// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64. #if defined(TARGET_ARCH_ARM64) #include "vm/assembler.h" #include "vm/constants_arm64.h" #include "vm/cpu.h" #include "vm/instructions.h" #include "vm/object.h" namespace dart { CallPattern::CallPattern(uword pc, const Code& code) : object_pool_(ObjectPool::Handle(code.GetObjectPool())), end_(pc), ic_data_load_end_(0), target_address_pool_index_(-1), ic_data_(ICData::Handle()) { ASSERT(code.ContainsInstructionAt(pc)); // Last instruction: blr ip0. ASSERT(*(reinterpret_cast(end_) - 1) == 0xd63f0200); Register reg; ic_data_load_end_ = InstructionPattern::DecodeLoadWordFromPool(end_ - Instr::kInstrSize, ®, &target_address_pool_index_); ASSERT(reg == IP0); } NativeCallPattern::NativeCallPattern(uword pc, const Code& code) : object_pool_(ObjectPool::Handle(code.GetObjectPool())), end_(pc), native_function_pool_index_(-1), target_address_pool_index_(-1) { ASSERT(code.ContainsInstructionAt(pc)); // Last instruction: blr ip0. ASSERT(*(reinterpret_cast(end_) - 1) == 0xd63f0200); Register reg; uword native_function_load_end = InstructionPattern::DecodeLoadWordFromPool(end_ - Instr::kInstrSize, ®, &target_address_pool_index_); ASSERT(reg == IP0); InstructionPattern::DecodeLoadWordFromPool(native_function_load_end, ®, &native_function_pool_index_); ASSERT(reg == R5); } uword NativeCallPattern::target() const { return object_pool_.RawValueAt(target_address_pool_index_); } void NativeCallPattern::set_target(uword target_address) const { object_pool_.SetRawValueAt(target_address_pool_index_, target_address); // No need to flush the instruction cache, since the code is not modified. } NativeFunction NativeCallPattern::native_function() const { return reinterpret_cast( object_pool_.RawValueAt(native_function_pool_index_)); } void NativeCallPattern::set_native_function(NativeFunction func) const { object_pool_.SetRawValueAt(native_function_pool_index_, reinterpret_cast(func)); } intptr_t InstructionPattern::OffsetFromPPIndex(intptr_t index) { return Array::element_offset(index); } // Decodes a load sequence ending at 'end' (the last instruction of the load // sequence is the instruction before the one at end). Returns a pointer to // the first instruction in the sequence. Returns the register being loaded // and the loaded object in the output parameters 'reg' and 'obj' // respectively. uword InstructionPattern::DecodeLoadObject(uword end, const ObjectPool& object_pool, Register* reg, Object* obj) { // 1. LoadWordFromPool // or // 2. LoadDecodableImmediate uword start = 0; Instr* instr = Instr::At(end - Instr::kInstrSize); if (instr->IsLoadStoreRegOp()) { // Case 1. intptr_t index = 0; start = DecodeLoadWordFromPool(end, reg, &index); *obj = object_pool.ObjectAt(index); } else { // Case 2. intptr_t value = 0; start = DecodeLoadWordImmediate(end, reg, &value); *obj = reinterpret_cast(value); } return start; } // Decodes a load sequence ending at 'end' (the last instruction of the load // sequence is the instruction before the one at end). Returns a pointer to // the first instruction in the sequence. Returns the register being loaded // and the loaded immediate value in the output parameters 'reg' and 'value' // respectively. uword InstructionPattern::DecodeLoadWordImmediate(uword end, Register* reg, intptr_t* value) { // 1. LoadWordFromPool // or // 2. LoadWordFromPool // orri // or // 3. LoadPatchableImmediate uword start = end - Instr::kInstrSize; Instr* instr = Instr::At(start); bool odd = false; // Case 2. if (instr->IsLogicalImmOp()) { ASSERT(instr->Bit(29) == 1); odd = true; // end points at orri so that we can pass it to DecodeLoadWordFromPool. end = start; start -= Instr::kInstrSize; instr = Instr::At(start); // Case 2 falls through to case 1. } // Case 1. if (instr->IsLoadStoreRegOp()) { start = DecodeLoadWordFromPool(end, reg, value); if (odd) { *value |= 1; } return start; } // Case 3. // movk dst, imm3, 3; movk dst, imm2, 2; movk dst, imm1, 1; movz dst, imm0, 0 ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 3); ASSERT(instr->HWField() == 3); // movk dst, imm3, 3 *reg = instr->RdField(); *value = static_cast(instr->Imm16Field()) << 48; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 3); ASSERT(instr->HWField() == 2); // movk dst, imm2, 2 ASSERT(instr->RdField() == *reg); *value |= static_cast(instr->Imm16Field()) << 32; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 3); ASSERT(instr->HWField() == 1); // movk dst, imm1, 1 ASSERT(instr->RdField() == *reg); *value |= static_cast(instr->Imm16Field()) << 16; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 2); ASSERT(instr->HWField() == 0); // movz dst, imm0, 0 ASSERT(instr->RdField() == *reg); *value |= static_cast(instr->Imm16Field()); return start; } // Decodes a load sequence ending at 'end' (the last instruction of the load // sequence is the instruction before the one at end). Returns a pointer to // the first instruction in the sequence. Returns the register being loaded // and the index in the pool being read from in the output parameters 'reg' // and 'index' respectively. uword InstructionPattern::DecodeLoadWordFromPool(uword end, Register* reg, intptr_t* index) { // 1. ldr dst, [pp, offset] // or // 2. add dst, pp, #offset_hi12 // ldr dst [dst, #offset_lo12] // or // 3. movz dst, low_offset, 0 // movk dst, hi_offset, 1 (optional) // ldr dst, [pp, dst] uword start = end - Instr::kInstrSize; Instr* instr = Instr::At(start); intptr_t offset = 0; // Last instruction is always an ldr into a 64-bit X register. ASSERT(instr->IsLoadStoreRegOp() && (instr->Bit(22) == 1) && (instr->Bits(30, 2) == 3)); // Grab the destination register from the ldr instruction. *reg = instr->RtField(); if (instr->Bit(24) == 1) { // base + scaled unsigned 12-bit immediate offset. // Case 1. offset |= (instr->Imm12Field() << 3); if (instr->RnField() == *reg) { start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsAddSubImmOp()); ASSERT(instr->RnField() == PP); ASSERT(instr->RdField() == *reg); offset |= (instr->Imm12Field() << 12); } } else { ASSERT(instr->Bits(10, 2) == 2); // We have to look at the preceding one or two instructions to find the // offset. start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->RdField() == *reg); if (instr->Bits(29, 2) == 2) { // movz dst, low_offset, 0 ASSERT(instr->HWField() == 0); offset = instr->Imm16Field(); // no high offset. } else { ASSERT(instr->Bits(29, 2) == 3); // movk dst, high_offset, 1 ASSERT(instr->HWField() == 1); offset = instr->Imm16Field() << 16; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->RdField() == *reg); ASSERT(instr->Bits(29, 2) == 2); // movz dst, low_offset, 0 ASSERT(instr->HWField() == 0); offset |= instr->Imm16Field(); } } // PP is untagged on ARM64. ASSERT(Utils::IsAligned(offset, 8)); *index = ObjectPool::IndexFromOffset(offset - kHeapObjectTag); return start; } // Encodes a load sequence ending at 'end'. Encodes a fixed length two // instruction load from the pool pointer in PP using the destination // register reg as a temporary for the base address. // Assumes that the location has already been validated for patching. void InstructionPattern::EncodeLoadWordFromPoolFixed(uword end, int32_t offset) { uword start = end - Instr::kInstrSize; Instr* instr = Instr::At(start); const int32_t upper12 = offset & 0x00fff000; const int32_t lower12 = offset & 0x00000fff; ASSERT((offset & 0xff000000) == 0); // Can't encode > 24 bits. ASSERT(((lower12 >> 3) << 3) == lower12); // 8-byte aligned. instr->SetImm12Bits(instr->InstructionBits(), lower12 >> 3); start -= Instr::kInstrSize; instr = Instr::At(start); instr->SetImm12Bits(instr->InstructionBits(), upper12 >> 12); instr->SetInstructionBits(instr->InstructionBits() | B22); } RawICData* CallPattern::IcData() { if (ic_data_.IsNull()) { Register reg; InstructionPattern::DecodeLoadObject(ic_data_load_end_, object_pool_, ®, &ic_data_); ASSERT(reg == R5); } return ic_data_.raw(); } uword CallPattern::TargetAddress() const { return object_pool_.RawValueAt(target_address_pool_index_); } void CallPattern::SetTargetAddress(uword target_address) const { object_pool_.SetRawValueAt(target_address_pool_index_, target_address); // No need to flush the instruction cache, since the code is not modified. } void CallPattern::InsertAt(uword pc, uword target_address) { Instr* movz0 = Instr::At(pc + (0 * Instr::kInstrSize)); Instr* movk1 = Instr::At(pc + (1 * Instr::kInstrSize)); Instr* movk2 = Instr::At(pc + (2 * Instr::kInstrSize)); Instr* movk3 = Instr::At(pc + (3 * Instr::kInstrSize)); Instr* blr = Instr::At(pc + (4 * Instr::kInstrSize)); const uint32_t w0 = Utils::Low32Bits(target_address); const uint32_t w1 = Utils::High32Bits(target_address); const uint16_t h0 = Utils::Low16Bits(w0); const uint16_t h1 = Utils::High16Bits(w0); const uint16_t h2 = Utils::Low16Bits(w1); const uint16_t h3 = Utils::High16Bits(w1); movz0->SetMoveWideBits(MOVZ, IP0, h0, 0, kDoubleWord); movk1->SetMoveWideBits(MOVK, IP0, h1, 1, kDoubleWord); movk2->SetMoveWideBits(MOVK, IP0, h2, 2, kDoubleWord); movk3->SetMoveWideBits(MOVK, IP0, h3, 3, kDoubleWord); blr->SetUnconditionalBranchRegBits(BLR, IP0); ASSERT(kLengthInBytes == 5 * Instr::kInstrSize); CPU::FlushICache(pc, kLengthInBytes); } JumpPattern::JumpPattern(uword pc, const Code& code) : pc_(pc) { } bool JumpPattern::IsValid() const { Instr* movz0 = Instr::At(pc_ + (0 * Instr::kInstrSize)); Instr* movk1 = Instr::At(pc_ + (1 * Instr::kInstrSize)); Instr* movk2 = Instr::At(pc_ + (2 * Instr::kInstrSize)); Instr* movk3 = Instr::At(pc_ + (3 * Instr::kInstrSize)); Instr* br = Instr::At(pc_ + (4 * Instr::kInstrSize)); return (movz0->IsMoveWideOp()) && (movz0->Bits(29, 2) == 2) && (movk1->IsMoveWideOp()) && (movk1->Bits(29, 2) == 3) && (movk2->IsMoveWideOp()) && (movk2->Bits(29, 2) == 3) && (movk3->IsMoveWideOp()) && (movk3->Bits(29, 2) == 3) && (br->IsUnconditionalBranchRegOp()) && (br->Bits(16, 5) == 31); } uword JumpPattern::TargetAddress() const { Instr* movz0 = Instr::At(pc_ + (0 * Instr::kInstrSize)); Instr* movk1 = Instr::At(pc_ + (1 * Instr::kInstrSize)); Instr* movk2 = Instr::At(pc_ + (2 * Instr::kInstrSize)); Instr* movk3 = Instr::At(pc_ + (3 * Instr::kInstrSize)); const uint16_t imm0 = movz0->Imm16Field(); const uint16_t imm1 = movk1->Imm16Field(); const uint16_t imm2 = movk2->Imm16Field(); const uint16_t imm3 = movk3->Imm16Field(); const int64_t target = (static_cast(imm0)) | (static_cast(imm1) << 16) | (static_cast(imm2) << 32) | (static_cast(imm3) << 48); return target; } void JumpPattern::SetTargetAddress(uword target_address) const { Instr* movz0 = Instr::At(pc_ + (0 * Instr::kInstrSize)); Instr* movk1 = Instr::At(pc_ + (1 * Instr::kInstrSize)); Instr* movk2 = Instr::At(pc_ + (2 * Instr::kInstrSize)); Instr* movk3 = Instr::At(pc_ + (3 * Instr::kInstrSize)); const int32_t movz0_bits = movz0->InstructionBits(); const int32_t movk1_bits = movk1->InstructionBits(); const int32_t movk2_bits = movk2->InstructionBits(); const int32_t movk3_bits = movk3->InstructionBits(); const uint32_t w0 = Utils::Low32Bits(target_address); const uint32_t w1 = Utils::High32Bits(target_address); const uint16_t h0 = Utils::Low16Bits(w0); const uint16_t h1 = Utils::High16Bits(w0); const uint16_t h2 = Utils::Low16Bits(w1); const uint16_t h3 = Utils::High16Bits(w1); movz0->SetInstructionBits((movz0_bits & ~kImm16Mask) | (h0 << kImm16Shift)); movk1->SetInstructionBits((movk1_bits & ~kImm16Mask) | (h1 << kImm16Shift)); movk2->SetInstructionBits((movk2_bits & ~kImm16Mask) | (h2 << kImm16Shift)); movk3->SetInstructionBits((movk3_bits & ~kImm16Mask) | (h3 << kImm16Shift)); CPU::FlushICache(pc_, 4 * Instr::kInstrSize); } ReturnPattern::ReturnPattern(uword pc) : pc_(pc) { } bool ReturnPattern::IsValid() const { Instr* bx_lr = Instr::At(pc_); const Register crn = ConcreteRegister(LR); const int32_t instruction = RET | (static_cast(crn) << kRnShift); return bx_lr->InstructionBits() == instruction; } } // namespace dart #endif // defined TARGET_ARCH_ARM64