dart-sdk/runtime/vm/compiler/relocation.cc
Vyacheslav Egorov 71c9c2cd83 [vm] Remove support for non-bare AOT snapshots
Every AOT user out there has been using bare instructions mode
and continuing to maintaining non-bare instructions mode simply
adds costs (both in terms of time spent making changes to work
in a mode that is not used and CI resources spent on testing it).

This change removes FLAG_use_bare_instructions and changes the code
to assume that FLAG_precompiled_mode implies bare instructions.

TEST=ci

Cq-Include-Trybots: luci.dart.try:vm-kernel-precomp-linux-debug-x64-try,vm-kernel-precomp-linux-debug-x64c-try,vm-kernel-precomp-linux-product-x64-try,vm-kernel-precomp-dwarf-linux-product-x64-try,vm-kernel-precomp-obfuscate-linux-release-x64-try,app-kernel-linux-release-x64-try,app-kernel-linux-debug-x64-try
Change-Id: I5032b13bfcb613f79865f2cfa139cca8d1b42556
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/220964
Commit-Queue: Slava Egorov <vegorov@google.com>
Reviewed-by: Martin Kustermann <kustermann@google.com>
2021-11-24 13:03:52 +00:00

560 lines
21 KiB
C++

// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/relocation.h"
#include "vm/code_patcher.h"
#include "vm/heap/pages.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/stub_code.h"
namespace dart {
#if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32)
// Only for testing.
DEFINE_FLAG(bool,
always_generate_trampolines_for_testing,
false,
"Generate always trampolines (for testing purposes).");
DEFINE_FLAG(int,
lower_tail_pc_relative_call_distance,
-1,
"Lower tail call distance.");
DEFINE_FLAG(int,
upper_tail_pc_relative_call_distance,
-1,
"Upper tail call distance.");
DEFINE_FLAG(int, lower_pc_relative_call_distance, -1, "Lower call distance.");
DEFINE_FLAG(int, upper_pc_relative_call_distance, -1, "Upper call distance.");
struct TailCallDistanceLimits {
static intptr_t Lower() {
if (FLAG_lower_tail_pc_relative_call_distance != -1) {
return FLAG_lower_tail_pc_relative_call_distance;
}
return PcRelativeTailCallPattern::kLowerCallingRange;
}
static intptr_t Upper() {
if (FLAG_upper_tail_pc_relative_call_distance != -1) {
return FLAG_upper_tail_pc_relative_call_distance;
}
return PcRelativeTailCallPattern::kUpperCallingRange;
}
};
struct CallDistanceLimits {
static intptr_t Lower() {
if (FLAG_lower_pc_relative_call_distance != -1) {
return FLAG_lower_pc_relative_call_distance;
}
return PcRelativeCallPattern::kLowerCallingRange;
}
static intptr_t Upper() {
if (FLAG_upper_pc_relative_call_distance != -1) {
return FLAG_upper_pc_relative_call_distance;
}
return PcRelativeCallPattern::kUpperCallingRange;
}
};
const intptr_t kTrampolineSize =
Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes,
compiler::target::Instructions::kBarePayloadAlignment);
CodeRelocator::CodeRelocator(Thread* thread,
GrowableArray<CodePtr>* code_objects,
GrowableArray<ImageWriterCommand>* commands)
: StackResource(thread),
thread_(thread),
code_objects_(code_objects),
commands_(commands),
kind_type_and_offset_(Smi::Handle(thread->zone())),
target_(Object::Handle(thread->zone())),
destination_(Code::Handle(thread->zone())) {}
void CodeRelocator::Relocate(bool is_vm_isolate) {
Zone* zone = Thread::Current()->zone();
auto& current_caller = Code::Handle(zone);
auto& call_targets = Array::Handle(zone);
auto& next_caller = Code::Handle(zone);
auto& next_caller_targets = Array::Handle(zone);
// Emit all instructions and do relocations on the way.
for (intptr_t i = 0; i < code_objects_->length(); ++i) {
current_caller = (*code_objects_)[i];
const intptr_t code_text_offset = next_text_offset_;
if (!AddInstructionsToText(current_caller.ptr())) {
continue;
}
call_targets = current_caller.static_calls_target_table();
ScanCallTargets(current_caller, call_targets, code_text_offset);
// Any unresolved calls to this instruction can be fixed now.
ResolveUnresolvedCallsTargeting(current_caller.instructions());
// If we have forward/backwards calls which are almost out-of-range, we'll
// create trampolines now.
if (i < (code_objects_->length() - 1)) {
next_caller = (*code_objects_)[i + 1];
next_caller_targets = next_caller.static_calls_target_table();
} else {
next_caller = Code::null();
next_caller_targets = Array::null();
}
BuildTrampolinesForAlmostOutOfRangeCalls(next_caller, next_caller_targets);
}
// We're guaranteed to have all calls resolved, since
// * backwards calls are resolved eagerly
// * forward calls are resolved once the target is written
if (!all_unresolved_calls_.IsEmpty()) {
for (auto call : all_unresolved_calls_) {
OS::PrintErr("Unresolved call to %s from %s\n",
Object::Handle(call->callee).ToCString(),
Object::Handle(call->caller).ToCString());
}
}
RELEASE_ASSERT(all_unresolved_calls_.IsEmpty());
RELEASE_ASSERT(unresolved_calls_by_destination_.IsEmpty());
// Any trampolines we created must be patched with the right offsets.
auto it = trampolines_by_destination_.GetIterator();
while (true) {
auto entry = it.Next();
if (entry == nullptr) break;
UnresolvedTrampolineList* trampoline_list = entry->value;
while (!trampoline_list->IsEmpty()) {
auto unresolved_trampoline = trampoline_list->RemoveFirst();
ResolveTrampoline(unresolved_trampoline);
delete unresolved_trampoline;
}
delete trampoline_list;
}
trampolines_by_destination_.Clear();
// Don't drop static call targets table yet. Snapshotter will skip it anyway
// however we might need it to write information into V8 snapshot profile.
}
bool CodeRelocator::AddInstructionsToText(CodePtr code) {
InstructionsPtr instructions = Code::InstructionsOf(code);
// If two [Code] objects point to the same [Instructions] object, we'll just
// use the first one (they are equivalent for all practical purposes).
if (text_offsets_.HasKey(instructions)) {
return false;
}
text_offsets_.Insert({instructions, next_text_offset_});
commands_->Add(ImageWriterCommand(next_text_offset_, code));
next_text_offset_ += ImageWriter::SizeInSnapshot(instructions);
return true;
}
UnresolvedTrampoline* CodeRelocator::FindTrampolineFor(
UnresolvedCall* unresolved_call) {
auto destination = Code::InstructionsOf(unresolved_call->callee);
auto entry = trampolines_by_destination_.Lookup(destination);
if (entry != nullptr) {
UnresolvedTrampolineList* trampolines = entry->value;
ASSERT(!trampolines->IsEmpty());
// For the destination of [unresolved_call] we might have multiple
// trampolines. The trampolines are sorted according to insertion order,
// which guarantees increasing text_offset's. So we go from the back of the
// list as long as we have trampolines that are in-range and then check
// whether the target offset matches.
auto it = trampolines->End();
--it;
do {
UnresolvedTrampoline* trampoline = *it;
if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) {
break;
}
if (trampoline->offset_into_target ==
unresolved_call->offset_into_target) {
return trampoline;
}
--it;
} while (it != trampolines->Begin());
}
return nullptr;
}
void CodeRelocator::AddTrampolineToText(InstructionsPtr destination,
uint8_t* trampoline_bytes,
intptr_t trampoline_length) {
commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes,
trampoline_length));
next_text_offset_ += trampoline_length;
}
void CodeRelocator::ScanCallTargets(const Code& code,
const Array& call_targets,
intptr_t code_text_offset) {
if (call_targets.IsNull()) {
return;
}
StaticCallsTable calls(call_targets);
for (auto call : calls) {
kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>();
const auto kind = Code::KindField::decode(kind_type_and_offset_.Value());
const auto return_pc_offset =
Code::OffsetField::decode(kind_type_and_offset_.Value());
const auto call_entry_point =
Code::EntryPointField::decode(kind_type_and_offset_.Value());
if (kind == Code::kCallViaCode) {
continue;
}
destination_ = GetTarget(call);
// A call site can decide to jump not to the beginning of a function but
// rather jump into it at a certain offset.
int32_t offset_into_target = 0;
bool is_tail_call;
intptr_t call_instruction_offset;
if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) {
call_instruction_offset =
return_pc_offset - PcRelativeCallPattern::kLengthInBytes;
PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset);
ASSERT(call.IsValid());
offset_into_target = call.distance();
is_tail_call = false;
} else {
ASSERT(kind == Code::kPcRelativeTailCall);
call_instruction_offset =
return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes;
PcRelativeTailCallPattern call(code.PayloadStart() +
call_instruction_offset);
ASSERT(call.IsValid());
offset_into_target = call.distance();
is_tail_call = true;
}
const uword destination_payload = destination_.PayloadStart();
const uword entry_point = call_entry_point == Code::kUncheckedEntry
? destination_.UncheckedEntryPoint()
: destination_.EntryPoint();
offset_into_target += (entry_point - destination_payload);
const intptr_t text_offset =
code_text_offset + AdjustPayloadOffset(call_instruction_offset);
UnresolvedCall unresolved_call(code.ptr(), call_instruction_offset,
text_offset, destination_.ptr(),
offset_into_target, is_tail_call);
if (!TryResolveBackwardsCall(&unresolved_call)) {
EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call));
}
}
}
void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) {
// Add it to the min-heap by .text offset.
all_unresolved_calls_.Append(unresolved_call);
// Add it to callers of destination.
InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee);
if (!unresolved_calls_by_destination_.HasKey(destination)) {
unresolved_calls_by_destination_.Insert(
{destination, new SameDestinationUnresolvedCallsList()});
}
unresolved_calls_by_destination_.LookupValue(destination)
->Append(unresolved_call);
}
void CodeRelocator::EnqueueUnresolvedTrampoline(
UnresolvedTrampoline* unresolved_trampoline) {
auto destination = Code::InstructionsOf(unresolved_trampoline->callee);
auto entry = trampolines_by_destination_.Lookup(destination);
UnresolvedTrampolineList* trampolines = nullptr;
if (entry == nullptr) {
trampolines = new UnresolvedTrampolineList();
trampolines_by_destination_.Insert({destination, trampolines});
} else {
trampolines = entry->value;
}
trampolines->Append(unresolved_trampoline);
}
bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) {
auto callee = Code::InstructionsOf(unresolved_call->callee);
auto map_entry = text_offsets_.Lookup(callee);
if (map_entry == nullptr) return false;
if (IsTargetInRangeFor(unresolved_call, map_entry->value)) {
ResolveCall(unresolved_call);
return true;
}
return false;
}
void CodeRelocator::ResolveUnresolvedCallsTargeting(
const InstructionsPtr instructions) {
if (unresolved_calls_by_destination_.HasKey(instructions)) {
SameDestinationUnresolvedCallsList* calls =
unresolved_calls_by_destination_.LookupValue(instructions);
auto it = calls->Begin();
while (it != calls->End()) {
UnresolvedCall* unresolved_call = *it;
++it;
ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions);
ResolveCall(unresolved_call);
// Remove the call from both lists.
calls->Remove(unresolved_call);
all_unresolved_calls_.Remove(unresolved_call);
delete unresolved_call;
}
ASSERT(calls->IsEmpty());
delete calls;
bool ok = unresolved_calls_by_destination_.Remove(instructions);
ASSERT(ok);
}
}
void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) {
const intptr_t destination_text =
FindDestinationInText(Code::InstructionsOf(unresolved_call->callee),
unresolved_call->offset_into_target);
ResolveCallToDestination(unresolved_call, destination_text);
}
void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call,
intptr_t destination_text) {
const intptr_t call_text_offset = unresolved_call->text_offset;
const intptr_t call_offset = unresolved_call->call_offset;
const int32_t distance = destination_text - call_text_offset;
{
auto const caller = unresolved_call->caller;
uword addr = Code::PayloadStartOf(caller) + call_offset;
if (FLAG_write_protect_code) {
addr -= OldPage::Of(Code::InstructionsOf(caller))->AliasOffset();
}
if (unresolved_call->is_tail_call) {
PcRelativeTailCallPattern call(addr);
ASSERT(call.IsValid());
call.set_distance(static_cast<int32_t>(distance));
ASSERT(call.distance() == distance);
} else {
PcRelativeCallPattern call(addr);
ASSERT(call.IsValid());
call.set_distance(static_cast<int32_t>(distance));
ASSERT(call.distance() == distance);
}
}
unresolved_call->caller = nullptr;
unresolved_call->callee = nullptr;
}
void CodeRelocator::ResolveTrampoline(
UnresolvedTrampoline* unresolved_trampoline) {
const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset;
const uword trampoline_start =
reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes);
auto callee = Code::InstructionsOf(unresolved_trampoline->callee);
auto destination_text =
FindDestinationInText(callee, unresolved_trampoline->offset_into_target);
const int32_t distance = destination_text - trampoline_text_offset;
PcRelativeTrampolineJumpPattern pattern(trampoline_start);
pattern.Initialize();
pattern.set_distance(distance);
ASSERT(pattern.distance() == distance);
}
bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call,
intptr_t target_text_offset) {
const auto forward_distance =
target_text_offset - unresolved_call->text_offset;
if (unresolved_call->is_tail_call) {
return TailCallDistanceLimits::Lower() <= forward_distance &&
forward_distance <= TailCallDistanceLimits::Upper();
} else {
return CallDistanceLimits::Lower() <= forward_distance &&
forward_distance <= CallDistanceLimits::Upper();
}
}
CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) {
// The precompiler should have already replaced all function entries
// with code entries.
ASSERT(call.Get<Code::kSCallTableFunctionTarget>() == Function::null());
target_ = call.Get<Code::kSCallTableCodeOrTypeTarget>();
if (target_.IsAbstractType()) {
target_ = AbstractType::Cast(target_).type_test_stub();
destination_ = Code::Cast(target_).ptr();
// The AssertAssignableInstr will emit pc-relative calls to the TTS iff
// dst_type is instantiated. If we happened to not install an optimized
// TTS but rather a default one, it will live in the vm-isolate (to
// which we cannot make pc-relative calls).
// Though we have "equivalent" isolate-specific stubs we can use as
// targets instead.
//
// (We could make the AOT compiler install isolate-specific stubs
// into the types directly, but that does not work for types which
// live in the "vm-isolate" - such as `Type::dynamic_type()`).
if (destination_.InVMIsolateHeap()) {
auto object_store = thread_->isolate_group()->object_store();
if (destination_.ptr() == StubCode::DefaultTypeTest().ptr()) {
destination_ = object_store->default_tts_stub();
} else if (destination_.ptr() ==
StubCode::DefaultNullableTypeTest().ptr()) {
destination_ = object_store->default_nullable_tts_stub();
} else if (destination_.ptr() == StubCode::TopTypeTypeTest().ptr()) {
destination_ = object_store->top_type_tts_stub();
} else if (destination_.ptr() == StubCode::UnreachableTypeTest().ptr()) {
destination_ = object_store->unreachable_tts_stub();
} else if (destination_.ptr() == StubCode::SlowTypeTest().ptr()) {
destination_ = object_store->slow_tts_stub();
} else if (destination_.ptr() ==
StubCode::NullableTypeParameterTypeTest().ptr()) {
destination_ = object_store->nullable_type_parameter_tts_stub();
} else if (destination_.ptr() ==
StubCode::TypeParameterTypeTest().ptr()) {
destination_ = object_store->type_parameter_tts_stub();
} else {
UNREACHABLE();
}
}
} else {
ASSERT(target_.IsCode());
destination_ = Code::Cast(target_).ptr();
}
ASSERT(!destination_.InVMIsolateHeap());
return destination_.ptr();
}
void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls(
const Code& next_caller,
const Array& next_caller_targets) {
const bool all_functions_emitted = next_caller.IsNull();
uword next_size = 0;
uword next_call_count = 0;
if (!all_functions_emitted) {
next_size = ImageWriter::SizeInSnapshot(next_caller.instructions());
if (!next_caller_targets.IsNull()) {
StaticCallsTable calls(next_caller_targets);
next_call_count = calls.Length();
}
}
while (!all_unresolved_calls_.IsEmpty()) {
UnresolvedCall* unresolved_call = all_unresolved_calls_.First();
if (!all_functions_emitted) {
// If we can emit another instructions object without causing the
// unresolved forward calls to become out-of-range, we'll not resolve it
// yet (maybe the target function will come very soon and we don't need
// a trampoline at all).
const intptr_t future_boundary =
next_text_offset_ + next_size +
kTrampolineSize *
(unresolved_calls_by_destination_.Length() + next_call_count - 1);
if (IsTargetInRangeFor(unresolved_call, future_boundary) &&
!FLAG_always_generate_trampolines_for_testing) {
break;
}
}
// We have a "critical" [unresolved_call] we have to resolve. If an
// existing trampoline is in range, we use that otherwise we create a new
// trampoline.
// In the worst case we'll make a new trampoline here, in which case the
// current text offset must be in range for the "critical"
// [unresolved_call].
ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_));
// See if there is already a trampoline we could use.
intptr_t trampoline_text_offset = -1;
auto callee = Code::InstructionsOf(unresolved_call->callee);
if (!FLAG_always_generate_trampolines_for_testing) {
auto old_trampoline_entry = FindTrampolineFor(unresolved_call);
if (old_trampoline_entry != nullptr) {
trampoline_text_offset = old_trampoline_entry->text_offset;
}
}
// If there is no trampoline yet, we'll create a new one.
if (trampoline_text_offset == -1) {
// The ownership of the trampoline bytes will be transferred to the
// [ImageWriter], which will eventually write out the bytes and delete the
// buffer.
auto trampoline_bytes = new uint8_t[kTrampolineSize];
ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0);
for (uint8_t* cur = trampoline_bytes;
cur < trampoline_bytes + kTrampolineSize;
cur += compiler::target::kWordSize) {
*reinterpret_cast<compiler::target::uword*>(cur) =
kBreakInstructionFiller;
}
auto unresolved_trampoline = new UnresolvedTrampoline{
unresolved_call->callee,
unresolved_call->offset_into_target,
trampoline_bytes,
next_text_offset_,
};
AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize);
EnqueueUnresolvedTrampoline(unresolved_trampoline);
trampoline_text_offset = unresolved_trampoline->text_offset;
}
// Let the unresolved call to [destination] jump to the trampoline
// instead.
auto destination = Code::InstructionsOf(unresolved_call->callee);
ResolveCallToDestination(unresolved_call, trampoline_text_offset);
// Remove this unresolved call from the global list and the per-destination
// list.
auto calls = unresolved_calls_by_destination_.LookupValue(destination);
calls->Remove(unresolved_call);
all_unresolved_calls_.Remove(unresolved_call);
delete unresolved_call;
// If this destination has no longer any unresolved calls, remove it.
if (calls->IsEmpty()) {
unresolved_calls_by_destination_.Remove(destination);
delete calls;
}
}
}
intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination,
intptr_t offset_into_target) {
auto const destination_offset = text_offsets_.LookupValue(destination);
return destination_offset + AdjustPayloadOffset(offset_into_target);
}
intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) {
if (FLAG_precompiled_mode) {
return payload_offset;
}
return compiler::target::Instructions::HeaderSize() + payload_offset;
}
#endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32)
} // namespace dart