// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. #include "vm/globals.h" #if defined(HOST_OS_WINDOWS) #include "vm/os.h" #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #include "platform/assert.h" #include "platform/utils.h" #include "vm/os_thread.h" #include "vm/zone.h" namespace dart { // Defined in vm/os_thread_win.cc extern bool private_flag_windows_run_tls_destructors; const char* OS::Name() { return "windows"; } intptr_t OS::ProcessId() { return static_cast(GetCurrentProcessId()); } // As a side-effect sets the globals _timezone, _daylight and _tzname. static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) { time_t seconds = static_cast(seconds_since_epoch); if (seconds != seconds_since_epoch) { return false; } // localtime_s implicitly sets _timezone, _daylight and _tzname. errno_t error_code = localtime_s(tm_result, &seconds); return error_code == 0; } static int GetDaylightSavingBiasInSeconds() { TIME_ZONE_INFORMATION zone_information; memset(&zone_information, 0, sizeof(zone_information)); if (GetTimeZoneInformation(&zone_information) == TIME_ZONE_ID_INVALID) { // By default the daylight saving offset is an hour. return -60 * 60; } else { return static_cast(zone_information.DaylightBias * 60); } } const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) { TIME_ZONE_INFORMATION zone_information; memset(&zone_information, 0, sizeof(zone_information)); // Initialize and grab the time zone data. _tzset(); DWORD status = GetTimeZoneInformation(&zone_information); if (GetTimeZoneInformation(&zone_information) == TIME_ZONE_ID_INVALID) { // If we can't get the time zone data, the Windows docs indicate that we // are probably out of memory. Return an empty string. return ""; } // Figure out whether we're in standard or daylight. bool daylight_savings = (status == TIME_ZONE_ID_DAYLIGHT); if (status == TIME_ZONE_ID_UNKNOWN) { tm local_time; if (LocalTime(seconds_since_epoch, &local_time)) { daylight_savings = (local_time.tm_isdst == 1); } } // Convert the wchar string to a null-terminated utf8 string. wchar_t* wchar_name = daylight_savings ? zone_information.DaylightName : zone_information.StandardName; intptr_t utf8_len = WideCharToMultiByte(CP_UTF8, 0, wchar_name, -1, NULL, 0, NULL, NULL); char* name = ThreadState::Current()->zone()->Alloc(utf8_len + 1); WideCharToMultiByte(CP_UTF8, 0, wchar_name, -1, name, utf8_len, NULL, NULL); name[utf8_len] = '\0'; return name; } int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) { tm decomposed; // LocalTime will set _timezone. bool succeeded = LocalTime(seconds_since_epoch, &decomposed); if (succeeded) { int inDaylightSavingsTime = decomposed.tm_isdst; ASSERT(inDaylightSavingsTime == 0 || inDaylightSavingsTime == 1); // Dart and Windows disagree on the sign of the bias. int offset = static_cast(-_timezone); if (inDaylightSavingsTime == 1) { static int daylight_bias = GetDaylightSavingBiasInSeconds(); // Subtract because windows and Dart disagree on the sign. offset = offset - daylight_bias; } return offset; } else { // Return zero like V8 does. return 0; } } int OS::GetLocalTimeZoneAdjustmentInSeconds() { // TODO(floitsch): avoid excessive calls to _tzset? _tzset(); // Dart and Windows disagree on the sign of the bias. return static_cast(-_timezone); } int64_t OS::GetCurrentTimeMillis() { return GetCurrentTimeMicros() / 1000; } int64_t OS::GetCurrentTimeMicros() { static const int64_t kTimeEpoc = 116444736000000000LL; static const int64_t kTimeScaler = 10; // 100 ns to us. // Although win32 uses 64-bit integers for representing timestamps, // these are packed into a FILETIME structure. The FILETIME // structure is just a struct representing a 64-bit integer. The // TimeStamp union allows access to both a FILETIME and an integer // representation of the timestamp. The Windows timestamp is in // 100-nanosecond intervals since January 1, 1601. union TimeStamp { FILETIME ft_; int64_t t_; }; TimeStamp time; GetSystemTimeAsFileTime(&time.ft_); return (time.t_ - kTimeEpoc) / kTimeScaler; } static int64_t qpc_ticks_per_second = 0; int64_t OS::GetCurrentMonotonicTicks() { if (qpc_ticks_per_second == 0) { // QueryPerformanceCounter not supported, fallback. return GetCurrentTimeMicros(); } // Grab performance counter value. LARGE_INTEGER now; QueryPerformanceCounter(&now); return static_cast(now.QuadPart); } int64_t OS::GetCurrentMonotonicFrequency() { if (qpc_ticks_per_second == 0) { // QueryPerformanceCounter not supported, fallback. return kMicrosecondsPerSecond; } return qpc_ticks_per_second; } int64_t OS::GetCurrentMonotonicMicros() { int64_t ticks = GetCurrentMonotonicTicks(); int64_t frequency = GetCurrentMonotonicFrequency(); // Convert to microseconds. int64_t seconds = ticks / frequency; int64_t leftover_ticks = ticks - (seconds * frequency); int64_t result = seconds * kMicrosecondsPerSecond; result += ((leftover_ticks * kMicrosecondsPerSecond) / frequency); return result; } int64_t OS::GetCurrentThreadCPUMicros() { // TODO(johnmccutchan): Implement. See base/time_win.cc for details. return -1; } int64_t OS::GetCurrentThreadCPUMicrosForTimeline() { return OS::GetCurrentThreadCPUMicros(); } intptr_t OS::ActivationFrameAlignment() { #if defined(TARGET_ARCH_ARM64) return 16; #elif defined(TARGET_ARCH_ARM) return 8; #elif defined(_WIN64) // Windows 64-bit ABI requires the stack to be 16-byte aligned. return 16; #else // No requirements on Win32. return 1; #endif } int OS::NumberOfAvailableProcessors() { SYSTEM_INFO info; GetSystemInfo(&info); return info.dwNumberOfProcessors; } void OS::Sleep(int64_t millis) { ::Sleep(millis); } void OS::SleepMicros(int64_t micros) { // Windows only supports millisecond sleeps. if (micros < kMicrosecondsPerMillisecond) { // Calling ::Sleep with 0 has no determined behaviour, round up. micros = kMicrosecondsPerMillisecond; } OS::Sleep(micros / kMicrosecondsPerMillisecond); } void OS::DebugBreak() { #if defined(_MSC_VER) // Microsoft Visual C/C++ or drop-in replacement. __debugbreak(); #elif defined(__GCC__) __builtin_trap(); #else // Microsoft style assembly. __asm { int 3 } #endif } DART_NOINLINE uintptr_t OS::GetProgramCounter() { return reinterpret_cast(_ReturnAddress()); } void OS::Print(const char* format, ...) { va_list args; va_start(args, format); VFPrint(stdout, format, args); va_end(args); } void OS::VFPrint(FILE* stream, const char* format, va_list args) { vfprintf(stream, format, args); fflush(stream); } char* OS::SCreate(Zone* zone, const char* format, ...) { va_list args; va_start(args, format); char* buffer = VSCreate(zone, format, args); va_end(args); return buffer; } char* OS::VSCreate(Zone* zone, const char* format, va_list args) { // Measure. va_list measure_args; va_copy(measure_args, args); intptr_t len = Utils::VSNPrint(NULL, 0, format, measure_args); va_end(measure_args); char* buffer; if (zone) { buffer = zone->Alloc(len + 1); } else { buffer = reinterpret_cast(malloc(len + 1)); } ASSERT(buffer != NULL); // Print. va_list print_args; va_copy(print_args, args); Utils::VSNPrint(buffer, len + 1, format, print_args); va_end(print_args); return buffer; } bool OS::StringToInt64(const char* str, int64_t* value) { ASSERT(str != NULL && strlen(str) > 0 && value != NULL); int32_t base = 10; char* endptr; int i = 0; if (str[0] == '-') { i = 1; } else if (str[0] == '+') { i = 1; } if ((str[i] == '0') && (str[i + 1] == 'x' || str[i + 1] == 'X') && (str[i + 2] != '\0')) { base = 16; } errno = 0; if (base == 16) { // Unsigned 64-bit hexadecimal integer literals are allowed but // immediately interpreted as signed 64-bit integers. *value = static_cast(_strtoui64(str, &endptr, base)); } else { *value = _strtoi64(str, &endptr, base); } return ((errno == 0) && (endptr != str) && (*endptr == 0)); } void OS::RegisterCodeObservers() {} void OS::PrintErr(const char* format, ...) { va_list args; va_start(args, format); VFPrint(stderr, format, args); va_end(args); } void OS::Init() { static bool init_once_called = false; if (init_once_called) { return; } init_once_called = true; // Do not pop up a message box when abort is called. _set_abort_behavior(0, _WRITE_ABORT_MSG); ThreadLocalData::Init(); LARGE_INTEGER ticks_per_sec; if (!QueryPerformanceFrequency(&ticks_per_sec)) { qpc_ticks_per_second = 0; } else { qpc_ticks_per_second = static_cast(ticks_per_sec.QuadPart); } } void OS::Cleanup() { // TODO(zra): Enable once VM can shutdown cleanly. // ThreadLocalData::Cleanup(); } void OS::PrepareToAbort() { // TODO(zra): Remove once VM shuts down cleanly. private_flag_windows_run_tls_destructors = false; } void OS::Abort() { PrepareToAbort(); abort(); } void OS::Exit(int code) { // TODO(zra): Remove once VM shuts down cleanly. private_flag_windows_run_tls_destructors = false; // On Windows we use ExitProcess so that threads can't clobber the exit_code. // See: https://code.google.com/p/nativeclient/issues/detail?id=2870 ::ExitProcess(code); } } // namespace dart #endif // defined(HOST_OS_WINDOWS)