// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. #ifndef RUNTIME_PLATFORM_GLOBALS_H_ #define RUNTIME_PLATFORM_GLOBALS_H_ #if __cplusplus >= 201703L // C++17 #define FALL_THROUGH [[fallthrough]] // NOLINT #elif defined(__GNUC__) && __GNUC__ >= 7 #define FALL_THROUGH __attribute__((fallthrough)); #elif defined(__clang__) #define FALL_THROUGH [[clang::fallthrough]] // NOLINT #else #define FALL_THROUGH ((void)0) #endif #if !defined(NDEBUG) && !defined(DEBUG) #if defined(GOOGLE3) // google3 builds use NDEBUG to indicate non-debug builds which is different // from the way the Dart project expects it: DEBUG indicating a debug build. #define DEBUG #else // Since uses NDEBUG to signify that assert() macros should be turned // off, we'll define it when DEBUG is _not_ set. #define NDEBUG #endif // GOOGLE3 #endif // !NDEBUG && !DEBUG // __STDC_FORMAT_MACROS has to be defined before including to // enable platform independent printf format specifiers. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #if defined(_WIN32) // Cut down on the amount of stuff that gets included via windows.h. #if !defined(WIN32_LEAN_AND_MEAN) #define WIN32_LEAN_AND_MEAN #endif #if !defined(NOMINMAX) #define NOMINMAX #endif #if !defined(NOKERNEL) #define NOKERNEL #endif #if !defined(NOSERVICE) #define NOSERVICE #endif #if !defined(NOSOUND) #define NOSOUND #endif #if !defined(NOMCX) #define NOMCX #endif #if !defined(UNICODE) #define _UNICODE #define UNICODE #endif #include #include #include #include #include #include #endif // defined(_WIN32) #if !defined(_WIN32) #include #include #endif // !defined(_WIN32) #include #include #include #include #include #include #include #include #include #include #include #include // For assert() in constant expressions. #if defined(_WIN32) #include "platform/floating_point_win.h" #endif // defined(_WIN32) #if !defined(_WIN32) #include "platform/floating_point.h" #endif // !defined(_WIN32) // Target OS detection. // for more information on predefined macros: // - http://msdn.microsoft.com/en-us/library/b0084kay.aspx // - with gcc, run: "echo | gcc -E -dM -" #if defined(__ANDROID__) // Check for Android first, to determine its difference from Linux. #define DART_HOST_OS_ANDROID 1 #elif defined(__linux__) || defined(__FreeBSD__) // Generic Linux. #define DART_HOST_OS_LINUX 1 #elif defined(__APPLE__) // Define the flavor of Mac OS we are running on. #include #define DART_HOST_OS_MACOS 1 #if TARGET_OS_IPHONE #define DART_HOST_OS_IOS 1 #endif #elif defined(_WIN32) // Windows, both 32- and 64-bit, regardless of the check for _WIN32. #define DART_HOST_OS_WINDOWS 1 #elif defined(__Fuchsia__) #define DART_HOST_OS_FUCHSIA #elif !defined(DART_HOST_OS_FUCHSIA) #error Automatic target os detection failed. #endif #if defined(DEBUG) #define DEBUG_ONLY(code) code #else // defined(DEBUG) #define DEBUG_ONLY(code) #endif // defined(DEBUG) namespace dart { struct simd128_value_t { union { int32_t int_storage[4]; int64_t int64_storage[2]; float float_storage[4]; double double_storage[2]; }; simd128_value_t& readFrom(const float* v) { float_storage[0] = v[0]; float_storage[1] = v[1]; float_storage[2] = v[2]; float_storage[3] = v[3]; return *this; } simd128_value_t& readFrom(const int32_t* v) { int_storage[0] = v[0]; int_storage[1] = v[1]; int_storage[2] = v[2]; int_storage[3] = v[3]; return *this; } simd128_value_t& readFrom(const double* v) { double_storage[0] = v[0]; double_storage[1] = v[1]; return *this; } simd128_value_t& readFrom(const simd128_value_t* v) { *this = *v; return *this; } void writeTo(float* v) { v[0] = float_storage[0]; v[1] = float_storage[1]; v[2] = float_storage[2]; v[3] = float_storage[3]; } void writeTo(int32_t* v) { v[0] = int_storage[0]; v[1] = int_storage[1]; v[2] = int_storage[2]; v[3] = int_storage[3]; } void writeTo(double* v) { v[0] = double_storage[0]; v[1] = double_storage[1]; } void writeTo(simd128_value_t* v) { *v = *this; } }; // Processor architecture detection. For more info on what's defined, see: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx // http://www.agner.org/optimize/calling_conventions.pdf // or with gcc, run: "echo | gcc -E -dM -" #if defined(_M_X64) || defined(__x86_64__) #define HOST_ARCH_X64 1 #define ARCH_IS_64_BIT 1 #elif defined(_M_IX86) || defined(__i386__) #define HOST_ARCH_IA32 1 #define ARCH_IS_32_BIT 1 #elif defined(_M_ARM) || defined(__ARMEL__) #define HOST_ARCH_ARM 1 #define ARCH_IS_32_BIT 1 #elif defined(_M_ARM64) || defined(__aarch64__) #define HOST_ARCH_ARM64 1 #define ARCH_IS_64_BIT 1 #elif defined(__riscv) #if __SIZEOF_POINTER__ == 4 #define HOST_ARCH_RISCV32 1 #define ARCH_IS_32_BIT 1 #elif __SIZEOF_POINTER__ == 8 #define HOST_ARCH_RISCV64 1 #define ARCH_IS_64_BIT 1 #else #error Unknown XLEN #endif #else #error Architecture was not detected as supported by Dart. #endif // DART_FORCE_INLINE strongly hints to the compiler that a function should // be inlined. Your function is not guaranteed to be inlined but this is // stronger than just using "inline". // See: http://msdn.microsoft.com/en-us/library/z8y1yy88.aspx for an // explanation of some the cases when a function can never be inlined. #ifdef _MSC_VER #define DART_FORCE_INLINE __forceinline #elif __GNUC__ #define DART_FORCE_INLINE inline __attribute__((always_inline)) #else #error Automatic compiler detection failed. #endif // DART_NOINLINE tells compiler to never inline a particular function. #ifdef _MSC_VER #define DART_NOINLINE __declspec(noinline) #elif __GNUC__ #define DART_NOINLINE __attribute__((noinline)) #else #error Automatic compiler detection failed. #endif #ifdef _MSC_VER #elif __GNUC__ #define DART_HAS_COMPUTED_GOTO 1 #else #error Automatic compiler detection failed. #endif // LIKELY/UNLIKELY give the compiler branch predictions that may affect block // scheduling. #ifdef __GNUC__ #define LIKELY(cond) __builtin_expect((cond), 1) #define UNLIKELY(cond) __builtin_expect((cond), 0) #else #define LIKELY(cond) cond #define UNLIKELY(cond) cond #endif // DART_UNUSED indicates to the compiler that a variable or typedef is expected // to be unused and disables the related warning. #ifdef __GNUC__ #define DART_UNUSED __attribute__((unused)) #else #define DART_UNUSED #endif // DART_USED indicates to the compiler that a global variable or typedef is used // disables e.g. the gcc warning "unused-variable" #ifdef __GNUC__ #define DART_USED __attribute__((used)) #else #define DART_USED #endif // DART_NORETURN indicates to the compiler that a function does not return. // It should be used on functions that unconditionally call functions like // exit(), which end the program. We use it to avoid compiler warnings in // callers of DART_NORETURN functions. #ifdef _MSC_VER #define DART_NORETURN __declspec(noreturn) #elif __GNUC__ #define DART_NORETURN __attribute__((noreturn)) #else #error Automatic compiler detection failed. #endif #ifdef _MSC_VER #define DART_PRETTY_FUNCTION __FUNCSIG__ #elif __GNUC__ #define DART_PRETTY_FUNCTION __PRETTY_FUNCTION__ #else #error Automatic compiler detection failed. #endif #if !defined(TARGET_ARCH_ARM) && !defined(TARGET_ARCH_X64) && \ !defined(TARGET_ARCH_IA32) && !defined(TARGET_ARCH_ARM64) && \ !defined(TARGET_ARCH_RISCV32) && !defined(TARGET_ARCH_RISCV64) // No target architecture specified pick the one matching the host architecture. #if defined(HOST_ARCH_ARM) #define TARGET_ARCH_ARM 1 #elif defined(HOST_ARCH_X64) #define TARGET_ARCH_X64 1 #elif defined(HOST_ARCH_IA32) #define TARGET_ARCH_IA32 1 #elif defined(HOST_ARCH_ARM64) #define TARGET_ARCH_ARM64 1 #elif defined(HOST_ARCH_RISCV32) #define TARGET_ARCH_RISCV32 1 #elif defined(HOST_ARCH_RISCV64) #define TARGET_ARCH_RISCV64 1 #else #error Automatic target architecture detection failed. #endif #endif #if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) || \ defined(TARGET_ARCH_RISCV32) #define TARGET_ARCH_IS_32_BIT 1 #elif defined(TARGET_ARCH_X64) || defined(TARGET_ARCH_ARM64) || \ defined(TARGET_ARCH_RISCV64) #define TARGET_ARCH_IS_64_BIT 1 #else #error Automatic target architecture detection failed. #endif #if defined(TARGET_ARCH_IS_64_BIT) && !defined(DART_COMPRESSED_POINTERS) #define HAS_SMI_63_BITS 1 #endif // Verify that host and target architectures match, we cannot // have a 64 bit Dart VM generating 32 bit code or vice-versa. #if defined(TARGET_ARCH_X64) || defined(TARGET_ARCH_ARM64) || \ defined(TARGET_ARCH_RISCV64) #if !defined(ARCH_IS_64_BIT) && !defined(FFI_UNIT_TESTS) #error Mismatched Host/Target architectures. #endif // !defined(ARCH_IS_64_BIT) && !defined(FFI_UNIT_TESTS) #elif defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) || \ defined(TARGET_ARCH_RISCV32) #if defined(ARCH_IS_64_BIT) && defined(TARGET_ARCH_ARM) // This is simarm_x64 or simarm_arm64, which is the only case where host/target // architecture mismatch is allowed. Unless, we're running FFI unit tests. #define IS_SIMARM_HOST64 1 #elif !defined(ARCH_IS_32_BIT) && !defined(FFI_UNIT_TESTS) #error Mismatched Host/Target architectures. #endif // !defined(ARCH_IS_32_BIT) && !defined(FFI_UNIT_TESTS) #endif // defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) // Determine whether we will be using the simulator. #if defined(TARGET_ARCH_IA32) #if !defined(HOST_ARCH_IA32) #define USING_SIMULATOR 1 #endif #elif defined(TARGET_ARCH_X64) #if !defined(HOST_ARCH_X64) #define USING_SIMULATOR 1 #endif #elif defined(TARGET_ARCH_ARM) #if !defined(HOST_ARCH_ARM) #define TARGET_HOST_MISMATCH 1 #if !defined(IS_SIMARM_HOST64) #define USING_SIMULATOR 1 #endif #endif #elif defined(TARGET_ARCH_ARM64) #if !defined(HOST_ARCH_ARM64) #define USING_SIMULATOR 1 #endif #elif defined(TARGET_ARCH_RISCV32) #if !defined(HOST_ARCH_RISCV32) #define USING_SIMULATOR 1 #endif #elif defined(TARGET_ARCH_RISCV64) #if !defined(HOST_ARCH_RISCV64) #define USING_SIMULATOR 1 #endif #else #error Unknown architecture. #endif #if !defined(DART_TARGET_OS_ANDROID) && !defined(DART_TARGET_OS_FUCHSIA) && \ !defined(DART_TARGET_OS_MACOS_IOS) && !defined(DART_TARGET_OS_LINUX) && \ !defined(DART_TARGET_OS_MACOS) && !defined(DART_TARGET_OS_WINDOWS) // No target OS specified; pick the one matching the host OS. #if defined(DART_HOST_OS_ANDROID) #define DART_TARGET_OS_ANDROID 1 #elif defined(DART_HOST_OS_FUCHSIA) #define DART_TARGET_OS_FUCHSIA 1 #elif defined(DART_HOST_OS_IOS) #define DART_TARGET_OS_MACOS 1 #define DART_TARGET_OS_MACOS_IOS 1 #elif defined(DART_HOST_OS_LINUX) #define DART_TARGET_OS_LINUX 1 #elif defined(DART_HOST_OS_MACOS) #define DART_TARGET_OS_MACOS 1 #elif defined(DART_HOST_OS_WINDOWS) #define DART_TARGET_OS_WINDOWS 1 #else #error Automatic target OS detection failed. #endif #endif // Short form printf format specifiers #define Pd PRIdPTR #define Pu PRIuPTR #define Px PRIxPTR #define PX PRIXPTR #define Pd32 PRId32 #define Pu32 PRIu32 #define Px32 PRIx32 #define PX32 PRIX32 #define Pd64 PRId64 #define Pu64 PRIu64 #define Px64 PRIx64 #define PX64 PRIX64 // Zero-padded pointer #if defined(ARCH_IS_32_BIT) #define Pp "08" PRIxPTR #else #define Pp "016" PRIxPTR #endif // Suffixes for 64-bit integer literals. #ifdef _MSC_VER #define DART_INT64_C(x) x##I64 #define DART_UINT64_C(x) x##UI64 #else #define DART_INT64_C(x) x##LL #define DART_UINT64_C(x) x##ULL #endif // Replace calls to strtoll with _strtoi64 on Windows. #ifdef _MSC_VER #define strtoll _strtoi64 #endif // Byte sizes. constexpr intptr_t kInt8SizeLog2 = 0; constexpr intptr_t kInt8Size = 1 << kInt8SizeLog2; static_assert(kInt8Size == sizeof(int8_t), "Mismatched int8 size constant"); constexpr intptr_t kInt16SizeLog2 = 1; constexpr intptr_t kInt16Size = 1 << kInt16SizeLog2; static_assert(kInt16Size == sizeof(int16_t), "Mismatched int16 size constant"); constexpr intptr_t kInt32SizeLog2 = 2; constexpr intptr_t kInt32Size = 1 << kInt32SizeLog2; static_assert(kInt32Size == sizeof(int32_t), "Mismatched int32 size constant"); constexpr intptr_t kInt64SizeLog2 = 3; constexpr intptr_t kInt64Size = 1 << kInt64SizeLog2; static_assert(kInt64Size == sizeof(int64_t), "Mismatched int64 size constant"); constexpr intptr_t kDoubleSize = sizeof(double); constexpr intptr_t kFloatSize = sizeof(float); constexpr intptr_t kQuadSize = 4 * kFloatSize; constexpr intptr_t kSimd128Size = sizeof(simd128_value_t); // Bit sizes. constexpr intptr_t kBitsPerByteLog2 = 3; constexpr intptr_t kBitsPerByte = 1 << kBitsPerByteLog2; constexpr intptr_t kBitsPerInt8 = kInt8Size * kBitsPerByte; constexpr intptr_t kBitsPerInt16 = kInt16Size * kBitsPerByte; constexpr intptr_t kBitsPerInt32 = kInt32Size * kBitsPerByte; constexpr intptr_t kBitsPerInt64 = kInt64Size * kBitsPerByte; // The following macro works on both 32 and 64-bit platforms. // Usage: instead of writing 0x1234567890123456ULL // write DART_2PART_UINT64_C(0x12345678,90123456); #define DART_2PART_UINT64_C(a, b) \ (((static_cast(a) << kBitsPerInt32) + 0x##b##u)) // Integer constants. constexpr int8_t kMinInt8 = 0x80; constexpr int8_t kMaxInt8 = 0x7F; constexpr uint8_t kMaxUint8 = 0xFF; constexpr int16_t kMinInt16 = 0x8000; constexpr int16_t kMaxInt16 = 0x7FFF; constexpr uint16_t kMaxUint16 = 0xFFFF; constexpr int32_t kMinInt32 = 0x80000000; constexpr int32_t kMaxInt32 = 0x7FFFFFFF; constexpr uint32_t kMaxUint32 = 0xFFFFFFFF; constexpr int64_t kMinInt64 = DART_INT64_C(0x8000000000000000); constexpr int64_t kMaxInt64 = DART_INT64_C(0x7FFFFFFFFFFFFFFF); constexpr uint64_t kMaxUint64 = DART_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); constexpr int kMinInt = INT_MIN; constexpr int kMaxInt = INT_MAX; constexpr int kMaxUint = UINT_MAX; constexpr int64_t kMinInt64RepresentableAsDouble = kMinInt64; constexpr int64_t kMaxInt64RepresentableAsDouble = DART_INT64_C(0x7FFFFFFFFFFFFC00); constexpr int64_t kSignBitDouble = DART_INT64_C(0x8000000000000000); // Types for native machine words. Guaranteed to be able to hold pointers and // integers. typedef intptr_t word; typedef uintptr_t uword; // Byte sizes for native machine words. #ifdef ARCH_IS_32_BIT constexpr intptr_t kWordSizeLog2 = kInt32SizeLog2; #else constexpr intptr_t kWordSizeLog2 = kInt64SizeLog2; #endif constexpr intptr_t kWordSize = 1 << kWordSizeLog2; static_assert(kWordSize == sizeof(word), "Mismatched word size constant"); // Bit sizes for native machine words. constexpr intptr_t kBitsPerWordLog2 = kWordSizeLog2 + kBitsPerByteLog2; constexpr intptr_t kBitsPerWord = 1 << kBitsPerWordLog2; // Integer constants for native machine words. constexpr word kWordMin = static_cast(1) << (kBitsPerWord - 1); constexpr word kWordMax = (static_cast(1) << (kBitsPerWord - 1)) - 1; constexpr uword kUwordMax = static_cast(-1); // Size of a class id assigned to concrete, abstract and top-level classes. // // We use a signed integer type here to make it comparable with intptr_t. typedef int32_t classid_t; // System-wide named constants. constexpr intptr_t KBLog2 = 10; constexpr intptr_t KB = 1 << KBLog2; constexpr intptr_t MBLog2 = KBLog2 + KBLog2; constexpr intptr_t MB = 1 << MBLog2; constexpr intptr_t GBLog2 = MBLog2 + KBLog2; constexpr intptr_t GB = 1 << GBLog2; constexpr intptr_t KBInWordsLog2 = KBLog2 - kWordSizeLog2; constexpr intptr_t KBInWords = 1 << KBInWordsLog2; constexpr intptr_t MBInWordsLog2 = KBLog2 + KBInWordsLog2; constexpr intptr_t MBInWords = 1 << MBInWordsLog2; constexpr intptr_t GBInWordsLog2 = MBLog2 + KBInWordsLog2; constexpr intptr_t GBInWords = 1 << GBInWordsLog2; // Helpers to round memory sizes to human readable values. constexpr intptr_t RoundWordsToKB(intptr_t size_in_words) { return (size_in_words + (KBInWords >> 1)) >> KBInWordsLog2; } constexpr intptr_t RoundWordsToMB(intptr_t size_in_words) { return (size_in_words + (MBInWords >> 1)) >> MBInWordsLog2; } constexpr intptr_t RoundWordsToGB(intptr_t size_in_words) { return (size_in_words + (GBInWords >> 1)) >> GBInWordsLog2; } constexpr double WordsToMB(intptr_t size_in_words) { return static_cast(size_in_words) / MBInWords; } constexpr intptr_t kIntptrOne = 1; constexpr intptr_t kIntptrMin = (kIntptrOne << (kBitsPerWord - 1)); constexpr intptr_t kIntptrMax = ~kIntptrMin; // Time constants. constexpr intptr_t kMillisecondsPerSecond = 1000; constexpr intptr_t kMicrosecondsPerMillisecond = 1000; constexpr intptr_t kMicrosecondsPerSecond = (kMicrosecondsPerMillisecond * kMillisecondsPerSecond); constexpr intptr_t kNanosecondsPerMicrosecond = 1000; constexpr intptr_t kNanosecondsPerMillisecond = (kNanosecondsPerMicrosecond * kMicrosecondsPerMillisecond); constexpr intptr_t kNanosecondsPerSecond = (kNanosecondsPerMicrosecond * kMicrosecondsPerSecond); // Helpers to scale micro second times to human understandable values. constexpr double MicrosecondsToSeconds(int64_t micros) { return static_cast(micros) / kMicrosecondsPerSecond; } constexpr double MicrosecondsToMilliseconds(int64_t micros) { return static_cast(micros) / kMicrosecondsPerMillisecond; } // A macro to disallow the copy constructor and operator= functions. // This should be used in the private: declarations for a class. #if !defined(DISALLOW_COPY_AND_ASSIGN) #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ private: \ TypeName(const TypeName&) = delete; \ void operator=(const TypeName&) = delete #endif // !defined(DISALLOW_COPY_AND_ASSIGN) // A macro to disallow all the implicit constructors, namely the default // constructor, copy constructor and operator= functions. This should be // used in the private: declarations for a class that wants to prevent // anyone from instantiating it. This is especially useful for classes // containing only static methods. #if !defined(DISALLOW_IMPLICIT_CONSTRUCTORS) #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ private: \ TypeName() = delete; \ DISALLOW_COPY_AND_ASSIGN(TypeName) #endif // !defined(DISALLOW_IMPLICIT_CONSTRUCTORS) // Macro to disallow allocation in the C++ heap. This should be used // in the private section for a class. Don't use UNREACHABLE here to // avoid circular dependencies between platform/globals.h and // platform/assert.h. #if !defined(DISALLOW_ALLOCATION) #define DISALLOW_ALLOCATION() \ public: \ void operator delete(void* pointer) { \ fprintf(stderr, "unreachable code\n"); \ abort(); \ } \ \ private: \ void* operator new(size_t size); #endif // !defined(DISALLOW_ALLOCATION) // The USE(x) template is used to silence C++ compiler warnings issued // for unused variables. template static inline void USE(T&&) {} // The type-based aliasing rule allows the compiler to assume that // pointers of different types (for some definition of different) // never alias each other. Thus the following code does not work: // // float f = foo(); // int fbits = *(int*)(&f); // // The compiler 'knows' that the int pointer can't refer to f since // the types don't match, so the compiler may cache f in a register, // leaving random data in fbits. Using C++ style casts makes no // difference, however a pointer to char data is assumed to alias any // other pointer. This is the 'memcpy exception'. // // The bit_cast function uses the memcpy exception to move the bits // from a variable of one type to a variable of another type. Of // course the end result is likely to be implementation dependent. // Most compilers (gcc-4.2 and MSVC 2005) will completely optimize // bit_cast away. // // There is an additional use for bit_cast. Recent gccs will warn when // they see casts that may result in breakage due to the type-based // aliasing rule. If you have checked that there is no breakage you // can use bit_cast to cast one pointer type to another. This confuses // gcc enough that it can no longer see that you have cast one pointer // type to another thus avoiding the warning. template DART_FORCE_INLINE D bit_cast(const S& source) { static_assert(sizeof(D) == sizeof(S), "Source and destination must have the same size"); D destination; // This use of memcpy is safe: source and destination cannot overlap. memcpy(&destination, &source, sizeof(destination)); return destination; } // Similar to bit_cast, but allows copying from types of unrelated // sizes. This method was introduced to enable the strict aliasing // optimizations of GCC 4.4. Basically, GCC mindlessly relies on // obscure details in the C++ standard that make reinterpret_cast // virtually useless. template DART_FORCE_INLINE D bit_copy(const S& source) { D destination; // This use of memcpy is safe: source and destination cannot overlap. memcpy(&destination, reinterpret_cast(&source), sizeof(destination)); return destination; } // On Windows the reentrant version of strtok is called // strtok_s. Unify on the posix name strtok_r. #if defined(DART_HOST_OS_WINDOWS) #define snprintf _sprintf_p #define strtok_r strtok_s #endif #if !defined(DART_HOST_OS_WINDOWS) #if defined(TEMP_FAILURE_RETRY) // TEMP_FAILURE_RETRY is defined in unistd.h on some platforms. We should // not use that version, but instead the one in signal_blocker.h, to ensure // we disable signal interrupts. #undef TEMP_FAILURE_RETRY #endif // defined(TEMP_FAILURE_RETRY) #endif // !defined(DART_HOST_OS_WINDOWS) #if __GNUC__ // Tell the compiler to do printf format string checking if the // compiler supports it; see the 'format' attribute in // . // // N.B.: As the GCC manual states, "[s]ince non-static C++ methods // have an implicit 'this' argument, the arguments of such methods // should be counted from two, not one." #define PRINTF_ATTRIBUTE(string_index, first_to_check) \ __attribute__((__format__(__printf__, string_index, first_to_check))) #else #define PRINTF_ATTRIBUTE(string_index, first_to_check) #endif #if defined(_WIN32) #define STDIN_FILENO 0 #define STDOUT_FILENO 1 #define STDERR_FILENO 2 #endif #ifndef PATH_MAX // Most platforms use PATH_MAX, but in Windows it's called MAX_PATH. #define PATH_MAX MAX_PATH #endif // Undefine math.h definition which clashes with our condition names. #undef OVERFLOW // Include IL printer and disassembler functionality into non-PRODUCT builds, // in all AOT compiler builds or when forced. #if !defined(PRODUCT) || defined(DART_PRECOMPILER) || \ defined(FORCE_INCLUDE_DISASSEMBLER) #if defined(DART_PRECOMPILED_RUNTIME) && defined(PRODUCT) #error Requested to include IL printer into PRODUCT AOT runtime #endif #define INCLUDE_IL_PRINTER 1 #if !defined(FORCE_INCLUDE_DISASSEMBLER) #define FORCE_INCLUDE_DISASSEMBLER 1 #endif #endif // Include HeapSnapshotWriter functionality if not in PRODUCT. #if !defined(DART_ENABLE_HEAP_SNAPSHOT_WRITER) && !defined(PRODUCT) #define DART_ENABLE_HEAP_SNAPSHOT_WRITER 1 #endif #if defined(DART_HOST_OS_ANDROID) #define kHostOperatingSystemName "android" #elif defined(DART_HOST_OS_FUCHSIA) #define kHostOperatingSystemName "fuchsia" #elif defined(DART_HOST_OS_IOS) #define kHostOperatingSystemName "ios" #elif defined(DART_HOST_OS_LINUX) #define kHostOperatingSystemName "linux" #elif defined(DART_HOST_OS_MACOS) #define kHostOperatingSystemName "macos" #elif defined(DART_HOST_OS_WINDOWS) #define kHostOperatingSystemName "windows" #else #error Host operating system detection failed. #endif #if defined(HOST_ARCH_ARM) #define kHostArchitectureName "arm" #elif defined(HOST_ARCH_ARM64) #define kHostArchitectureName "arm64" #elif defined(HOST_ARCH_IA32) #define kHostArchitectureName "ia32" #elif defined(HOST_ARCH_RISCV32) #define kHostArchitectureName "riscv32" #elif defined(HOST_ARCH_RISCV64) #define kHostArchitectureName "riscv64" #elif defined(HOST_ARCH_X64) #define kHostArchitectureName "x64" #else #error Host architecture detection failed. #endif #if defined(TARGET_ARCH_ARM) #define kTargetArchitectureName "arm" #elif defined(TARGET_ARCH_ARM64) #define kTargetArchitectureName "arm64" #elif defined(TARGET_ARCH_IA32) #define kTargetArchitectureName "ia32" #elif defined(TARGET_ARCH_RISCV32) #define kTargetArchitectureName "riscv32" #elif defined(TARGET_ARCH_RISCV64) #define kTargetArchitectureName "riscv64" #elif defined(TARGET_ARCH_X64) #define kTargetArchitectureName "x64" #else #error Target architecture detection failed. #endif // The ordering between DART_TARGET_OS_MACOS_IOS and DART_TARGET_OS_MACOS // below is important, since the latter is sometimes defined when the former // is, and sometimes not (e.g., ffi tests), so we need to test the former // before the latter. #if defined(DART_TARGET_OS_ANDROID) #define kTargetOperatingSystemName "android" #elif defined(DART_TARGET_OS_FUCHSIA) #define kTargetOperatingSystemName "fuchsia" #elif defined(DART_TARGET_OS_LINUX) #define kTargetOperatingSystemName "linux" #elif defined(DART_TARGET_OS_MACOS_IOS) #define kTargetOperatingSystemName "ios" #elif defined(DART_TARGET_OS_MACOS) #define kTargetOperatingSystemName "macos" #elif defined(DART_TARGET_OS_WINDOWS) #define kTargetOperatingSystemName "windows" #else #error Target operating system detection failed. #endif } // namespace dart #endif // RUNTIME_PLATFORM_GLOBALS_H_