// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. // Classes that describe assembly patterns as used by inline caches. #ifndef RUNTIME_VM_INSTRUCTIONS_X64_H_ #define RUNTIME_VM_INSTRUCTIONS_X64_H_ #ifndef RUNTIME_VM_INSTRUCTIONS_H_ #error "Do not include instructions_x64.h directly; use instructions.h instead." #endif #include "platform/unaligned.h" #include "vm/allocation.h" namespace dart { intptr_t IndexFromPPLoadDisp8(uword start); intptr_t IndexFromPPLoadDisp32(uword start); // Template class for all instruction pattern classes. // P has to specify a static pattern and a pattern length method. template class InstructionPattern : public ValueObject { public: explicit InstructionPattern(uword pc) : start_(pc) { ASSERT(pc != 0); } // Call to check if the instruction pattern at 'pc' match the instruction. // 'P::pattern()' returns the expected byte pattern in form of an integer // array with length of 'P::pattern_length_in_bytes()'. A '-1' element means // 'any byte'. bool IsValid() const { return TestBytesWith(P::pattern(), P::pattern_length_in_bytes()); } protected: uword start() const { return start_; } private: // Returns true if the 'num_bytes' bytes at 'start_' correspond to // array of integers 'data'. 'data' elements are either a byte or -1, which // represents any byte. bool TestBytesWith(const int* data, int num_bytes) const { ASSERT(data != NULL); const uint8_t* byte_array = reinterpret_cast(start_); for (int i = 0; i < num_bytes; i++) { // Skip comparison for data[i] < 0. if ((data[i] >= 0) && (byte_array[i] != (0xFF & data[i]))) { return false; } } return true; } const uword start_; DISALLOW_COPY_AND_ASSIGN(InstructionPattern); }; class ReturnPattern : public InstructionPattern { public: explicit ReturnPattern(uword pc) : InstructionPattern(pc) {} static const int* pattern() { static const int kReturnPattern[kLengthInBytes] = {0xC3}; return kReturnPattern; } static int pattern_length_in_bytes() { return kLengthInBytes; } private: static const int kLengthInBytes = 1; }; // push rbp // mov rbp, rsp class ProloguePattern : public InstructionPattern { public: explicit ProloguePattern(uword pc) : InstructionPattern(pc) {} static const int* pattern() { static const int kProloguePattern[kLengthInBytes] = {0x55, 0x48, 0x89, 0xe5}; return kProloguePattern; } static int pattern_length_in_bytes() { return kLengthInBytes; } private: static const int kLengthInBytes = 4; }; // mov rbp, rsp class SetFramePointerPattern : public InstructionPattern { public: explicit SetFramePointerPattern(uword pc) : InstructionPattern(pc) {} static const int* pattern() { static const int kFramePointerPattern[kLengthInBytes] = {0x48, 0x89, 0xe5}; return kFramePointerPattern; } static int pattern_length_in_bytes() { return kLengthInBytes; } private: static const int kLengthInBytes = 3; }; // callq *[rip+offset] class PcRelativeCallPattern : public InstructionPattern { public: static constexpr intptr_t kLowerCallingRange = -(DART_UINT64_C(1) << 31); static constexpr intptr_t kUpperCallingRange = (DART_UINT64_C(1) << 31) - 1; explicit PcRelativeCallPattern(uword pc) : InstructionPattern(pc) {} int32_t distance() { return LoadUnaligned(reinterpret_cast(start() + 1)) + kLengthInBytes; } void set_distance(int32_t distance) { // [distance] is relative to the start of the instruction, x64 considers the // offset relative to next PC. StoreUnaligned(reinterpret_cast(start() + 1), distance - kLengthInBytes); } static const int* pattern() { static const int kPattern[kLengthInBytes] = {0xe8, -1, -1, -1, -1}; return kPattern; } static int pattern_length_in_bytes() { return kLengthInBytes; } static const int kLengthInBytes = 5; }; // Instruction pattern for a tail call to a signed 32-bit PC-relative offset // // The AOT compiler can emit PC-relative calls. If the destination of such a // call is not in range for the "bl. " instruction, the AOT // compiler will emit a trampoline which is in range. That trampoline will // then tail-call to the final destination (also via PC-relative offset, but it // supports a full signed 32-bit offset). // // The pattern of the trampoline looks like: // // jmp $rip + // // (Strictly speaking the pc-relative call distance on X64 is big enough, but // for making AOT relocation code (i.e. relocation.cc) platform independent and // allow testing of trampolines on X64 we have it nonetheless) class PcRelativeTrampolineJumpPattern : public ValueObject { public: static const int kLengthInBytes = 5; explicit PcRelativeTrampolineJumpPattern(uword pattern_start) : pattern_start_(pattern_start) {} void Initialize() { uint8_t* pattern = reinterpret_cast(pattern_start_); pattern[0] = 0xe9; } int32_t distance() { return LoadUnaligned(reinterpret_cast(pattern_start_ + 1)) + kLengthInBytes; } void set_distance(intptr_t distance) { // [distance] is relative to the start of the instruction, x64 considers the // offset relative to next PC. StoreUnaligned(reinterpret_cast(pattern_start_ + 1), static_cast(distance - kLengthInBytes)); } bool IsValid() const { uint8_t* pattern = reinterpret_cast(pattern_start_); return pattern[0] == 0xe9; } private: uword pattern_start_; }; class PcRelativeTailCallPattern : public PcRelativeTrampolineJumpPattern { public: static constexpr intptr_t kLowerCallingRange = -(DART_INT64_C(1) << 31) + kLengthInBytes; static constexpr intptr_t kUpperCallingRange = (DART_INT64_C(1) << 31) - 1; explicit PcRelativeTailCallPattern(uword pc) : PcRelativeTrampolineJumpPattern(pc) {} }; } // namespace dart #endif // RUNTIME_VM_INSTRUCTIONS_X64_H_