mirror of
https://github.com/dart-lang/sdk
synced 2024-11-02 08:44:27 +00:00
71c9c2cd83
Every AOT user out there has been using bare instructions mode and continuing to maintaining non-bare instructions mode simply adds costs (both in terms of time spent making changes to work in a mode that is not used and CI resources spent on testing it). This change removes FLAG_use_bare_instructions and changes the code to assume that FLAG_precompiled_mode implies bare instructions. TEST=ci Cq-Include-Trybots: luci.dart.try:vm-kernel-precomp-linux-debug-x64-try,vm-kernel-precomp-linux-debug-x64c-try,vm-kernel-precomp-linux-product-x64-try,vm-kernel-precomp-dwarf-linux-product-x64-try,vm-kernel-precomp-obfuscate-linux-release-x64-try,app-kernel-linux-release-x64-try,app-kernel-linux-debug-x64-try Change-Id: I5032b13bfcb613f79865f2cfa139cca8d1b42556 Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/220964 Commit-Queue: Slava Egorov <vegorov@google.com> Reviewed-by: Martin Kustermann <kustermann@google.com>
560 lines
21 KiB
C++
560 lines
21 KiB
C++
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
|
|
// for details. All rights reserved. Use of this source code is governed by a
|
|
// BSD-style license that can be found in the LICENSE file.
|
|
|
|
#include "vm/compiler/relocation.h"
|
|
|
|
#include "vm/code_patcher.h"
|
|
#include "vm/heap/pages.h"
|
|
#include "vm/instructions.h"
|
|
#include "vm/object_store.h"
|
|
#include "vm/stub_code.h"
|
|
|
|
namespace dart {
|
|
|
|
#if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32)
|
|
|
|
// Only for testing.
|
|
DEFINE_FLAG(bool,
|
|
always_generate_trampolines_for_testing,
|
|
false,
|
|
"Generate always trampolines (for testing purposes).");
|
|
|
|
DEFINE_FLAG(int,
|
|
lower_tail_pc_relative_call_distance,
|
|
-1,
|
|
"Lower tail call distance.");
|
|
DEFINE_FLAG(int,
|
|
upper_tail_pc_relative_call_distance,
|
|
-1,
|
|
"Upper tail call distance.");
|
|
DEFINE_FLAG(int, lower_pc_relative_call_distance, -1, "Lower call distance.");
|
|
DEFINE_FLAG(int, upper_pc_relative_call_distance, -1, "Upper call distance.");
|
|
|
|
struct TailCallDistanceLimits {
|
|
static intptr_t Lower() {
|
|
if (FLAG_lower_tail_pc_relative_call_distance != -1) {
|
|
return FLAG_lower_tail_pc_relative_call_distance;
|
|
}
|
|
return PcRelativeTailCallPattern::kLowerCallingRange;
|
|
}
|
|
static intptr_t Upper() {
|
|
if (FLAG_upper_tail_pc_relative_call_distance != -1) {
|
|
return FLAG_upper_tail_pc_relative_call_distance;
|
|
}
|
|
return PcRelativeTailCallPattern::kUpperCallingRange;
|
|
}
|
|
};
|
|
|
|
struct CallDistanceLimits {
|
|
static intptr_t Lower() {
|
|
if (FLAG_lower_pc_relative_call_distance != -1) {
|
|
return FLAG_lower_pc_relative_call_distance;
|
|
}
|
|
return PcRelativeCallPattern::kLowerCallingRange;
|
|
}
|
|
static intptr_t Upper() {
|
|
if (FLAG_upper_pc_relative_call_distance != -1) {
|
|
return FLAG_upper_pc_relative_call_distance;
|
|
}
|
|
return PcRelativeCallPattern::kUpperCallingRange;
|
|
}
|
|
};
|
|
|
|
const intptr_t kTrampolineSize =
|
|
Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes,
|
|
compiler::target::Instructions::kBarePayloadAlignment);
|
|
|
|
CodeRelocator::CodeRelocator(Thread* thread,
|
|
GrowableArray<CodePtr>* code_objects,
|
|
GrowableArray<ImageWriterCommand>* commands)
|
|
: StackResource(thread),
|
|
thread_(thread),
|
|
code_objects_(code_objects),
|
|
commands_(commands),
|
|
kind_type_and_offset_(Smi::Handle(thread->zone())),
|
|
target_(Object::Handle(thread->zone())),
|
|
destination_(Code::Handle(thread->zone())) {}
|
|
|
|
void CodeRelocator::Relocate(bool is_vm_isolate) {
|
|
Zone* zone = Thread::Current()->zone();
|
|
auto& current_caller = Code::Handle(zone);
|
|
auto& call_targets = Array::Handle(zone);
|
|
|
|
auto& next_caller = Code::Handle(zone);
|
|
auto& next_caller_targets = Array::Handle(zone);
|
|
|
|
// Emit all instructions and do relocations on the way.
|
|
for (intptr_t i = 0; i < code_objects_->length(); ++i) {
|
|
current_caller = (*code_objects_)[i];
|
|
|
|
const intptr_t code_text_offset = next_text_offset_;
|
|
if (!AddInstructionsToText(current_caller.ptr())) {
|
|
continue;
|
|
}
|
|
|
|
call_targets = current_caller.static_calls_target_table();
|
|
ScanCallTargets(current_caller, call_targets, code_text_offset);
|
|
|
|
// Any unresolved calls to this instruction can be fixed now.
|
|
ResolveUnresolvedCallsTargeting(current_caller.instructions());
|
|
|
|
// If we have forward/backwards calls which are almost out-of-range, we'll
|
|
// create trampolines now.
|
|
if (i < (code_objects_->length() - 1)) {
|
|
next_caller = (*code_objects_)[i + 1];
|
|
next_caller_targets = next_caller.static_calls_target_table();
|
|
} else {
|
|
next_caller = Code::null();
|
|
next_caller_targets = Array::null();
|
|
}
|
|
BuildTrampolinesForAlmostOutOfRangeCalls(next_caller, next_caller_targets);
|
|
}
|
|
|
|
// We're guaranteed to have all calls resolved, since
|
|
// * backwards calls are resolved eagerly
|
|
// * forward calls are resolved once the target is written
|
|
if (!all_unresolved_calls_.IsEmpty()) {
|
|
for (auto call : all_unresolved_calls_) {
|
|
OS::PrintErr("Unresolved call to %s from %s\n",
|
|
Object::Handle(call->callee).ToCString(),
|
|
Object::Handle(call->caller).ToCString());
|
|
}
|
|
}
|
|
RELEASE_ASSERT(all_unresolved_calls_.IsEmpty());
|
|
RELEASE_ASSERT(unresolved_calls_by_destination_.IsEmpty());
|
|
|
|
// Any trampolines we created must be patched with the right offsets.
|
|
auto it = trampolines_by_destination_.GetIterator();
|
|
while (true) {
|
|
auto entry = it.Next();
|
|
if (entry == nullptr) break;
|
|
|
|
UnresolvedTrampolineList* trampoline_list = entry->value;
|
|
while (!trampoline_list->IsEmpty()) {
|
|
auto unresolved_trampoline = trampoline_list->RemoveFirst();
|
|
ResolveTrampoline(unresolved_trampoline);
|
|
delete unresolved_trampoline;
|
|
}
|
|
delete trampoline_list;
|
|
}
|
|
trampolines_by_destination_.Clear();
|
|
|
|
// Don't drop static call targets table yet. Snapshotter will skip it anyway
|
|
// however we might need it to write information into V8 snapshot profile.
|
|
}
|
|
|
|
bool CodeRelocator::AddInstructionsToText(CodePtr code) {
|
|
InstructionsPtr instructions = Code::InstructionsOf(code);
|
|
|
|
// If two [Code] objects point to the same [Instructions] object, we'll just
|
|
// use the first one (they are equivalent for all practical purposes).
|
|
if (text_offsets_.HasKey(instructions)) {
|
|
return false;
|
|
}
|
|
text_offsets_.Insert({instructions, next_text_offset_});
|
|
commands_->Add(ImageWriterCommand(next_text_offset_, code));
|
|
next_text_offset_ += ImageWriter::SizeInSnapshot(instructions);
|
|
|
|
return true;
|
|
}
|
|
|
|
UnresolvedTrampoline* CodeRelocator::FindTrampolineFor(
|
|
UnresolvedCall* unresolved_call) {
|
|
auto destination = Code::InstructionsOf(unresolved_call->callee);
|
|
auto entry = trampolines_by_destination_.Lookup(destination);
|
|
if (entry != nullptr) {
|
|
UnresolvedTrampolineList* trampolines = entry->value;
|
|
ASSERT(!trampolines->IsEmpty());
|
|
|
|
// For the destination of [unresolved_call] we might have multiple
|
|
// trampolines. The trampolines are sorted according to insertion order,
|
|
// which guarantees increasing text_offset's. So we go from the back of the
|
|
// list as long as we have trampolines that are in-range and then check
|
|
// whether the target offset matches.
|
|
auto it = trampolines->End();
|
|
--it;
|
|
do {
|
|
UnresolvedTrampoline* trampoline = *it;
|
|
if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) {
|
|
break;
|
|
}
|
|
if (trampoline->offset_into_target ==
|
|
unresolved_call->offset_into_target) {
|
|
return trampoline;
|
|
}
|
|
--it;
|
|
} while (it != trampolines->Begin());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void CodeRelocator::AddTrampolineToText(InstructionsPtr destination,
|
|
uint8_t* trampoline_bytes,
|
|
intptr_t trampoline_length) {
|
|
commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes,
|
|
trampoline_length));
|
|
next_text_offset_ += trampoline_length;
|
|
}
|
|
|
|
void CodeRelocator::ScanCallTargets(const Code& code,
|
|
const Array& call_targets,
|
|
intptr_t code_text_offset) {
|
|
if (call_targets.IsNull()) {
|
|
return;
|
|
}
|
|
StaticCallsTable calls(call_targets);
|
|
for (auto call : calls) {
|
|
kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>();
|
|
const auto kind = Code::KindField::decode(kind_type_and_offset_.Value());
|
|
const auto return_pc_offset =
|
|
Code::OffsetField::decode(kind_type_and_offset_.Value());
|
|
const auto call_entry_point =
|
|
Code::EntryPointField::decode(kind_type_and_offset_.Value());
|
|
|
|
if (kind == Code::kCallViaCode) {
|
|
continue;
|
|
}
|
|
|
|
destination_ = GetTarget(call);
|
|
|
|
// A call site can decide to jump not to the beginning of a function but
|
|
// rather jump into it at a certain offset.
|
|
int32_t offset_into_target = 0;
|
|
bool is_tail_call;
|
|
intptr_t call_instruction_offset;
|
|
if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) {
|
|
call_instruction_offset =
|
|
return_pc_offset - PcRelativeCallPattern::kLengthInBytes;
|
|
PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset);
|
|
ASSERT(call.IsValid());
|
|
offset_into_target = call.distance();
|
|
is_tail_call = false;
|
|
} else {
|
|
ASSERT(kind == Code::kPcRelativeTailCall);
|
|
call_instruction_offset =
|
|
return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes;
|
|
PcRelativeTailCallPattern call(code.PayloadStart() +
|
|
call_instruction_offset);
|
|
ASSERT(call.IsValid());
|
|
offset_into_target = call.distance();
|
|
is_tail_call = true;
|
|
}
|
|
|
|
const uword destination_payload = destination_.PayloadStart();
|
|
const uword entry_point = call_entry_point == Code::kUncheckedEntry
|
|
? destination_.UncheckedEntryPoint()
|
|
: destination_.EntryPoint();
|
|
|
|
offset_into_target += (entry_point - destination_payload);
|
|
|
|
const intptr_t text_offset =
|
|
code_text_offset + AdjustPayloadOffset(call_instruction_offset);
|
|
|
|
UnresolvedCall unresolved_call(code.ptr(), call_instruction_offset,
|
|
text_offset, destination_.ptr(),
|
|
offset_into_target, is_tail_call);
|
|
if (!TryResolveBackwardsCall(&unresolved_call)) {
|
|
EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) {
|
|
// Add it to the min-heap by .text offset.
|
|
all_unresolved_calls_.Append(unresolved_call);
|
|
|
|
// Add it to callers of destination.
|
|
InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee);
|
|
if (!unresolved_calls_by_destination_.HasKey(destination)) {
|
|
unresolved_calls_by_destination_.Insert(
|
|
{destination, new SameDestinationUnresolvedCallsList()});
|
|
}
|
|
unresolved_calls_by_destination_.LookupValue(destination)
|
|
->Append(unresolved_call);
|
|
}
|
|
|
|
void CodeRelocator::EnqueueUnresolvedTrampoline(
|
|
UnresolvedTrampoline* unresolved_trampoline) {
|
|
auto destination = Code::InstructionsOf(unresolved_trampoline->callee);
|
|
auto entry = trampolines_by_destination_.Lookup(destination);
|
|
|
|
UnresolvedTrampolineList* trampolines = nullptr;
|
|
if (entry == nullptr) {
|
|
trampolines = new UnresolvedTrampolineList();
|
|
trampolines_by_destination_.Insert({destination, trampolines});
|
|
} else {
|
|
trampolines = entry->value;
|
|
}
|
|
trampolines->Append(unresolved_trampoline);
|
|
}
|
|
|
|
bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) {
|
|
auto callee = Code::InstructionsOf(unresolved_call->callee);
|
|
auto map_entry = text_offsets_.Lookup(callee);
|
|
if (map_entry == nullptr) return false;
|
|
|
|
if (IsTargetInRangeFor(unresolved_call, map_entry->value)) {
|
|
ResolveCall(unresolved_call);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CodeRelocator::ResolveUnresolvedCallsTargeting(
|
|
const InstructionsPtr instructions) {
|
|
if (unresolved_calls_by_destination_.HasKey(instructions)) {
|
|
SameDestinationUnresolvedCallsList* calls =
|
|
unresolved_calls_by_destination_.LookupValue(instructions);
|
|
auto it = calls->Begin();
|
|
while (it != calls->End()) {
|
|
UnresolvedCall* unresolved_call = *it;
|
|
++it;
|
|
ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions);
|
|
ResolveCall(unresolved_call);
|
|
|
|
// Remove the call from both lists.
|
|
calls->Remove(unresolved_call);
|
|
all_unresolved_calls_.Remove(unresolved_call);
|
|
|
|
delete unresolved_call;
|
|
}
|
|
ASSERT(calls->IsEmpty());
|
|
delete calls;
|
|
bool ok = unresolved_calls_by_destination_.Remove(instructions);
|
|
ASSERT(ok);
|
|
}
|
|
}
|
|
|
|
void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) {
|
|
const intptr_t destination_text =
|
|
FindDestinationInText(Code::InstructionsOf(unresolved_call->callee),
|
|
unresolved_call->offset_into_target);
|
|
|
|
ResolveCallToDestination(unresolved_call, destination_text);
|
|
}
|
|
|
|
void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call,
|
|
intptr_t destination_text) {
|
|
const intptr_t call_text_offset = unresolved_call->text_offset;
|
|
const intptr_t call_offset = unresolved_call->call_offset;
|
|
|
|
const int32_t distance = destination_text - call_text_offset;
|
|
{
|
|
auto const caller = unresolved_call->caller;
|
|
uword addr = Code::PayloadStartOf(caller) + call_offset;
|
|
if (FLAG_write_protect_code) {
|
|
addr -= OldPage::Of(Code::InstructionsOf(caller))->AliasOffset();
|
|
}
|
|
if (unresolved_call->is_tail_call) {
|
|
PcRelativeTailCallPattern call(addr);
|
|
ASSERT(call.IsValid());
|
|
call.set_distance(static_cast<int32_t>(distance));
|
|
ASSERT(call.distance() == distance);
|
|
} else {
|
|
PcRelativeCallPattern call(addr);
|
|
ASSERT(call.IsValid());
|
|
call.set_distance(static_cast<int32_t>(distance));
|
|
ASSERT(call.distance() == distance);
|
|
}
|
|
}
|
|
|
|
unresolved_call->caller = nullptr;
|
|
unresolved_call->callee = nullptr;
|
|
}
|
|
|
|
void CodeRelocator::ResolveTrampoline(
|
|
UnresolvedTrampoline* unresolved_trampoline) {
|
|
const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset;
|
|
const uword trampoline_start =
|
|
reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes);
|
|
|
|
auto callee = Code::InstructionsOf(unresolved_trampoline->callee);
|
|
auto destination_text =
|
|
FindDestinationInText(callee, unresolved_trampoline->offset_into_target);
|
|
const int32_t distance = destination_text - trampoline_text_offset;
|
|
|
|
PcRelativeTrampolineJumpPattern pattern(trampoline_start);
|
|
pattern.Initialize();
|
|
pattern.set_distance(distance);
|
|
ASSERT(pattern.distance() == distance);
|
|
}
|
|
|
|
bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call,
|
|
intptr_t target_text_offset) {
|
|
const auto forward_distance =
|
|
target_text_offset - unresolved_call->text_offset;
|
|
if (unresolved_call->is_tail_call) {
|
|
return TailCallDistanceLimits::Lower() <= forward_distance &&
|
|
forward_distance <= TailCallDistanceLimits::Upper();
|
|
} else {
|
|
return CallDistanceLimits::Lower() <= forward_distance &&
|
|
forward_distance <= CallDistanceLimits::Upper();
|
|
}
|
|
}
|
|
|
|
CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) {
|
|
// The precompiler should have already replaced all function entries
|
|
// with code entries.
|
|
ASSERT(call.Get<Code::kSCallTableFunctionTarget>() == Function::null());
|
|
|
|
target_ = call.Get<Code::kSCallTableCodeOrTypeTarget>();
|
|
if (target_.IsAbstractType()) {
|
|
target_ = AbstractType::Cast(target_).type_test_stub();
|
|
destination_ = Code::Cast(target_).ptr();
|
|
|
|
// The AssertAssignableInstr will emit pc-relative calls to the TTS iff
|
|
// dst_type is instantiated. If we happened to not install an optimized
|
|
// TTS but rather a default one, it will live in the vm-isolate (to
|
|
// which we cannot make pc-relative calls).
|
|
// Though we have "equivalent" isolate-specific stubs we can use as
|
|
// targets instead.
|
|
//
|
|
// (We could make the AOT compiler install isolate-specific stubs
|
|
// into the types directly, but that does not work for types which
|
|
// live in the "vm-isolate" - such as `Type::dynamic_type()`).
|
|
if (destination_.InVMIsolateHeap()) {
|
|
auto object_store = thread_->isolate_group()->object_store();
|
|
|
|
if (destination_.ptr() == StubCode::DefaultTypeTest().ptr()) {
|
|
destination_ = object_store->default_tts_stub();
|
|
} else if (destination_.ptr() ==
|
|
StubCode::DefaultNullableTypeTest().ptr()) {
|
|
destination_ = object_store->default_nullable_tts_stub();
|
|
} else if (destination_.ptr() == StubCode::TopTypeTypeTest().ptr()) {
|
|
destination_ = object_store->top_type_tts_stub();
|
|
} else if (destination_.ptr() == StubCode::UnreachableTypeTest().ptr()) {
|
|
destination_ = object_store->unreachable_tts_stub();
|
|
} else if (destination_.ptr() == StubCode::SlowTypeTest().ptr()) {
|
|
destination_ = object_store->slow_tts_stub();
|
|
} else if (destination_.ptr() ==
|
|
StubCode::NullableTypeParameterTypeTest().ptr()) {
|
|
destination_ = object_store->nullable_type_parameter_tts_stub();
|
|
} else if (destination_.ptr() ==
|
|
StubCode::TypeParameterTypeTest().ptr()) {
|
|
destination_ = object_store->type_parameter_tts_stub();
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT(target_.IsCode());
|
|
destination_ = Code::Cast(target_).ptr();
|
|
}
|
|
ASSERT(!destination_.InVMIsolateHeap());
|
|
return destination_.ptr();
|
|
}
|
|
|
|
void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls(
|
|
const Code& next_caller,
|
|
const Array& next_caller_targets) {
|
|
const bool all_functions_emitted = next_caller.IsNull();
|
|
|
|
uword next_size = 0;
|
|
uword next_call_count = 0;
|
|
if (!all_functions_emitted) {
|
|
next_size = ImageWriter::SizeInSnapshot(next_caller.instructions());
|
|
if (!next_caller_targets.IsNull()) {
|
|
StaticCallsTable calls(next_caller_targets);
|
|
next_call_count = calls.Length();
|
|
}
|
|
}
|
|
|
|
while (!all_unresolved_calls_.IsEmpty()) {
|
|
UnresolvedCall* unresolved_call = all_unresolved_calls_.First();
|
|
|
|
if (!all_functions_emitted) {
|
|
// If we can emit another instructions object without causing the
|
|
// unresolved forward calls to become out-of-range, we'll not resolve it
|
|
// yet (maybe the target function will come very soon and we don't need
|
|
// a trampoline at all).
|
|
const intptr_t future_boundary =
|
|
next_text_offset_ + next_size +
|
|
kTrampolineSize *
|
|
(unresolved_calls_by_destination_.Length() + next_call_count - 1);
|
|
if (IsTargetInRangeFor(unresolved_call, future_boundary) &&
|
|
!FLAG_always_generate_trampolines_for_testing) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We have a "critical" [unresolved_call] we have to resolve. If an
|
|
// existing trampoline is in range, we use that otherwise we create a new
|
|
// trampoline.
|
|
|
|
// In the worst case we'll make a new trampoline here, in which case the
|
|
// current text offset must be in range for the "critical"
|
|
// [unresolved_call].
|
|
ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_));
|
|
|
|
// See if there is already a trampoline we could use.
|
|
intptr_t trampoline_text_offset = -1;
|
|
auto callee = Code::InstructionsOf(unresolved_call->callee);
|
|
|
|
if (!FLAG_always_generate_trampolines_for_testing) {
|
|
auto old_trampoline_entry = FindTrampolineFor(unresolved_call);
|
|
if (old_trampoline_entry != nullptr) {
|
|
trampoline_text_offset = old_trampoline_entry->text_offset;
|
|
}
|
|
}
|
|
|
|
// If there is no trampoline yet, we'll create a new one.
|
|
if (trampoline_text_offset == -1) {
|
|
// The ownership of the trampoline bytes will be transferred to the
|
|
// [ImageWriter], which will eventually write out the bytes and delete the
|
|
// buffer.
|
|
auto trampoline_bytes = new uint8_t[kTrampolineSize];
|
|
ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0);
|
|
for (uint8_t* cur = trampoline_bytes;
|
|
cur < trampoline_bytes + kTrampolineSize;
|
|
cur += compiler::target::kWordSize) {
|
|
*reinterpret_cast<compiler::target::uword*>(cur) =
|
|
kBreakInstructionFiller;
|
|
}
|
|
auto unresolved_trampoline = new UnresolvedTrampoline{
|
|
unresolved_call->callee,
|
|
unresolved_call->offset_into_target,
|
|
trampoline_bytes,
|
|
next_text_offset_,
|
|
};
|
|
AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize);
|
|
EnqueueUnresolvedTrampoline(unresolved_trampoline);
|
|
trampoline_text_offset = unresolved_trampoline->text_offset;
|
|
}
|
|
|
|
// Let the unresolved call to [destination] jump to the trampoline
|
|
// instead.
|
|
auto destination = Code::InstructionsOf(unresolved_call->callee);
|
|
ResolveCallToDestination(unresolved_call, trampoline_text_offset);
|
|
|
|
// Remove this unresolved call from the global list and the per-destination
|
|
// list.
|
|
auto calls = unresolved_calls_by_destination_.LookupValue(destination);
|
|
calls->Remove(unresolved_call);
|
|
all_unresolved_calls_.Remove(unresolved_call);
|
|
delete unresolved_call;
|
|
|
|
// If this destination has no longer any unresolved calls, remove it.
|
|
if (calls->IsEmpty()) {
|
|
unresolved_calls_by_destination_.Remove(destination);
|
|
delete calls;
|
|
}
|
|
}
|
|
}
|
|
|
|
intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination,
|
|
intptr_t offset_into_target) {
|
|
auto const destination_offset = text_offsets_.LookupValue(destination);
|
|
return destination_offset + AdjustPayloadOffset(offset_into_target);
|
|
}
|
|
|
|
intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) {
|
|
if (FLAG_precompiled_mode) {
|
|
return payload_offset;
|
|
}
|
|
return compiler::target::Instructions::HeaderSize() + payload_offset;
|
|
}
|
|
|
|
#endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32)
|
|
|
|
} // namespace dart
|