intptr_t i = 0; i < range_count; i++) {
CharacterRange range = ranges->At(i);
int32_t bottom = range.from();
if (bottom > Utf16::kMaxCodeUnit) continue;
int32_t top = Utils::Minimum(range.to(), Utf16::kMaxCodeUnit);
// Nothing to be done for surrogates
if (bottom >= Utf16::kLeadSurrogateStart &&
top <= Utf16::kTrailSurrogateEnd) {
continue;
}
if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
if (bottom > Symbols::kMaxOneCharCodeSymbol) continue;
if (top > Symbols::kMaxOneCharCodeSymbol) {
top = Symbols::kMaxOneCharCodeSymbol;
}
}
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange;
int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
if (top == bottom) {
// If this is a singleton we just expand the one character.
intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars);
for (intptr_t i = 0; i < length; i++) {
int32_t chr = chars[i];
if (chr != bottom) {
ranges->Add(CharacterRange::Singleton(chars[i]));
}
}
} else {
// If this is a range we expand the characters block by block,
// expanding contiguous subranges (blocks) one at a time.
// The approach is as follows. For a given start character we
// look up the remainder of the block that contains it (represented
// by the end point), for instance we find 'z' if the character
// is 'c'. A block is characterized by the property
// that all characters uncanonicalize in the same way, except that
// each entry in the result is incremented by the distance from the first
// element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A']
// and the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
// Once we've found the end point we look up its uncanonicalization
// and produce a range for each element. For instance for [c-f]
// we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
// add a range if it is not already contained in the input, so [c-f]
// will be skipped but [C-F] will be added. If this range is not
// completely contained in a block we do this for all the blocks
// covered by the range (handling characters that is not in a block
// as a "singleton block").
int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
intptr_t pos = bottom;
while (pos <= top) {
intptr_t length = jsregexp_canonrange.get(pos, '\0', range);
int32_t block_end;
if (length == 0) {
block_end = pos;
} else {
ASSERT(length == 1);
block_end = range[0];
}
intptr_t end = (block_end > top) ? top : block_end;
length = jsregexp_uncanonicalize.get(block_end, '\0', range);
for (intptr_t i = 0; i < length; i++) {
int32_t c = range[i];
int32_t range_from = c - (block_end - pos);
int32_t range_to = c - (block_end - end);
if (!(bottom <= range_from && range_to <= top)) {
ranges->Add(CharacterRange(range_from, range_to));
}
}
pos = end + 1;
}
}
}
}
bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) {
ASSERT(ranges != NULL);
intptr_t n = ranges->length();
if (n <= 1) return true;
intptr_t max = ranges->At(0).to();
for (intptr_t i = 1; i < n; i++) {
CharacterRange next_range = ranges->At(i);
if (next_range.from() <= max + 1) return false;
max = next_range.to();
}
return true;
}
ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() {
if (ranges_ == NULL) {
ranges_ = new ZoneGrowableArray<CharacterRange>(2);
CharacterRange::AddClassEscape(standard_set_type_, ranges_);
}
return ranges_;
}
// Move a number of elements in a zone array to another position
// in the same array. Handles overlapping source and target areas.
static void MoveRanges(ZoneGrowableArray<CharacterRange>* list,
intptr_t from,
intptr_t to,
intptr_t count) {
// Ranges are potentially overlapping.
if (from < to) {
for (intptr_t i = count - 1; i >= 0; i--) {
(*list)[to + i] = list->At(from + i);
}
} else {
for (intptr_t i = 0; i < count; i++) {
(*list)[to + i] = list->At(from + i);
}
}
}
static intptr_t InsertRangeInCanonicalList(
ZoneGrowableArray<CharacterRange>* list,
intptr_t count,
CharacterRange insert) {
// Inserts a range into list[0..count[, which must be sorted
// by from value and non-overlapping and non-adjacent, using at most
// list[0..count] for the result. Returns the number of resulting
// canonicalized ranges. Inserting a range may collapse existing ranges into
// fewer ranges, so the return value can be anything in the range 1..count+1.
int32_t from = insert.from();
int32_t to = insert.to();
intptr_t start_pos = 0;
intptr_t end_pos = count;
for (intptr_t i = count - 1; i >= 0; i--) {
CharacterRange current = list->At(i);
if (current.from() > to + 1) {
end_pos = i;
} else if (current.to() + 1 < from) {
start_pos = i + 1;
break;
}
}
// Inserted range overlaps, or is adjacent to, ranges at positions
// [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
// not affected by the insertion.
// If start_pos == end_pos, the range must be inserted before start_pos.
// if start_pos < end_pos, the entire range from start_pos to end_pos
// must be merged with the insert range.
if (start_pos == end_pos) {
// Insert between existing ranges at position start_pos.
if (start_pos < count) {
MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
}
(*list)[start_pos] = insert;
return count + 1;
}
if (start_pos + 1 == end_pos) {
// Replace single existing range at position start_pos.
CharacterRange to_replace = list->At(start_pos);
intptr_t new_from = Utils::Minimum(to_replace.from(), from);
intptr_t new_to = Utils::Maximum(to_replace.to(), to);
(*list)[start_pos] = CharacterRange(new_from, new_to);
return count;
}
// Replace a number of existing ranges from start_pos to end_pos - 1.
// Move the remaining ranges down.
intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from);
intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to);
if (end_pos < count) {
MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
}
(*list)[start_pos] = CharacterRange(new_from, new_to);
return count - (end_pos - start_pos) + 1;
}
void CharacterSet::Canonicalize() {
// Special/default classes are always considered canonical. The result
// of calling ranges() will be sorted.
if (ranges_ == NULL) return;
CharacterRange::Canonicalize(ranges_);
}
void CharacterRange::Canonicalize(
ZoneGrowableArray<CharacterRange>* character_ranges) {
if (character_ranges->length() <= 1) return;
// Check whether ranges are already canonical (increasing, non-overlapping,
// non-adjacent).
intptr_t n = character_ranges->length();
intptr_t max = character_ranges->At(0).to();
intptr_t i = 1;
while (i < n) {
CharacterRange current = character_ranges->At(i);
if (current.from() <= max + 1) {
break;
}
max = current.to();
i++;
}
// Canonical until the i'th range. If that's all of them, we are done.
if (i == n) return;
// The ranges at index i and forward are not canonicalized. Make them so by
// doing the equivalent of insertion sort (inserting each into the previous
// list, in order).
// Notice that inserting a range can reduce the number of ranges in the
// result due to combining of adjacent and overlapping ranges.
intptr_t read = i; // Range to insert.
intptr_t num_canonical = i; // Length of canonicalized part of list.
do {
num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical,
character_ranges->At(read));
read++;
} while (read < n);
character_ranges->TruncateTo(num_canonical);
ASSERT(CharacterRange::IsCanonical(character_ranges));
}
void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges,
ZoneGrowableArray<CharacterRange>* negated_ranges) {
ASSERT(CharacterRange::IsCanonical(ranges));
ASSERT(negated_ranges->length() == 0);
intptr_t range_count = ranges->length();
uint32_t from = 0;
intptr_t i = 0;
if (range_count > 0 && ranges->At(0).from() == 0) {
from = ranges->At(0).to();
i = 1;
}
while (i < range_count) {
CharacterRange range = ranges->At(i);
negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
from = range.to();
i++;
}
if (from < Utf::kMaxCodePoint) {
negated_ranges->Add(CharacterRange(from + 1, Utf::kMaxCodePoint));
}
}
// -------------------------------------------------------------------
// Splay tree
// Workaround for the fact that ZoneGrowableArray does not have contains().
static bool ArrayContains(ZoneGrowableArray<unsigned>* array, unsigned value) {
for (intptr_t i = 0; i < array->length(); i++) {
if (array->At(i) == value) {
return true;
}
}
return false;
}
OutSet* OutSet::Extend(unsigned value, Zone* zone) {
if (Get(value)) return this;
if (successors() != nullptr) {
for (int i = 0; i < successors()->length(); i++) {
OutSet* successor = successors()->At(i);
if (successor->Get(value)) return successor;
}
} else {
successors_ = new (zone) ZoneGrowableArray<OutSet*>(2);
}
OutSet* result = new (zone) OutSet(first_, remaining_);
result->Set(value, zone);
successors()->Add(result);
return result;
}
void OutSet::Set(unsigned value, Zone* zone) {
if (value < kFirstLimit) {
first_ |= (1 << value);
} else {
if (remaining_ == NULL)
remaining_ = new (zone) ZoneGrowableArray<unsigned>(1);
bool remaining_contains_value = ArrayContains(remaining_, value);
if (remaining_->is_empty() || !remaining_contains_value) {
remaining_->Add(value);
}
}
}
bool OutSet::Get(unsigned value) const {
if (value < kFirstLimit) {
return (first_ & (1 << value)) != 0;
} else if (remaining_ == NULL) {
return false;
} else {
return ArrayContains(remaining_, value);
}
}
const int32_t ChoiceTable::Config::kNoKey = Utf::kInvalidChar;
void ChoiceTable::AddRange(CharacterRange full_range,
int32_t value,
Zone* zone) {
CharacterRange current = full_range;
if (tree()->is_empty()) {
// If this is the first range we just insert into the table.
ZoneSplayTree<Config>::Locator loc;
bool inserted = tree()->Insert(current.from(), &loc);
ASSERT(inserted);
USE(inserted);
loc.set_value(
Entry(current.from(), current.to(), empty()->Extend(value, zone)));
return;
}
// First see if there is a range to the left of this one that
// overlaps.
ZoneSplayTree<Config>::Locator loc;
if (tree()->FindGreatestLessThan(current.from(), &loc)) {
Entry* entry = &loc.value();
// If we've found a range that overlaps with this one, and it
// starts strictly to the left of this one, we have to fix it
// because the following code only handles ranges that start on
// or after the start point of the range we're adding.
if (entry->from() < current.from() && entry->to() >= current.from()) {
// Snap the overlapping range in half around the start point of
// the range we're adding.
CharacterRange left =
CharacterRange::Range(entry->from(), current.from() - 1);
CharacterRange right = CharacterRange::Range(current.from(), entry->to());
// The left part of the overlapping range doesn't overlap.
// Truncate the whole entry to be just the left part.
entry->set_to(left.to());
// The right part is the one that overlaps. We add this part
// to the map and let the next step deal with merging it with
// the range we're adding.
ZoneSplayTree<Config>::Locator loc;
bool inserted = tree()->Insert(right.from(), &loc);
ASSERT(inserted);
USE(inserted);
loc.set_value(Entry(right.from(), right.to(), entry->out_set()));
}
}
while (current.is_valid()) {
if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
(loc.value().from() <= current.to()) &&
(loc.value().to() >= current.from())) {
Entry* entry = &loc.value();
// We have overlap. If there is space between the start point of
// the range we're adding and where the overlapping range starts
// then we have to add a range covering just that space.
if (current.from() < entry->from()) {
ZoneSplayTree<Config>::Locator ins;
bool inserted = tree()->Insert(current.from(), &ins);
ASSERT(inserted);
USE(inserted);
ins.set_value(Entry(current.from(), entry->from() - 1,
empty()->Extend(value, zone)));
current.set_from(entry->from());
}
ASSERT(current.from() == entry->from());
// If the overlapping range extends beyond the one we want to add
// we have to snap the right part off and add it separately.
if (entry->to() > current.to()) {
ZoneSplayTree<Config>::Locator ins;
bool inserted = tree()->Insert(current.to() + 1, &ins);
ASSERT(inserted);
USE(inserted);
ins.set_value(Entry(current.to() + 1, entry->to(), entry->out_set()));
entry->set_to(current.to());
}
ASSERT(entry->to() <= current.to());
// The overlapping range is now completely contained by the range
// we're adding so we can just update it and move the start point
// of the range we're adding just past it.
entry->AddValue(value, zone);
ASSERT(entry->to() + 1 > current.from());
current.set_from(entry->to() + 1);
} else {
// There is no overlap so we can just add the range
ZoneSplayTree<Config>::Locator ins;
bool inserted = tree()->Insert(current.from(), &ins);
ASSERT(inserted);
USE(inserted);
ins.set_value(
Entry(current.from(), current.to(), empty()->Extend(value, zone)));
break;
}
}
}
OutSet* ChoiceTable::Get(int32_t value) {
ZoneSplayTree<Config>::Locator loc;
if (!tree()->FindGreatestLessThan(value, &loc)) return empty();
Entry* entry = &loc.value();
if (value <= entry->to())
return entry->out_set();
else
return empty();
}
// -------------------------------------------------------------------
// Analysis
void Analysis::EnsureAnalyzed(RegExpNode* that) {
if (that->info()->been_analyzed || that->info()->being_analyzed) return;
that->info()->being_analyzed = true;
that->Accept(this);
that->info()->being_analyzed = false;
that->info()->been_analyzed = true;
}
void Analysis::VisitEnd(EndNode* that) {
// nothing to do
}
void TextNode::CalculateOffsets() {
intptr_t element_count = elements()->length();
// Set up the offsets of the elements relative to the start. This is a fixed
// quantity since a TextNode can only contain fixed-width things.
intptr_t cp_offset = 0;
for (intptr_t i = 0; i < element_count; i++) {
TextElement& elm = (*elements())[i];
elm.set_cp_offset(cp_offset);
cp_offset += elm.length();
}
}
void Analysis::VisitText(TextNode* that) {
that->MakeCaseIndependent(is_one_byte_);
EnsureAnalyzed(that->on_success());
if (!has_failed()) {
that->CalculateOffsets();
}
}
void Analysis::VisitAction(ActionNode* that) {
RegExpNode* target = that->on_success();
EnsureAnalyzed(target);
if (!has_failed()) {
// If the next node is interested in what it follows then this node
// has to be interested too so it can pass the information on.
that->info()->AddFromFollowing(target->info());
}
}
void Analysis::VisitChoice(ChoiceNode* that) {
NodeInfo* info = that->info();
for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
RegExpNode* node = (*that->alternatives())[i].node();
EnsureAnalyzed(node);
if (has_failed()) return;
// Anything the following nodes need to know has to be known by
// this node also, so it can pass it on.
info->AddFromFollowing(node->info());
}
}
void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
NodeInfo* info = that->info();
for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
RegExpNode* node = (*that->alternatives())[i].node();
if (node != that->loop_node()) {
EnsureAnalyzed(node);
if (has_failed()) return;
info->AddFromFollowing(node->info());
}
}
// Check the loop last since it may need the value of this node
// to get a correct result.
EnsureAnalyzed(that->loop_node());
if (!has_failed()) {
info->AddFromFollowing(that->loop_node()->info());
}
}
void Analysis::VisitBackReference(BackReferenceNode* that) {
EnsureAnalyzed(that->on_success());
}
void Analysis::VisitAssertion(AssertionNode* that) {
EnsureAnalyzed(that->on_success());
}
void BackReferenceNode::FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Working out the set of characters that a backreference can match is too
// hard, so we just say that any character can match.
bm->SetRest(offset);
SaveBMInfo(bm, not_at_start, offset);
}
COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize ==
RegExpMacroAssembler::kTableSize);
void ChoiceNode::FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
ZoneGrowableArray<GuardedAlternative>* alts = alternatives();
budget = (budget - 1) / alts->length();
for (intptr_t i = 0; i < alts->length(); i++) {
GuardedAlternative& alt = (*alts)[i];
if (alt.guards() != NULL && alt.guards()->length() != 0) {
bm->SetRest(offset); // Give up trying to fill in info.
SaveBMInfo(bm, not_at_start, offset);
return;
}
alt.node()->FillInBMInfo(offset, budget, bm, not_at_start);
}
SaveBMInfo(bm, not_at_start, offset);
}
void TextNode::FillInBMInfo(intptr_t initial_offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (initial_offset >= bm->length()) return;
intptr_t offset = initial_offset;
intptr_t max_char = bm->max_char();
for (intptr_t i = 0; i < elements()->length(); i++) {
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
TextElement text = elements()->At(i);
if (text.text_type() == TextElement::ATOM) {
RegExpAtom* atom = text.atom();
for (intptr_t j = 0; j < atom->length(); j++, offset++) {
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
uint16_t character = atom->data()->At(j);
if (atom->flags().IgnoreCase()) {
int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
intptr_t length = GetCaseIndependentLetters(
character, bm->max_char() == Symbols::kMaxOneCharCodeSymbol,
chars);
for (intptr_t j = 0; j < length; j++) {
bm->Set(offset, chars[j]);
}
} else {
if (character <= max_char) bm->Set(offset, character);
}
}
} else {
ASSERT(text.text_type() == TextElement::CHAR_CLASS);
RegExpCharacterClass* char_class = text.char_class();
ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges();
if (char_class->is_negated()) {
bm->SetAll(offset);
} else {
for (intptr_t k = 0; k < ranges->length(); k++) {
const CharacterRange& range = ranges->At(k);
if (range.from() > max_char) continue;
intptr_t to =
Utils::Minimum(max_char, static_cast<intptr_t>(range.to()));
bm->SetInterval(offset, Interval(range.from(), to));
}
}
offset++;
}
}
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
on_success()->FillInBMInfo(offset, budget - 1, bm,
true); // Not at start after a text node.
if (initial_offset == 0) set_bm_info(not_at_start, bm);
}
RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler,
RegExpNode* on_success,
RegExpFlags flags) {
// If the regexp matching starts within a surrogate pair, step back
// to the lead surrogate and start matching from there.
ASSERT(!compiler->read_backward());
Zone* zone = compiler->zone();
auto lead_surrogates = CharacterRange::List(
on_success->zone(), CharacterRange::Range(Utf16::kLeadSurrogateStart,
Utf16::kLeadSurrogateEnd));
auto trail_surrogates = CharacterRange::List(
on_success->zone(), CharacterRange::Range(Utf16::kTrailSurrogateStart,
Utf16::kTrailSurrogateEnd));
ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone);
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpNode* step_back = TextNode::CreateForCharacterRanges(
lead_surrogates, /*read_backward=*/true, on_success, flags);
RegExpLookaround::Builder builder(/*is_positive=*/true, step_back,
stack_register, position_register);
RegExpNode* match_trail = TextNode::CreateForCharacterRanges(
trail_surrogates, /*read_backward=*/false, builder.on_match_success(),
flags);
optional_step_back->AddAlternative(
GuardedAlternative(builder.ForMatch(match_trail)));
optional_step_back->AddAlternative(GuardedAlternative(on_success));
return optional_step_back;
}
#if !defined(DART_PRECOMPILED_RUNTIME)
RegExpEngine::CompilationResult RegExpEngine::CompileIR(
RegExpCompileData* data,
const ParsedFunction* parsed_function,
const ZoneGrowableArray<const ICData*>& ic_data_array,
intptr_t osr_id) {
ASSERT(!FLAG_interpret_irregexp);
Zone* zone = Thread::Current()->zone();
const Function& function = parsed_function->function();
const intptr_t specialization_cid = function.string_specialization_cid();
const bool is_sticky = function.is_sticky_specialization();
const bool is_one_byte = (specialization_cid == kOneByteStringCid ||
specialization_cid == kExternalOneByteStringCid);
RegExp& regexp = RegExp::Handle(zone, function.regexp());
const String& pattern = String::Handle(zone, regexp.pattern());
ASSERT(!regexp.IsNull());
ASSERT(!pattern.IsNull());
const bool is_global = regexp.flags().IsGlobal();
const bool is_unicode = regexp.flags().IsUnicode();
RegExpCompiler compiler(data->capture_count, is_one_byte);
// TODO(zerny): Frequency sampling is currently disabled because of several
// issues. We do not want to store subject strings in the regexp object since
// they might be long and we should not prevent their garbage collection.
// Passing them to this function explicitly does not help, since we must
// generate exactly the same IR for both the unoptimizing and optimizing
// pipelines (otherwise it gets confused when i.e. deopt id's differ).
// An option would be to store sampling results in the regexp object, but
// I'm not sure the performance gains are relevant enough.
// Wrap the body of the regexp in capture #0.
RegExpNode* captured_body =
RegExpCapture::ToNode(data->tree, 0, &compiler, compiler.accept());
RegExpNode* node = captured_body;
const bool is_end_anchored = data->tree->IsAnchoredAtEnd();
const bool is_start_anchored = data->tree->IsAnchoredAtStart();
intptr_t max_length = data->tree->max_match();
if (!is_start_anchored && !is_sticky) {
// Add a .*? at the beginning, outside the body capture, unless
// this expression is anchored at the beginning or is sticky.
RegExpNode* loop_node = RegExpQuantifier::ToNode(
0, RegExpTree::kInfinity, false,
new (zone) RegExpCharacterClass('*', RegExpFlags()), &compiler,
captured_body, data->contains_anchor);
if (data->contains_anchor) {
// Unroll loop once, to take care of the case that might start
// at the start of input.
ChoiceNode* first_step_node = new (zone) ChoiceNode(2, zone);
first_step_node->AddAlternative(GuardedAlternative(captured_body));
first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode(
new (zone) RegExpCharacterClass('*', RegExpFlags()),
/*read_backwards=*/false, loop_node)));
node = first_step_node;
} else {
node = loop_node;
}
}
if (is_one_byte) {
node = node->FilterOneByte(RegExpCompiler::kMaxRecursion);
// Do it again to propagate the new nodes to places where they were not
// put because they had not been calculated yet.
if (node != NULL) {
node = node->FilterOneByte(RegExpCompiler::kMaxRecursion);
}
} else if (is_unicode && (is_global || is_sticky)) {
node = OptionallyStepBackToLeadSurrogate(&compiler, node, regexp.flags());
}
if (node == NULL) node = new (zone) EndNode(EndNode::BACKTRACK, zone);
data->node = node;
Analysis analysis(is_one_byte);
analysis.EnsureAnalyzed(node);
if (analysis.has_failed()) {
const char* error_message = analysis.error_message();
return CompilationResult(error_message);
}
// Native regexp implementation.
IRRegExpMacroAssembler* macro_assembler = new (zone)
IRRegExpMacroAssembler(specialization_cid, data->capture_count,
parsed_function, ic_data_array, osr_id, zone);
// Inserted here, instead of in Assembler, because it depends on information
// in the AST that isn't replicated in the Node structure.
static const intptr_t kMaxBacksearchLimit = 1024;
if (is_end_anchored && !is_start_anchored && !is_sticky &&
max_length < kMaxBacksearchLimit) {
macro_assembler->SetCurrentPositionFromEnd(max_length);
}
if (is_global) {
RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL;
if (data->tree->min_match() > 0) {
mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK;
} else if (is_unicode) {
mode = RegExpMacroAssembler::GLOBAL_UNICODE;
}
macro_assembler->set_global_mode(mode);
}
RegExpEngine::CompilationResult result =
compiler.Assemble(macro_assembler, node, data->capture_count, pattern);
if (FLAG_trace_irregexp) {
macro_assembler->PrintBlocks();
}
return result;
}
#endif // !defined(DART_PRECOMPILED_RUNTIME)
RegExpEngine::CompilationResult RegExpEngine::CompileBytecode(
RegExpCompileData* data,
const RegExp& regexp,
bool is_one_byte,
bool is_sticky,
Zone* zone) {
ASSERT(FLAG_interpret_irregexp);
const String& pattern = String::Handle(zone, regexp.pattern());
ASSERT(!regexp.IsNull());
ASSERT(!pattern.IsNull());
const bool is_global = regexp.flags().IsGlobal();
const bool is_unicode = regexp.flags().IsUnicode();
RegExpCompiler compiler(data->capture_count, is_one_byte);
// TODO(zerny): Frequency sampling is currently disabled because of several
// issues. We do not want to store subject strings in the regexp object since
// they might be long and we should not prevent their garbage collection.
// Passing them to this function explicitly does not help, since we must
// generate exactly the same IR for both the unoptimizing and optimizing
// pipelines (otherwise it gets confused when i.e. deopt id's differ).
// An option would be to store sampling results in the regexp object, but
// I'm not sure the performance gains are relevant enough.
// Wrap the body of the regexp in capture #0.
RegExpNode* captured_body =
RegExpCapture::ToNode(data->tree, 0, &compiler, compiler.accept());
RegExpNode* node = captured_body;
bool is_end_anchored = data->tree->IsAnchoredAtEnd();
bool is_start_anchored = data->tree->IsAnchoredAtStart();
intptr_t max_length = data->tree->max_match();
if (!is_start_anchored && !is_sticky) {
// Add a .*? at the beginning, outside the body capture, unless
// this expression is anchored at the beginning.
RegExpNode* loop_node = RegExpQuantifier::ToNode(
0, RegExpTree::kInfinity, false,
new (zone) RegExpCharacterClass('*', RegExpFlags()), &compiler,
captured_body, data->contains_anchor);
if (data->contains_anchor) {
// Unroll loop once, to take care of the case that might start
// at the start of input.
ChoiceNode* first_step_node = new (zone) ChoiceNode(2, zone);
first_step_node->AddAlternative(GuardedAlternative(captured_body));
first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode(
new (zone) RegExpCharacterClass('*', RegExpFlags()),
/*read_backwards=*/false, loop_node)));
node = first_step_node;
} else {
node = loop_node;
}
}
if (is_one_byte) {
node = node->FilterOneByte(RegExpCompiler::kMaxRecursion);
// Do it again to propagate the new nodes to places where they were not
// put because they had not been calculated yet.
if (node != NULL) {
node = node->FilterOneByte(RegExpCompiler::kMaxRecursion);
}
} else if (is_unicode && (is_global || is_sticky)) {
node = OptionallyStepBackToLeadSurrogate(&compiler, node, regexp.flags());
}
if (node == NULL) node = new (zone) EndNode(EndNode::BACKTRACK, zone);
data->node = node;
Analysis analysis(is_one_byte);
analysis.EnsureAnalyzed(node);
if (analysis.has_failed()) {
const char* error_message = analysis.error_message();
return CompilationResult(error_message);
}
// Bytecode regexp implementation.
ZoneGrowableArray<uint8_t> buffer(zone, 1024);
BytecodeRegExpMacroAssembler* macro_assembler =
new (zone) BytecodeRegExpMacroAssembler(&buffer, zone);
// Inserted here, instead of in Assembler, because it depends on information
// in the AST that isn't replicated in the Node structure.
static const intptr_t kMaxBacksearchLimit = 1024;
if (is_end_anchored && !is_start_anchored && !is_sticky &&
max_length < kMaxBacksearchLimit) {
macro_assembler->SetCurrentPositionFromEnd(max_length);
}
if (is_global) {
RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL;
if (data->tree->min_match() > 0) {
mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK;
} else if (is_unicode) {
mode = RegExpMacroAssembler::GLOBAL_UNICODE;
}
macro_assembler->set_global_mode(mode);
}
RegExpEngine::CompilationResult result =
compiler.Assemble(macro_assembler, node, data->capture_count, pattern);
if (FLAG_trace_irregexp) {
macro_assembler->PrintBlocks();
}
return result;
}
void CreateSpecializedFunction(Thread* thread,
Zone* zone,
const RegExp& regexp,
intptr_t specialization_cid,
bool sticky,
const Object& owner) {
const intptr_t kParamCount = RegExpMacroAssembler::kParamCount;
const FunctionType& signature =
FunctionType::Handle(zone, FunctionType::New());
Function& fn =
Function::Handle(zone, Function::New(signature, Symbols::ColonMatcher(),
UntaggedFunction::kIrregexpFunction,
true, // Static.
false, // Not const.
false, // Not abstract.
false, // Not external.
false, // Not native.
owner, TokenPosition::kMinSource));
// TODO(zerny): Share these arrays between all irregexp functions.
// TODO(regis): Better, share a common signature.
signature.set_num_fixed_parameters(kParamCount);
signature.set_parameter_types(
Array::Handle(zone, Array::New(kParamCount, Heap::kOld)));
fn.CreateNameArray();
signature.SetParameterTypeAt(RegExpMacroAssembler::kParamRegExpIndex,
Object::dynamic_type());
fn.SetParameterNameAt(RegExpMacroAssembler::kParamRegExpIndex,
Symbols::This());
signature.SetParameterTypeAt(RegExpMacroAssembler::kParamStringIndex,
Object::dynamic_type());
fn.SetParameterNameAt(RegExpMacroAssembler::kParamStringIndex,
Symbols::string_param());
signature.SetParameterTypeAt(RegExpMacroAssembler::kParamStartOffsetIndex,
Object::dynamic_type());
fn.SetParameterNameAt(RegExpMacroAssembler::kParamStartOffsetIndex,
Symbols::start_index_param());
signature.set_result_type(Type::Handle(zone, Type::ArrayType()));
// Cache the result.
regexp.set_function(specialization_cid, sticky, fn);
fn.SetRegExpData(regexp, specialization_cid, sticky);
fn.set_is_debuggable(false);
// The function is compiled lazily during the first call.
}
RegExpPtr RegExpEngine::CreateRegExp(Thread* thread,
const String& pattern,
RegExpFlags flags) {
Zone* zone = thread->zone();
const RegExp& regexp = RegExp::Handle(RegExp::New(zone));
regexp.set_pattern(pattern);
regexp.set_flags(flags);
// TODO(zerny): We might want to use normal string searching algorithms
// for simple patterns.
regexp.set_is_complex();
regexp.set_is_global(); // All dart regexps are global.
if (!FLAG_interpret_irregexp) {
const Library& lib = Library::Handle(zone, Library::CoreLibrary());
const Class& owner =
Class::Handle(zone, lib.LookupClass(Symbols::RegExp()));
for (intptr_t cid = kOneByteStringCid; cid <= kExternalTwoByteStringCid;
cid++) {
CreateSpecializedFunction(thread, zone, regexp, cid, /*sticky=*/false,
owner);
CreateSpecializedFunction(thread, zone, regexp, cid, /*sticky=*/true,
owner);
}
}
return regexp.ptr();
}
} // namespace dart