// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. #include "vm/compiler/relocation.h" #include "vm/code_patcher.h" #include "vm/heap/pages.h" #include "vm/instructions.h" #include "vm/object_store.h" #include "vm/stub_code.h" namespace dart { #if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) // Only for testing. DEFINE_FLAG(bool, always_generate_trampolines_for_testing, false, "Generate always trampolines (for testing purposes)."); DEFINE_FLAG(int, lower_tail_pc_relative_call_distance, -1, "Lower tail call distance."); DEFINE_FLAG(int, upper_tail_pc_relative_call_distance, -1, "Upper tail call distance."); DEFINE_FLAG(int, lower_pc_relative_call_distance, -1, "Lower call distance."); DEFINE_FLAG(int, upper_pc_relative_call_distance, -1, "Upper call distance."); struct TailCallDistanceLimits { static intptr_t Lower() { if (FLAG_lower_tail_pc_relative_call_distance != -1) { return FLAG_lower_tail_pc_relative_call_distance; } return PcRelativeTailCallPattern::kLowerCallingRange; } static intptr_t Upper() { if (FLAG_upper_tail_pc_relative_call_distance != -1) { return FLAG_upper_tail_pc_relative_call_distance; } return PcRelativeTailCallPattern::kUpperCallingRange; } }; struct CallDistanceLimits { static intptr_t Lower() { if (FLAG_lower_pc_relative_call_distance != -1) { return FLAG_lower_pc_relative_call_distance; } return PcRelativeCallPattern::kLowerCallingRange; } static intptr_t Upper() { if (FLAG_upper_pc_relative_call_distance != -1) { return FLAG_upper_pc_relative_call_distance; } return PcRelativeCallPattern::kUpperCallingRange; } }; const intptr_t kTrampolineSize = Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes, compiler::target::Instructions::kBarePayloadAlignment); CodeRelocator::CodeRelocator(Thread* thread, GrowableArray* code_objects, GrowableArray* commands) : StackResource(thread), thread_(thread), code_objects_(code_objects), commands_(commands), kind_type_and_offset_(Smi::Handle(thread->zone())), target_(Object::Handle(thread->zone())), destination_(Code::Handle(thread->zone())) {} void CodeRelocator::Relocate(bool is_vm_isolate) { Zone* zone = Thread::Current()->zone(); auto& current_caller = Code::Handle(zone); auto& call_targets = Array::Handle(zone); auto& next_caller = Code::Handle(zone); auto& next_caller_targets = Array::Handle(zone); // Emit all instructions and do relocations on the way. for (intptr_t i = 0; i < code_objects_->length(); ++i) { current_caller = (*code_objects_)[i]; const intptr_t code_text_offset = next_text_offset_; if (!AddInstructionsToText(current_caller.ptr())) { continue; } call_targets = current_caller.static_calls_target_table(); ScanCallTargets(current_caller, call_targets, code_text_offset); // Any unresolved calls to this instruction can be fixed now. ResolveUnresolvedCallsTargeting(current_caller.instructions()); // If we have forward/backwards calls which are almost out-of-range, we'll // create trampolines now. if (i < (code_objects_->length() - 1)) { next_caller = (*code_objects_)[i + 1]; next_caller_targets = next_caller.static_calls_target_table(); } else { next_caller = Code::null(); next_caller_targets = Array::null(); } BuildTrampolinesForAlmostOutOfRangeCalls(next_caller, next_caller_targets); } // We're guaranteed to have all calls resolved, since // * backwards calls are resolved eagerly // * forward calls are resolved once the target is written if (!all_unresolved_calls_.IsEmpty()) { for (auto call : all_unresolved_calls_) { OS::PrintErr("Unresolved call to %s from %s\n", Object::Handle(call->callee).ToCString(), Object::Handle(call->caller).ToCString()); } } RELEASE_ASSERT(all_unresolved_calls_.IsEmpty()); RELEASE_ASSERT(unresolved_calls_by_destination_.IsEmpty()); // Any trampolines we created must be patched with the right offsets. auto it = trampolines_by_destination_.GetIterator(); while (true) { auto entry = it.Next(); if (entry == nullptr) break; UnresolvedTrampolineList* trampoline_list = entry->value; while (!trampoline_list->IsEmpty()) { auto unresolved_trampoline = trampoline_list->RemoveFirst(); ResolveTrampoline(unresolved_trampoline); delete unresolved_trampoline; } delete trampoline_list; } trampolines_by_destination_.Clear(); // Don't drop static call targets table yet. Snapshotter will skip it anyway // however we might need it to write information into V8 snapshot profile. } bool CodeRelocator::AddInstructionsToText(CodePtr code) { InstructionsPtr instructions = Code::InstructionsOf(code); // If two [Code] objects point to the same [Instructions] object, we'll just // use the first one (they are equivalent for all practical purposes). if (text_offsets_.HasKey(instructions)) { return false; } text_offsets_.Insert({instructions, next_text_offset_}); commands_->Add(ImageWriterCommand(next_text_offset_, code)); next_text_offset_ += ImageWriter::SizeInSnapshot(instructions); return true; } UnresolvedTrampoline* CodeRelocator::FindTrampolineFor( UnresolvedCall* unresolved_call) { auto destination = Code::InstructionsOf(unresolved_call->callee); auto entry = trampolines_by_destination_.Lookup(destination); if (entry != nullptr) { UnresolvedTrampolineList* trampolines = entry->value; ASSERT(!trampolines->IsEmpty()); // For the destination of [unresolved_call] we might have multiple // trampolines. The trampolines are sorted according to insertion order, // which guarantees increasing text_offset's. So we go from the back of the // list as long as we have trampolines that are in-range and then check // whether the target offset matches. auto it = trampolines->End(); --it; do { UnresolvedTrampoline* trampoline = *it; if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) { break; } if (trampoline->offset_into_target == unresolved_call->offset_into_target) { return trampoline; } --it; } while (it != trampolines->Begin()); } return nullptr; } void CodeRelocator::AddTrampolineToText(InstructionsPtr destination, uint8_t* trampoline_bytes, intptr_t trampoline_length) { commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes, trampoline_length)); next_text_offset_ += trampoline_length; } void CodeRelocator::ScanCallTargets(const Code& code, const Array& call_targets, intptr_t code_text_offset) { if (call_targets.IsNull()) { return; } StaticCallsTable calls(call_targets); for (auto call : calls) { kind_type_and_offset_ = call.Get(); const auto kind = Code::KindField::decode(kind_type_and_offset_.Value()); const auto return_pc_offset = Code::OffsetField::decode(kind_type_and_offset_.Value()); const auto call_entry_point = Code::EntryPointField::decode(kind_type_and_offset_.Value()); if (kind == Code::kCallViaCode) { continue; } destination_ = GetTarget(call); // A call site can decide to jump not to the beginning of a function but // rather jump into it at a certain offset. int32_t offset_into_target = 0; bool is_tail_call; intptr_t call_instruction_offset; if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { call_instruction_offset = return_pc_offset - PcRelativeCallPattern::kLengthInBytes; PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset); ASSERT(call.IsValid()); offset_into_target = call.distance(); is_tail_call = false; } else { ASSERT(kind == Code::kPcRelativeTailCall); call_instruction_offset = return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; PcRelativeTailCallPattern call(code.PayloadStart() + call_instruction_offset); ASSERT(call.IsValid()); offset_into_target = call.distance(); is_tail_call = true; } const uword destination_payload = destination_.PayloadStart(); const uword entry_point = call_entry_point == Code::kUncheckedEntry ? destination_.UncheckedEntryPoint() : destination_.EntryPoint(); offset_into_target += (entry_point - destination_payload); const intptr_t text_offset = code_text_offset + AdjustPayloadOffset(call_instruction_offset); UnresolvedCall unresolved_call(code.ptr(), call_instruction_offset, text_offset, destination_.ptr(), offset_into_target, is_tail_call); if (!TryResolveBackwardsCall(&unresolved_call)) { EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call)); } } } void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) { // Add it to the min-heap by .text offset. all_unresolved_calls_.Append(unresolved_call); // Add it to callers of destination. InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee); if (!unresolved_calls_by_destination_.HasKey(destination)) { unresolved_calls_by_destination_.Insert( {destination, new SameDestinationUnresolvedCallsList()}); } unresolved_calls_by_destination_.LookupValue(destination) ->Append(unresolved_call); } void CodeRelocator::EnqueueUnresolvedTrampoline( UnresolvedTrampoline* unresolved_trampoline) { auto destination = Code::InstructionsOf(unresolved_trampoline->callee); auto entry = trampolines_by_destination_.Lookup(destination); UnresolvedTrampolineList* trampolines = nullptr; if (entry == nullptr) { trampolines = new UnresolvedTrampolineList(); trampolines_by_destination_.Insert({destination, trampolines}); } else { trampolines = entry->value; } trampolines->Append(unresolved_trampoline); } bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) { auto callee = Code::InstructionsOf(unresolved_call->callee); auto map_entry = text_offsets_.Lookup(callee); if (map_entry == nullptr) return false; if (IsTargetInRangeFor(unresolved_call, map_entry->value)) { ResolveCall(unresolved_call); return true; } return false; } void CodeRelocator::ResolveUnresolvedCallsTargeting( const InstructionsPtr instructions) { if (unresolved_calls_by_destination_.HasKey(instructions)) { SameDestinationUnresolvedCallsList* calls = unresolved_calls_by_destination_.LookupValue(instructions); auto it = calls->Begin(); while (it != calls->End()) { UnresolvedCall* unresolved_call = *it; ++it; ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions); ResolveCall(unresolved_call); // Remove the call from both lists. calls->Remove(unresolved_call); all_unresolved_calls_.Remove(unresolved_call); delete unresolved_call; } ASSERT(calls->IsEmpty()); delete calls; bool ok = unresolved_calls_by_destination_.Remove(instructions); ASSERT(ok); } } void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) { const intptr_t destination_text = FindDestinationInText(Code::InstructionsOf(unresolved_call->callee), unresolved_call->offset_into_target); ResolveCallToDestination(unresolved_call, destination_text); } void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call, intptr_t destination_text) { const intptr_t call_text_offset = unresolved_call->text_offset; const intptr_t call_offset = unresolved_call->call_offset; const int32_t distance = destination_text - call_text_offset; { auto const caller = unresolved_call->caller; uword addr = Code::PayloadStartOf(caller) + call_offset; if (FLAG_write_protect_code) { addr -= Page::Of(Code::InstructionsOf(caller))->AliasOffset(); } if (unresolved_call->is_tail_call) { PcRelativeTailCallPattern call(addr); ASSERT(call.IsValid()); call.set_distance(static_cast(distance)); ASSERT(call.distance() == distance); } else { PcRelativeCallPattern call(addr); ASSERT(call.IsValid()); call.set_distance(static_cast(distance)); ASSERT(call.distance() == distance); } } unresolved_call->caller = nullptr; unresolved_call->callee = nullptr; } void CodeRelocator::ResolveTrampoline( UnresolvedTrampoline* unresolved_trampoline) { const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset; const uword trampoline_start = reinterpret_cast(unresolved_trampoline->trampoline_bytes); auto callee = Code::InstructionsOf(unresolved_trampoline->callee); auto destination_text = FindDestinationInText(callee, unresolved_trampoline->offset_into_target); const int32_t distance = destination_text - trampoline_text_offset; PcRelativeTrampolineJumpPattern pattern(trampoline_start); pattern.Initialize(); pattern.set_distance(distance); ASSERT(pattern.distance() == distance); } bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call, intptr_t target_text_offset) { const auto forward_distance = target_text_offset - unresolved_call->text_offset; if (unresolved_call->is_tail_call) { return TailCallDistanceLimits::Lower() <= forward_distance && forward_distance <= TailCallDistanceLimits::Upper(); } else { return CallDistanceLimits::Lower() <= forward_distance && forward_distance <= CallDistanceLimits::Upper(); } } CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) { // The precompiler should have already replaced all function entries // with code entries. ASSERT(call.Get() == Function::null()); target_ = call.Get(); if (target_.IsAbstractType()) { target_ = AbstractType::Cast(target_).type_test_stub(); destination_ = Code::Cast(target_).ptr(); // The AssertAssignableInstr will emit pc-relative calls to the TTS iff // dst_type is instantiated. If we happened to not install an optimized // TTS but rather a default one, it will live in the vm-isolate (to // which we cannot make pc-relative calls). // Though we have "equivalent" isolate-specific stubs we can use as // targets instead. // // (We could make the AOT compiler install isolate-specific stubs // into the types directly, but that does not work for types which // live in the "vm-isolate" - such as `Type::dynamic_type()`). if (destination_.InVMIsolateHeap()) { auto object_store = thread_->isolate_group()->object_store(); if (destination_.ptr() == StubCode::DefaultTypeTest().ptr()) { destination_ = object_store->default_tts_stub(); } else if (destination_.ptr() == StubCode::DefaultNullableTypeTest().ptr()) { destination_ = object_store->default_nullable_tts_stub(); } else if (destination_.ptr() == StubCode::TopTypeTypeTest().ptr()) { destination_ = object_store->top_type_tts_stub(); } else if (destination_.ptr() == StubCode::UnreachableTypeTest().ptr()) { destination_ = object_store->unreachable_tts_stub(); } else if (destination_.ptr() == StubCode::SlowTypeTest().ptr()) { destination_ = object_store->slow_tts_stub(); } else if (destination_.ptr() == StubCode::NullableTypeParameterTypeTest().ptr()) { destination_ = object_store->nullable_type_parameter_tts_stub(); } else if (destination_.ptr() == StubCode::TypeParameterTypeTest().ptr()) { destination_ = object_store->type_parameter_tts_stub(); } else { UNREACHABLE(); } } } else { ASSERT(target_.IsCode()); destination_ = Code::Cast(target_).ptr(); } ASSERT(!destination_.InVMIsolateHeap()); return destination_.ptr(); } void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls( const Code& next_caller, const Array& next_caller_targets) { const bool all_functions_emitted = next_caller.IsNull(); uword next_size = 0; uword next_call_count = 0; if (!all_functions_emitted) { next_size = ImageWriter::SizeInSnapshot(next_caller.instructions()); if (!next_caller_targets.IsNull()) { StaticCallsTable calls(next_caller_targets); next_call_count = calls.Length(); } } while (!all_unresolved_calls_.IsEmpty()) { UnresolvedCall* unresolved_call = all_unresolved_calls_.First(); if (!all_functions_emitted) { // If we can emit another instructions object without causing the // unresolved forward calls to become out-of-range, we'll not resolve it // yet (maybe the target function will come very soon and we don't need // a trampoline at all). const intptr_t future_boundary = next_text_offset_ + next_size + kTrampolineSize * (unresolved_calls_by_destination_.Length() + next_call_count - 1); if (IsTargetInRangeFor(unresolved_call, future_boundary) && !FLAG_always_generate_trampolines_for_testing) { break; } } // We have a "critical" [unresolved_call] we have to resolve. If an // existing trampoline is in range, we use that otherwise we create a new // trampoline. // In the worst case we'll make a new trampoline here, in which case the // current text offset must be in range for the "critical" // [unresolved_call]. ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_)); // See if there is already a trampoline we could use. intptr_t trampoline_text_offset = -1; auto callee = Code::InstructionsOf(unresolved_call->callee); if (!FLAG_always_generate_trampolines_for_testing) { auto old_trampoline_entry = FindTrampolineFor(unresolved_call); if (old_trampoline_entry != nullptr) { trampoline_text_offset = old_trampoline_entry->text_offset; } } // If there is no trampoline yet, we'll create a new one. if (trampoline_text_offset == -1) { // The ownership of the trampoline bytes will be transferred to the // [ImageWriter], which will eventually write out the bytes and delete the // buffer. auto trampoline_bytes = new uint8_t[kTrampolineSize]; ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0); for (uint8_t* cur = trampoline_bytes; cur < trampoline_bytes + kTrampolineSize; cur += compiler::target::kWordSize) { *reinterpret_cast(cur) = kBreakInstructionFiller; } auto unresolved_trampoline = new UnresolvedTrampoline{ unresolved_call->callee, unresolved_call->offset_into_target, trampoline_bytes, next_text_offset_, }; AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize); EnqueueUnresolvedTrampoline(unresolved_trampoline); trampoline_text_offset = unresolved_trampoline->text_offset; } // Let the unresolved call to [destination] jump to the trampoline // instead. auto destination = Code::InstructionsOf(unresolved_call->callee); ResolveCallToDestination(unresolved_call, trampoline_text_offset); // Remove this unresolved call from the global list and the per-destination // list. auto calls = unresolved_calls_by_destination_.LookupValue(destination); calls->Remove(unresolved_call); all_unresolved_calls_.Remove(unresolved_call); delete unresolved_call; // If this destination has no longer any unresolved calls, remove it. if (calls->IsEmpty()) { unresolved_calls_by_destination_.Remove(destination); delete calls; } } } intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination, intptr_t offset_into_target) { auto const destination_offset = text_offsets_.LookupValue(destination); return destination_offset + AdjustPayloadOffset(offset_into_target); } intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) { if (FLAG_precompiled_mode) { return payload_offset; } return compiler::target::Instructions::HeaderSize() + payload_offset; } #endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) } // namespace dart