// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. // A simple interpreter for the Irregexp byte code. #include "vm/regexp_interpreter.h" #include "platform/unicode.h" #include "vm/object.h" #include "vm/regexp_assembler.h" #include "vm/regexp_bytecodes.h" #include "vm/unibrow-inl.h" #include "vm/unibrow.h" namespace dart { DEFINE_FLAG(bool, trace_regexp_bytecodes, false, "trace_regexp_bytecodes"); typedef unibrow::Mapping Canonicalize; template static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize, intptr_t from, intptr_t current, intptr_t len, const String& subject, bool unicode); template <> bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize, intptr_t from, intptr_t current, intptr_t len, const String& subject, bool unicode) { Bool& ret = Bool::Handle(); if (unicode) { ret = CaseInsensitiveCompareUTF16(subject.raw(), Smi::New(from), Smi::New(current), Smi::New(len)); } else { ret = CaseInsensitiveCompareUCS2(subject.raw(), Smi::New(from), Smi::New(current), Smi::New(len)); } return ret.value(); } template <> bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize, intptr_t from, intptr_t current, intptr_t len, const String& subject, bool unicode) { // For Latin1 characters the unicode flag makes no difference. for (int i = 0; i < len; i++) { unsigned int old_char = subject.CharAt(from++); unsigned int new_char = subject.CharAt(current++); if (old_char == new_char) continue; // Convert both characters to lower case. old_char |= 0x20; new_char |= 0x20; if (old_char != new_char) return false; // Not letters in the ASCII range and Latin-1 range. if (!(old_char - 'a' <= 'z' - 'a') && !(old_char - 224 <= 254 - 224 && old_char != 247)) { return false; } } return true; } #ifdef DEBUG static void TraceInterpreter(const uint8_t* code_base, const uint8_t* pc, int stack_depth, int current_position, uint32_t current_char, int bytecode_length, const char* bytecode_name) { if (FLAG_trace_regexp_bytecodes) { bool printable = (current_char < 127 && current_char >= 32); const char* format = printable ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s"; OS::PrintErr(format, pc - code_base, stack_depth, current_position, current_char, printable ? current_char : '.', bytecode_name); for (int i = 0; i < bytecode_length; i++) { OS::PrintErr(", %02x", pc[i]); } OS::PrintErr(" "); for (int i = 1; i < bytecode_length; i++) { unsigned char b = pc[i]; if (b < 127 && b >= 32) { OS::PrintErr("%c", b); } else { OS::PrintErr("."); } } OS::PrintErr("\n"); } } #define BYTECODE(name) \ case BC_##name: \ TraceInterpreter(code_base, pc, \ static_cast(backtrack_sp - backtrack_stack_base), \ current, current_char, BC_##name##_LENGTH, #name); #else #define BYTECODE(name) case BC_##name: #endif static int32_t Load32Aligned(const uint8_t* pc) { ASSERT((reinterpret_cast(pc) & 3) == 0); return *reinterpret_cast(pc); } static int32_t Load16Aligned(const uint8_t* pc) { ASSERT((reinterpret_cast(pc) & 1) == 0); return *reinterpret_cast(pc); } // A simple abstraction over the backtracking stack used by the interpreter. // This backtracking stack does not grow automatically, but it ensures that the // the memory held by the stack is released or remembered in a cache if the // matching terminates. class BacktrackStack { public: explicit BacktrackStack(Zone* zone) { data_ = zone->Alloc(kBacktrackStackSize); } intptr_t* data() const { return data_; } intptr_t max_size() const { return kBacktrackStackSize; } private: static const intptr_t kBacktrackStackSize = 1 << 16; intptr_t* data_; DISALLOW_COPY_AND_ASSIGN(BacktrackStack); }; template static IrregexpInterpreter::IrregexpResult RawMatch(const uint8_t* code_base, const String& subject, int32_t* registers, intptr_t current, uint32_t current_char, Zone* zone) { const uint8_t* pc = code_base; // BacktrackStack ensures that the memory allocated for the backtracking stack // is returned to the system or cached if there is no stack being cached at // the moment. BacktrackStack backtrack_stack(zone); intptr_t* backtrack_stack_base = backtrack_stack.data(); intptr_t* backtrack_sp = backtrack_stack_base; intptr_t backtrack_stack_space = backtrack_stack.max_size(); // TODO(zerny): Optimize as single instance. V8 has this as an // isolate member. unibrow::Mapping canonicalize; intptr_t subject_length = subject.Length(); #ifdef DEBUG if (FLAG_trace_regexp_bytecodes) { OS::PrintErr("Start irregexp bytecode interpreter\n"); } #endif while (true) { int32_t insn = Load32Aligned(pc); switch (insn & BYTECODE_MASK) { BYTECODE(BREAK) UNREACHABLE(); return IrregexpInterpreter::RE_FAILURE; BYTECODE(PUSH_CP) if (--backtrack_stack_space < 0) { return IrregexpInterpreter::RE_EXCEPTION; } *backtrack_sp++ = current; pc += BC_PUSH_CP_LENGTH; break; BYTECODE(PUSH_BT) if (--backtrack_stack_space < 0) { return IrregexpInterpreter::RE_EXCEPTION; } *backtrack_sp++ = Load32Aligned(pc + 4); pc += BC_PUSH_BT_LENGTH; break; BYTECODE(PUSH_REGISTER) if (--backtrack_stack_space < 0) { return IrregexpInterpreter::RE_EXCEPTION; } *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT]; pc += BC_PUSH_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER) registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4); pc += BC_SET_REGISTER_LENGTH; break; BYTECODE(ADVANCE_REGISTER) registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4); pc += BC_ADVANCE_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER_TO_CP) registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4); pc += BC_SET_REGISTER_TO_CP_LENGTH; break; BYTECODE(SET_CP_TO_REGISTER) current = registers[insn >> BYTECODE_SHIFT]; pc += BC_SET_CP_TO_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER_TO_SP) registers[insn >> BYTECODE_SHIFT] = static_cast(backtrack_sp - backtrack_stack_base); pc += BC_SET_REGISTER_TO_SP_LENGTH; break; BYTECODE(SET_SP_TO_REGISTER) backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT]; backtrack_stack_space = backtrack_stack.max_size() - static_cast(backtrack_sp - backtrack_stack_base); pc += BC_SET_SP_TO_REGISTER_LENGTH; break; BYTECODE(POP_CP) backtrack_stack_space++; --backtrack_sp; current = *backtrack_sp; pc += BC_POP_CP_LENGTH; break; BYTECODE(POP_BT) backtrack_stack_space++; --backtrack_sp; pc = code_base + *backtrack_sp; break; BYTECODE(POP_REGISTER) backtrack_stack_space++; --backtrack_sp; registers[insn >> BYTECODE_SHIFT] = *backtrack_sp; pc += BC_POP_REGISTER_LENGTH; break; BYTECODE(FAIL) return IrregexpInterpreter::RE_FAILURE; BYTECODE(SUCCEED) return IrregexpInterpreter::RE_SUCCESS; BYTECODE(ADVANCE_CP) current += insn >> BYTECODE_SHIFT; pc += BC_ADVANCE_CP_LENGTH; break; BYTECODE(GOTO) pc = code_base + Load32Aligned(pc + 4); break; BYTECODE(ADVANCE_CP_AND_GOTO) current += insn >> BYTECODE_SHIFT; pc = code_base + Load32Aligned(pc + 4); break; BYTECODE(CHECK_GREEDY) if (current == backtrack_sp[-1]) { backtrack_sp--; backtrack_stack_space++; pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_GREEDY_LENGTH; } break; BYTECODE(LOAD_CURRENT_CHAR) { int pos = current + (insn >> BYTECODE_SHIFT); if (pos < 0 || pos >= subject_length) { pc = code_base + Load32Aligned(pc + 4); } else { current_char = subject.CharAt(pos); pc += BC_LOAD_CURRENT_CHAR_LENGTH; } break; } BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) { int pos = current + (insn >> BYTECODE_SHIFT); current_char = subject.CharAt(pos); pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH; break; } BYTECODE(LOAD_2_CURRENT_CHARS) { int pos = current + (insn >> BYTECODE_SHIFT); if (pos + 2 > subject_length) { pc = code_base + Load32Aligned(pc + 4); } else { Char next = subject.CharAt(pos + 1); current_char = subject.CharAt(pos) | (next << (kBitsPerByte * sizeof(Char))); pc += BC_LOAD_2_CURRENT_CHARS_LENGTH; } break; } BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) { int pos = current + (insn >> BYTECODE_SHIFT); Char next = subject.CharAt(pos + 1); current_char = subject.CharAt(pos) | (next << (kBitsPerByte * sizeof(Char))); pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH; break; } BYTECODE(LOAD_4_CURRENT_CHARS) { ASSERT(sizeof(Char) == 1); int pos = current + (insn >> BYTECODE_SHIFT); if (pos + 4 > subject_length) { pc = code_base + Load32Aligned(pc + 4); } else { Char next1 = subject.CharAt(pos + 1); Char next2 = subject.CharAt(pos + 2); Char next3 = subject.CharAt(pos + 3); current_char = (subject.CharAt(pos) | (next1 << 8) | (next2 << 16) | (next3 << 24)); pc += BC_LOAD_4_CURRENT_CHARS_LENGTH; } break; } BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) { ASSERT(sizeof(Char) == 1); int pos = current + (insn >> BYTECODE_SHIFT); Char next1 = subject.CharAt(pos + 1); Char next2 = subject.CharAt(pos + 2); Char next3 = subject.CharAt(pos + 3); current_char = (subject.CharAt(pos) | (next1 << 8) | (next2 << 16) | (next3 << 24)); pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH; break; } BYTECODE(CHECK_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c == current_char) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_4_CHARS_LENGTH; } break; } BYTECODE(CHECK_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c == current_char) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_CHAR_LENGTH; } break; } BYTECODE(CHECK_NOT_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c != current_char) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_NOT_4_CHARS_LENGTH; } break; } BYTECODE(CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c != current_char) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(AND_CHECK_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c == (current_char & Load32Aligned(pc + 8))) { pc = code_base + Load32Aligned(pc + 12); } else { pc += BC_AND_CHECK_4_CHARS_LENGTH; } break; } BYTECODE(AND_CHECK_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c == (current_char & Load32Aligned(pc + 4))) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_AND_CHECK_CHAR_LENGTH; } break; } BYTECODE(AND_CHECK_NOT_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c != (current_char & Load32Aligned(pc + 8))) { pc = code_base + Load32Aligned(pc + 12); } else { pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH; } break; } BYTECODE(AND_CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c != (current_char & Load32Aligned(pc + 4))) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_AND_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(MINUS_AND_CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); uint32_t minus = Load16Aligned(pc + 4); uint32_t mask = Load16Aligned(pc + 6); if (c != ((current_char - minus) & mask)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(CHECK_CHAR_IN_RANGE) { uint32_t from = Load16Aligned(pc + 4); uint32_t to = Load16Aligned(pc + 6); if (from <= current_char && current_char <= to) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_CHAR_IN_RANGE_LENGTH; } break; } BYTECODE(CHECK_CHAR_NOT_IN_RANGE) { uint32_t from = Load16Aligned(pc + 4); uint32_t to = Load16Aligned(pc + 6); if (from > current_char || current_char > to) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH; } break; } BYTECODE(CHECK_BIT_IN_TABLE) { int mask = RegExpMacroAssembler::kTableMask; uint8_t b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)]; int bit = (current_char & (kBitsPerByte - 1)); if ((b & (1 << bit)) != 0) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_BIT_IN_TABLE_LENGTH; } break; } BYTECODE(CHECK_LT) { uint32_t limit = (insn >> BYTECODE_SHIFT); if (current_char < limit) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_LT_LENGTH; } break; } BYTECODE(CHECK_GT) { uint32_t limit = (insn >> BYTECODE_SHIFT); if (current_char > limit) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_GT_LENGTH; } break; } BYTECODE(CHECK_REGISTER_LT) if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_REGISTER_LT_LENGTH; } break; BYTECODE(CHECK_REGISTER_GE) if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_REGISTER_GE_LENGTH; } break; BYTECODE(CHECK_REGISTER_EQ_POS) if (registers[insn >> BYTECODE_SHIFT] == current) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_REGISTER_EQ_POS_LENGTH; } break; BYTECODE(CHECK_NOT_REGS_EQUAL) if (registers[insn >> BYTECODE_SHIFT] == registers[Load32Aligned(pc + 4)]) { pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH; } else { pc = code_base + Load32Aligned(pc + 8); } break; BYTECODE(CHECK_NOT_BACK_REF) { int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from < 0 || len <= 0) { pc += BC_CHECK_NOT_BACK_REF_LENGTH; break; } if (current + len > subject_length) { pc = code_base + Load32Aligned(pc + 4); break; } else { int i; for (i = 0; i < len; i++) { if (subject.CharAt(from + i) != subject.CharAt(current + i)) { pc = code_base + Load32Aligned(pc + 4); break; } } if (i < len) break; current += len; } pc += BC_CHECK_NOT_BACK_REF_LENGTH; break; } BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE) FALL_THROUGH; BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) { const bool unicode = (insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE; int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from < 0 || len <= 0) { pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; break; } if (current + len > subject_length) { pc = code_base + Load32Aligned(pc + 4); break; } else { if (BackRefMatchesNoCase(&canonicalize, from, current, len, subject, unicode)) { current += len; pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; } else { pc = code_base + Load32Aligned(pc + 4); } } break; } BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) { const int from = registers[insn >> BYTECODE_SHIFT]; const int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from < 0 || len <= 0) { pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH; break; } if ((current - len) < 0) { pc = code_base + Load32Aligned(pc + 4); break; } else { // When looking behind, the string to match (if it is there) lies // before the current position, so we will check the [len] characters // before the current position, excluding the current position itself. const int start = current - len; int i; for (i = 0; i < len; i++) { if (subject.CharAt(from + i) != subject.CharAt(start + i)) { pc = code_base + Load32Aligned(pc + 4); break; } } if (i < len) break; current -= len; } pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH; break; } BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD) FALL_THROUGH; BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) { bool unicode = (insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD; int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from < 0 || len <= 0) { pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH; break; } if (current < len) { pc = code_base + Load32Aligned(pc + 4); break; } else { if (BackRefMatchesNoCase(&canonicalize, from, current - len, len, subject, unicode)) { current -= len; pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH; } else { pc = code_base + Load32Aligned(pc + 4); } } break; } BYTECODE(CHECK_AT_START) if (current == 0) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_AT_START_LENGTH; } break; BYTECODE(CHECK_NOT_AT_START) { const int32_t cp_offset = insn >> BYTECODE_SHIFT; if (current + cp_offset == 0) { pc += BC_CHECK_NOT_AT_START_LENGTH; } else { pc = code_base + Load32Aligned(pc + 4); } break; } BYTECODE(SET_CURRENT_POSITION_FROM_END) { int by = static_cast(insn) >> BYTECODE_SHIFT; if (subject_length - current > by) { current = subject_length - by; current_char = subject.CharAt(current - 1); } pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH; break; } default: UNREACHABLE(); break; } } } IrregexpInterpreter::IrregexpResult IrregexpInterpreter::Match( const TypedData& bytecode, const String& subject, int32_t* registers, intptr_t start_position, Zone* zone) { NoSafepointScope no_safepoint; const uint8_t* code_base = reinterpret_cast(bytecode.DataAddr(0)); uint16_t previous_char = '\n'; if (start_position != 0) { previous_char = subject.CharAt(start_position - 1); } if (subject.IsOneByteString() || subject.IsExternalOneByteString()) { return RawMatch(code_base, subject, registers, start_position, previous_char, zone); } else if (subject.IsTwoByteString() || subject.IsExternalTwoByteString()) { return RawMatch(code_base, subject, registers, start_position, previous_char, zone); } else { UNREACHABLE(); return IrregexpInterpreter::RE_FAILURE; } } } // namespace dart