// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. #ifndef RUNTIME_VM_OBJECT_H_ #define RUNTIME_VM_OBJECT_H_ #if defined(SHOULD_NOT_INCLUDE_RUNTIME) #error "Should not include runtime" #endif #include #include "include/dart_api.h" #include "platform/assert.h" #include "platform/utils.h" #include "vm/bitmap.h" #include "vm/code_entry_kind.h" #include "vm/compiler/assembler/object_pool_builder.h" #include "vm/compiler/method_recognizer.h" #include "vm/compiler/runtime_api.h" #include "vm/dart.h" #include "vm/flags.h" #include "vm/globals.h" #include "vm/growable_array.h" #include "vm/handles.h" #include "vm/heap/heap.h" #include "vm/isolate.h" #include "vm/json_stream.h" #include "vm/os.h" #include "vm/raw_object.h" #include "vm/report.h" #include "vm/static_type_exactness_state.h" #include "vm/tags.h" #include "vm/thread.h" #include "vm/token_position.h" namespace dart { // Forward declarations. namespace compiler { class Assembler; } namespace kernel { class Program; class TreeNode; } // namespace kernel #define DEFINE_FORWARD_DECLARATION(clazz) class clazz; CLASS_LIST(DEFINE_FORWARD_DECLARATION) #undef DEFINE_FORWARD_DECLARATION class Api; class ArgumentsDescriptor; class Closure; class Code; class DeoptInstr; class DisassemblyFormatter; class FinalizablePersistentHandle; class FlowGraphCompiler; class HierarchyInfo; class LocalScope; class CodeStatistics; #define REUSABLE_FORWARD_DECLARATION(name) class Reusable##name##HandleScope; REUSABLE_HANDLE_LIST(REUSABLE_FORWARD_DECLARATION) #undef REUSABLE_FORWARD_DECLARATION class Symbols; #if defined(DEBUG) #define CHECK_HANDLE() CheckHandle(); #else #define CHECK_HANDLE() #endif #define BASE_OBJECT_IMPLEMENTATION(object, super) \ public: /* NOLINT */ \ using RawObjectType = Raw##object; \ Raw##object* raw() const { return reinterpret_cast(raw_); } \ bool Is##object() const { return true; } \ DART_NOINLINE static object& Handle() { \ return HandleImpl(Thread::Current()->zone(), object::null()); \ } \ DART_NOINLINE static object& Handle(Zone* zone) { \ return HandleImpl(zone, object::null()); \ } \ DART_NOINLINE static object& Handle(Raw##object* raw_ptr) { \ return HandleImpl(Thread::Current()->zone(), raw_ptr); \ } \ DART_NOINLINE static object& Handle(Zone* zone, Raw##object* raw_ptr) { \ return HandleImpl(zone, raw_ptr); \ } \ DART_NOINLINE static object& ZoneHandle() { \ return ZoneHandleImpl(Thread::Current()->zone(), object::null()); \ } \ DART_NOINLINE static object& ZoneHandle(Zone* zone) { \ return ZoneHandleImpl(zone, object::null()); \ } \ DART_NOINLINE static object& ZoneHandle(Raw##object* raw_ptr) { \ return ZoneHandleImpl(Thread::Current()->zone(), raw_ptr); \ } \ DART_NOINLINE static object& ZoneHandle(Zone* zone, Raw##object* raw_ptr) { \ return ZoneHandleImpl(zone, raw_ptr); \ } \ DART_NOINLINE static object* ReadOnlyHandle() { \ object* obj = reinterpret_cast(Dart::AllocateReadOnlyHandle()); \ initializeHandle(obj, object::null()); \ return obj; \ } \ DART_NOINLINE static object& CheckedHandle(Zone* zone, RawObject* raw_ptr) { \ object* obj = reinterpret_cast(VMHandles::AllocateHandle(zone)); \ initializeHandle(obj, raw_ptr); \ if (!obj->Is##object()) { \ FATAL2("Handle check failed: saw %s expected %s", obj->ToCString(), \ #object); \ } \ return *obj; \ } \ DART_NOINLINE static object& CheckedZoneHandle(Zone* zone, \ RawObject* raw_ptr) { \ object* obj = \ reinterpret_cast(VMHandles::AllocateZoneHandle(zone)); \ initializeHandle(obj, raw_ptr); \ if (!obj->Is##object()) { \ FATAL2("Handle check failed: saw %s expected %s", obj->ToCString(), \ #object); \ } \ return *obj; \ } \ DART_NOINLINE static object& CheckedZoneHandle(RawObject* raw_ptr) { \ return CheckedZoneHandle(Thread::Current()->zone(), raw_ptr); \ } \ /* T::Cast cannot be applied to a null Object, because the object vtable */ \ /* is not setup for type T, although some methods are supposed to work */ \ /* with null, for example Instance::Equals(). */ \ static const object& Cast(const Object& obj) { \ ASSERT(obj.Is##object()); \ return reinterpret_cast(obj); \ } \ static Raw##object* RawCast(RawObject* raw) { \ ASSERT(Object::Handle(raw).IsNull() || Object::Handle(raw).Is##object()); \ return reinterpret_cast(raw); \ } \ static Raw##object* null() { \ return reinterpret_cast(Object::null()); \ } \ virtual const char* ToCString() const; \ static const ClassId kClassId = k##object##Cid; \ \ private: /* NOLINT */ \ static object& HandleImpl(Zone* zone, Raw##object* raw_ptr) { \ object* obj = reinterpret_cast(VMHandles::AllocateHandle(zone)); \ initializeHandle(obj, raw_ptr); \ return *obj; \ } \ static object& ZoneHandleImpl(Zone* zone, Raw##object* raw_ptr) { \ object* obj = \ reinterpret_cast(VMHandles::AllocateZoneHandle(zone)); \ initializeHandle(obj, raw_ptr); \ return *obj; \ } \ /* Initialize the handle based on the raw_ptr in the presence of null. */ \ static void initializeHandle(object* obj, RawObject* raw_ptr) { \ if (raw_ptr != Object::null()) { \ obj->SetRaw(raw_ptr); \ } else { \ obj->raw_ = Object::null(); \ object fake_object; \ obj->set_vtable(fake_object.vtable()); \ } \ } \ /* Disallow allocation, copy constructors and override super assignment. */ \ public: /* NOLINT */ \ void operator delete(void* pointer) { UNREACHABLE(); } \ \ private: /* NOLINT */ \ void* operator new(size_t size); \ object(const object& value) = delete; \ void operator=(Raw##super* value) = delete; \ void operator=(const object& value) = delete; \ void operator=(const super& value) = delete; // Conditionally include object_service.cc functionality in the vtable to avoid // link errors like the following: // // object.o:(.rodata._ZTVN4....E[_ZTVN4...E]+0x278): // undefined reference to // `dart::Instance::PrintSharedInstanceJSON(dart::JSONObject*, bool) const'. // #ifndef PRODUCT #define OBJECT_SERVICE_SUPPORT(object) \ protected: /* NOLINT */ \ /* Object is printed as JSON into stream. If ref is true only a header */ \ /* with an object id is printed. If ref is false the object is fully */ \ /* printed. */ \ virtual void PrintJSONImpl(JSONStream* stream, bool ref) const; \ virtual const char* JSONType() const { return "" #object; } #else #define OBJECT_SERVICE_SUPPORT(object) protected: /* NOLINT */ #endif // !PRODUCT #define SNAPSHOT_READER_SUPPORT(object) \ static Raw##object* ReadFrom(SnapshotReader* reader, intptr_t object_id, \ intptr_t tags, Snapshot::Kind, \ bool as_reference); \ friend class SnapshotReader; #define OBJECT_IMPLEMENTATION(object, super) \ public: /* NOLINT */ \ void operator=(Raw##object* value) { initializeHandle(this, value); } \ void operator^=(RawObject* value) { \ initializeHandle(this, value); \ ASSERT(IsNull() || Is##object()); \ } \ \ protected: /* NOLINT */ \ object() : super() {} \ BASE_OBJECT_IMPLEMENTATION(object, super) \ OBJECT_SERVICE_SUPPORT(object) #define HEAP_OBJECT_IMPLEMENTATION(object, super) \ OBJECT_IMPLEMENTATION(object, super); \ const Raw##object* raw_ptr() const { \ ASSERT(raw() != null()); \ return raw()->ptr(); \ } \ SNAPSHOT_READER_SUPPORT(object) \ friend class StackFrame; \ friend class Thread; // This macro is used to denote types that do not have a sub-type. #define FINAL_HEAP_OBJECT_IMPLEMENTATION_HELPER(object, rettype, super) \ public: /* NOLINT */ \ void operator=(Raw##object* value) { \ raw_ = value; \ CHECK_HANDLE(); \ } \ void operator^=(RawObject* value) { \ raw_ = value; \ CHECK_HANDLE(); \ } \ \ private: /* NOLINT */ \ object() : super() {} \ BASE_OBJECT_IMPLEMENTATION(object, super) \ OBJECT_SERVICE_SUPPORT(object) \ const Raw##object* raw_ptr() const { \ ASSERT(raw() != null()); \ return raw()->ptr(); \ } \ static intptr_t NextFieldOffset() { return -kWordSize; } \ SNAPSHOT_READER_SUPPORT(rettype) \ friend class StackFrame; \ friend class Thread; #define FINAL_HEAP_OBJECT_IMPLEMENTATION(object, super) \ FINAL_HEAP_OBJECT_IMPLEMENTATION_HELPER(object, object, super) #define MINT_OBJECT_IMPLEMENTATION(object, rettype, super) \ FINAL_HEAP_OBJECT_IMPLEMENTATION_HELPER(object, rettype, super) class Object { public: using RawObjectType = RawObject; static RawObject* RawCast(RawObject* obj) { return obj; } virtual ~Object() {} RawObject* raw() const { return raw_; } void operator=(RawObject* value) { initializeHandle(this, value); } uint32_t CompareAndSwapTags(uint32_t old_tags, uint32_t new_tags) const { return AtomicOperations::CompareAndSwapUint32(&raw()->ptr()->tags_, old_tags, new_tags); } bool IsCanonical() const { return raw()->IsCanonical(); } void SetCanonical() const { raw()->SetCanonical(); } void ClearCanonical() const { raw()->ClearCanonical(); } intptr_t GetClassId() const { return !raw()->IsHeapObject() ? static_cast(kSmiCid) : raw()->GetClassId(); } inline RawClass* clazz() const; static intptr_t tags_offset() { return OFFSET_OF(RawObject, tags_); } // Class testers. #define DEFINE_CLASS_TESTER(clazz) \ virtual bool Is##clazz() const { return false; } CLASS_LIST_FOR_HANDLES(DEFINE_CLASS_TESTER); #undef DEFINE_CLASS_TESTER bool IsNull() const { return raw_ == null_; } // Matches Object.toString on instances (except String::ToCString, bug 20583). virtual const char* ToCString() const { if (IsNull()) { return "null"; } else { return "Object"; } } #ifndef PRODUCT void PrintJSON(JSONStream* stream, bool ref = true) const; virtual void PrintJSONImpl(JSONStream* stream, bool ref) const; virtual const char* JSONType() const { return IsNull() ? "null" : "Object"; } #endif // Returns the name that is used to identify an object in the // namespace dictionary. // Object::DictionaryName() returns String::null(). Only subclasses // of Object that need to be entered in the library and library prefix // namespaces need to provide an implementation. virtual RawString* DictionaryName() const; bool IsNew() const { return raw()->IsNewObject(); } bool IsOld() const { return raw()->IsOldObject(); } #if defined(DEBUG) bool InVMIsolateHeap() const; #else bool InVMIsolateHeap() const { return raw()->InVMIsolateHeap(); } #endif // DEBUG // Print the object on stdout for debugging. void Print() const; bool IsZoneHandle() const { return VMHandles::IsZoneHandle(reinterpret_cast(this)); } bool IsReadOnlyHandle() const; bool IsNotTemporaryScopedHandle() const; static Object& Handle(Zone* zone, RawObject* raw_ptr) { Object* obj = reinterpret_cast(VMHandles::AllocateHandle(zone)); initializeHandle(obj, raw_ptr); return *obj; } static Object* ReadOnlyHandle() { Object* obj = reinterpret_cast(Dart::AllocateReadOnlyHandle()); initializeHandle(obj, Object::null()); return obj; } static Object& Handle() { return Handle(Thread::Current()->zone(), null_); } static Object& Handle(Zone* zone) { return Handle(zone, null_); } static Object& Handle(RawObject* raw_ptr) { return Handle(Thread::Current()->zone(), raw_ptr); } static Object& ZoneHandle(Zone* zone, RawObject* raw_ptr) { Object* obj = reinterpret_cast(VMHandles::AllocateZoneHandle(zone)); initializeHandle(obj, raw_ptr); return *obj; } static Object& ZoneHandle(Zone* zone) { return ZoneHandle(zone, null_); } static Object& ZoneHandle() { return ZoneHandle(Thread::Current()->zone(), null_); } static Object& ZoneHandle(RawObject* raw_ptr) { return ZoneHandle(Thread::Current()->zone(), raw_ptr); } static RawObject* null() { return null_; } #if defined(HASH_IN_OBJECT_HEADER) static uint32_t GetCachedHash(const RawObject* obj) { return obj->ptr()->hash_; } static void SetCachedHash(RawObject* obj, uint32_t hash) { obj->ptr()->hash_ = hash; } #endif // The list below enumerates read-only handles for singleton // objects that are shared between the different isolates. // // - sentinel is a value that cannot be produced by Dart code. It can be used // to mark special values, for example to distinguish "uninitialized" fields. // - transition_sentinel is a value marking that we are transitioning from // sentinel, e.g., computing a field value. Used to detect circular // initialization. // - unknown_constant and non_constant are optimizing compiler's constant // propagation constants. #define SHARED_READONLY_HANDLES_LIST(V) \ V(Object, null_object) \ V(Array, null_array) \ V(String, null_string) \ V(Instance, null_instance) \ V(Function, null_function) \ V(TypeArguments, null_type_arguments) \ V(TypeArguments, empty_type_arguments) \ V(Array, empty_array) \ V(Array, zero_array) \ V(ContextScope, empty_context_scope) \ V(ObjectPool, empty_object_pool) \ V(PcDescriptors, empty_descriptors) \ V(LocalVarDescriptors, empty_var_descriptors) \ V(ExceptionHandlers, empty_exception_handlers) \ V(Array, extractor_parameter_types) \ V(Array, extractor_parameter_names) \ V(Bytecode, implicit_getter_bytecode) \ V(Bytecode, implicit_setter_bytecode) \ V(Bytecode, implicit_static_getter_bytecode) \ V(Bytecode, method_extractor_bytecode) \ V(Bytecode, invoke_closure_bytecode) \ V(Bytecode, invoke_field_bytecode) \ V(Bytecode, nsm_dispatcher_bytecode) \ V(Bytecode, dynamic_invocation_forwarder_bytecode) \ V(Instance, sentinel) \ V(Instance, transition_sentinel) \ V(Instance, unknown_constant) \ V(Instance, non_constant) \ V(Bool, bool_true) \ V(Bool, bool_false) \ V(Smi, smi_illegal_cid) \ V(Smi, smi_zero) \ V(LanguageError, snapshot_writer_error) \ V(LanguageError, branch_offset_error) \ V(LanguageError, speculative_inlining_error) \ V(LanguageError, background_compilation_error) \ V(Array, vm_isolate_snapshot_object_table) \ V(Type, dynamic_type) \ V(Type, void_type) \ V(AbstractType, null_abstract_type) #define DEFINE_SHARED_READONLY_HANDLE_GETTER(Type, name) \ static const Type& name() { \ ASSERT(name##_ != nullptr); \ return *name##_; \ } SHARED_READONLY_HANDLES_LIST(DEFINE_SHARED_READONLY_HANDLE_GETTER) #undef DEFINE_SHARED_READONLY_HANDLE_GETTER static void set_vm_isolate_snapshot_object_table(const Array& table); static RawClass* class_class() { return class_class_; } static RawClass* dynamic_class() { return dynamic_class_; } static RawClass* void_class() { return void_class_; } static RawClass* type_arguments_class() { return type_arguments_class_; } static RawClass* patch_class_class() { return patch_class_class_; } static RawClass* function_class() { return function_class_; } static RawClass* closure_data_class() { return closure_data_class_; } static RawClass* signature_data_class() { return signature_data_class_; } static RawClass* redirection_data_class() { return redirection_data_class_; } static RawClass* ffi_trampoline_data_class() { return ffi_trampoline_data_class_; } static RawClass* field_class() { return field_class_; } static RawClass* script_class() { return script_class_; } static RawClass* library_class() { return library_class_; } static RawClass* namespace_class() { return namespace_class_; } static RawClass* kernel_program_info_class() { return kernel_program_info_class_; } static RawClass* code_class() { return code_class_; } static RawClass* bytecode_class() { return bytecode_class_; } static RawClass* instructions_class() { return instructions_class_; } static RawClass* object_pool_class() { return object_pool_class_; } static RawClass* pc_descriptors_class() { return pc_descriptors_class_; } static RawClass* code_source_map_class() { return code_source_map_class_; } static RawClass* stackmap_class() { return stackmap_class_; } static RawClass* var_descriptors_class() { return var_descriptors_class_; } static RawClass* exception_handlers_class() { return exception_handlers_class_; } static RawClass* deopt_info_class() { return deopt_info_class_; } static RawClass* context_class() { return context_class_; } static RawClass* context_scope_class() { return context_scope_class_; } static RawClass* api_error_class() { return api_error_class_; } static RawClass* language_error_class() { return language_error_class_; } static RawClass* unhandled_exception_class() { return unhandled_exception_class_; } static RawClass* unwind_error_class() { return unwind_error_class_; } static RawClass* dyncalltypecheck_class() { return dyncalltypecheck_class_; } static RawClass* singletargetcache_class() { return singletargetcache_class_; } static RawClass* unlinkedcall_class() { return unlinkedcall_class_; } static RawClass* icdata_class() { return icdata_class_; } static RawClass* megamorphic_cache_class() { return megamorphic_cache_class_; } static RawClass* subtypetestcache_class() { return subtypetestcache_class_; } // Initialize the VM isolate. static void InitNull(Isolate* isolate); static void Init(Isolate* isolate); static void FinishInit(Isolate* isolate); static void FinalizeVMIsolate(Isolate* isolate); static void FinalizeReadOnlyObject(RawObject* object); static void Cleanup(); // Initialize a new isolate either from a Kernel IR, from source, or from a // snapshot. static RawError* Init(Isolate* isolate, const uint8_t* kernel_buffer, intptr_t kernel_buffer_size); static void MakeUnusedSpaceTraversable(const Object& obj, intptr_t original_size, intptr_t used_size); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawObject)); } static void VerifyBuiltinVtables(); static const ClassId kClassId = kObjectCid; // Different kinds of name visibility. enum NameVisibility { // Internal names are the true names of classes, fields, // etc. inside the vm. These names include privacy suffixes, // getter prefixes, and trailing dots on unnamed constructors. // // The names of core implementation classes (like _OneByteString) // are preserved as well. // // e.g. // private getter -> get:foo@6be832b // private constructor -> _MyClass@6b3832b. // private named constructor -> _MyClass@6b3832b.named // core impl class name shown -> _OneByteString kInternalName = 0, // Scrubbed names drop privacy suffixes, getter prefixes, and // trailing dots on unnamed constructors. These names are used in // the vm service. // // e.g. // get:foo@6be832b -> foo // _MyClass@6b3832b. -> _MyClass // _MyClass@6b3832b.named -> _MyClass.named // _OneByteString -> _OneByteString (not remapped) kScrubbedName, // User visible names are appropriate for reporting type errors // directly to programmers. The names have been scrubbed and // the names of core implementation classes are remapped to their // public interface names. // // e.g. // get:foo@6be832b -> foo // _MyClass@6b3832b. -> _MyClass // _MyClass@6b3832b.named -> _MyClass.named // _OneByteString -> String (remapped) kUserVisibleName }; protected: // Used for extracting the C++ vtable during bringup. Object() : raw_(null_) {} uword raw_value() const { return reinterpret_cast(raw()); } inline void SetRaw(RawObject* value); void CheckHandle() const; cpp_vtable vtable() const { return bit_copy(*this); } void set_vtable(cpp_vtable value) { *vtable_address() = value; } static RawObject* Allocate(intptr_t cls_id, intptr_t size, Heap::Space space); static intptr_t RoundedAllocationSize(intptr_t size) { return Utils::RoundUp(size, kObjectAlignment); } bool Contains(uword addr) const { return raw()->Contains(addr); } // Start of field mutator guards. // // All writes to heap objects should ultimately pass through one of the // methods below or their counterparts in RawObject, to ensure that the // write barrier is correctly applied. template void StorePointer(type const* addr, type value) const { raw()->StorePointer(addr, value); } // Use for storing into an explicitly Smi-typed field of an object // (i.e., both the previous and new value are Smis). void StoreSmi(RawSmi* const* addr, RawSmi* value) const { raw()->StoreSmi(addr, value); } template void StoreSimd128(const FieldType* addr, simd128_value_t value) const { ASSERT(Contains(reinterpret_cast(addr))); value.writeTo(const_cast(addr)); } // Needs two template arguments to allow assigning enums to fixed-size ints. template void StoreNonPointer(const FieldType* addr, ValueType value) const { // Can't use Contains, as it uses tags_, which is set through this method. ASSERT(reinterpret_cast(addr) >= RawObject::ToAddr(raw())); *const_cast(addr) = value; } template void StoreNonPointer(const FieldType* addr, ValueType value) const { // Can't use Contains, as it uses tags_, which is set through this method. ASSERT(reinterpret_cast(addr) >= RawObject::ToAddr(raw())); if (order == MemoryOrder::kRelease) { AtomicOperations::StoreRelease(const_cast(addr), value); } else { ASSERT(order == MemoryOrder::kRelaxed); StoreNonPointer(addr, value); } } template FieldType LoadNonPointer(const FieldType* addr) const { if (order == MemoryOrder::kAcquire) { return AtomicOperations::LoadAcquire(const_cast(addr)); } else { ASSERT(order == MemoryOrder::kRelaxed); return *const_cast(addr); } } // Provides non-const access to non-pointer fields within the object. Such // access does not need a write barrier, but it is *not* GC-safe, since the // object might move, hence must be fully contained within a NoSafepointScope. template FieldType* UnsafeMutableNonPointer(const FieldType* addr) const { // Allow pointers at the end of variable-length data, and disallow pointers // within the header word. ASSERT(Contains(reinterpret_cast(addr) - 1) && Contains(reinterpret_cast(addr) - kWordSize)); // At least check that there is a NoSafepointScope and hope it's big enough. ASSERT(Thread::Current()->no_safepoint_scope_depth() > 0); return const_cast(addr); } // Fail at link time if StoreNonPointer or UnsafeMutableNonPointer is // instantiated with an object pointer type. #define STORE_NON_POINTER_ILLEGAL_TYPE(type) \ template \ void StoreNonPointer(Raw##type* const* addr, ValueType value) const { \ UnimplementedMethod(); \ } \ Raw##type** UnsafeMutableNonPointer(Raw##type* const* addr) const { \ UnimplementedMethod(); \ return NULL; \ } CLASS_LIST(STORE_NON_POINTER_ILLEGAL_TYPE); void UnimplementedMethod() const; #undef STORE_NON_POINTER_ILLEGAL_TYPE // Allocate an object and copy the body of 'orig'. static RawObject* Clone(const Object& orig, Heap::Space space); // End of field mutator guards. RawObject* raw_; // The raw object reference. protected: void AddCommonObjectProperties(JSONObject* jsobj, const char* protocol_type, bool ref) const; private: static intptr_t NextFieldOffset() { // Indicates this class cannot be extended by dart code. return -kWordSize; } static void InitializeObject(uword address, intptr_t id, intptr_t size); static void RegisterClass(const Class& cls, const String& name, const Library& lib); static void RegisterPrivateClass(const Class& cls, const String& name, const Library& lib); /* Initialize the handle based on the raw_ptr in the presence of null. */ static void initializeHandle(Object* obj, RawObject* raw_ptr) { if (raw_ptr != Object::null()) { obj->SetRaw(raw_ptr); } else { obj->raw_ = Object::null(); Object fake_object; obj->set_vtable(fake_object.vtable()); } } cpp_vtable* vtable_address() const { uword vtable_addr = reinterpret_cast(this); return reinterpret_cast(vtable_addr); } static cpp_vtable handle_vtable_; static cpp_vtable builtin_vtables_[kNumPredefinedCids]; // The static values below are singletons shared between the different // isolates. They are all allocated in the non-GC'd Dart::vm_isolate_. static RawObject* null_; static RawClass* class_class_; // Class of the Class vm object. static RawClass* dynamic_class_; // Class of the 'dynamic' type. static RawClass* void_class_; // Class of the 'void' type. static RawClass* type_arguments_class_; // Class of TypeArguments vm object. static RawClass* patch_class_class_; // Class of the PatchClass vm object. static RawClass* function_class_; // Class of the Function vm object. static RawClass* closure_data_class_; // Class of ClosureData vm obj. static RawClass* signature_data_class_; // Class of SignatureData vm obj. static RawClass* redirection_data_class_; // Class of RedirectionData vm obj. static RawClass* ffi_trampoline_data_class_; // Class of FfiTrampolineData // vm obj. static RawClass* field_class_; // Class of the Field vm object. static RawClass* script_class_; // Class of the Script vm object. static RawClass* library_class_; // Class of the Library vm object. static RawClass* namespace_class_; // Class of Namespace vm object. static RawClass* kernel_program_info_class_; // Class of KernelProgramInfo vm // object. static RawClass* code_class_; // Class of the Code vm object. static RawClass* bytecode_class_; // Class of the Bytecode vm object. static RawClass* instructions_class_; // Class of the Instructions vm object. static RawClass* object_pool_class_; // Class of the ObjectPool vm object. static RawClass* pc_descriptors_class_; // Class of PcDescriptors vm object. static RawClass* code_source_map_class_; // Class of CodeSourceMap vm object. static RawClass* stackmap_class_; // Class of StackMap vm object. static RawClass* var_descriptors_class_; // Class of LocalVarDescriptors. static RawClass* exception_handlers_class_; // Class of ExceptionHandlers. static RawClass* deopt_info_class_; // Class of DeoptInfo. static RawClass* context_class_; // Class of the Context vm object. static RawClass* context_scope_class_; // Class of ContextScope vm object. static RawClass* dyncalltypecheck_class_; // Class of ParameterTypeCheck. static RawClass* singletargetcache_class_; // Class of SingleTargetCache. static RawClass* unlinkedcall_class_; // Class of UnlinkedCall. static RawClass* icdata_class_; // Class of ICData. static RawClass* megamorphic_cache_class_; // Class of MegamorphiCache. static RawClass* subtypetestcache_class_; // Class of SubtypeTestCache. static RawClass* api_error_class_; // Class of ApiError. static RawClass* language_error_class_; // Class of LanguageError. static RawClass* unhandled_exception_class_; // Class of UnhandledException. static RawClass* unwind_error_class_; // Class of UnwindError. #define DECLARE_SHARED_READONLY_HANDLE(Type, name) static Type* name##_; SHARED_READONLY_HANDLES_LIST(DECLARE_SHARED_READONLY_HANDLE) #undef DECLARE_SHARED_READONLY_HANDLE friend void ClassTable::Register(const Class& cls); friend void RawObject::Validate(Isolate* isolate) const; friend class Closure; friend class SnapshotReader; friend class InstanceDeserializationCluster; friend class OneByteString; friend class TwoByteString; friend class ExternalOneByteString; friend class ExternalTwoByteString; friend class Thread; #define REUSABLE_FRIEND_DECLARATION(name) \ friend class Reusable##name##HandleScope; REUSABLE_HANDLE_LIST(REUSABLE_FRIEND_DECLARATION) #undef REUSABLE_FRIEND_DECLARATION DISALLOW_ALLOCATION(); DISALLOW_COPY_AND_ASSIGN(Object); }; class PassiveObject : public Object { public: void operator=(RawObject* value) { raw_ = value; } void operator^=(RawObject* value) { raw_ = value; } static PassiveObject& Handle(Zone* zone, RawObject* raw_ptr) { PassiveObject* obj = reinterpret_cast(VMHandles::AllocateHandle(zone)); obj->raw_ = raw_ptr; obj->set_vtable(0); return *obj; } static PassiveObject& Handle(RawObject* raw_ptr) { return Handle(Thread::Current()->zone(), raw_ptr); } static PassiveObject& Handle() { return Handle(Thread::Current()->zone(), Object::null()); } static PassiveObject& Handle(Zone* zone) { return Handle(zone, Object::null()); } static PassiveObject& ZoneHandle(Zone* zone, RawObject* raw_ptr) { PassiveObject* obj = reinterpret_cast(VMHandles::AllocateZoneHandle(zone)); obj->raw_ = raw_ptr; obj->set_vtable(0); return *obj; } static PassiveObject& ZoneHandle(RawObject* raw_ptr) { return ZoneHandle(Thread::Current()->zone(), raw_ptr); } static PassiveObject& ZoneHandle() { return ZoneHandle(Thread::Current()->zone(), Object::null()); } static PassiveObject& ZoneHandle(Zone* zone) { return ZoneHandle(zone, Object::null()); } private: PassiveObject() : Object() {} DISALLOW_ALLOCATION(); DISALLOW_COPY_AND_ASSIGN(PassiveObject); }; typedef ZoneGrowableHandlePtrArray Trail; typedef ZoneGrowableHandlePtrArray* TrailPtr; // A URIs array contains triplets of strings. // The first string in the triplet is a type name (usually a class). // The second string in the triplet is the URI of the type. // The third string in the triplet is "print" if the triplet should be printed. typedef ZoneGrowableHandlePtrArray URIs; class Class : public Object { public: enum InvocationDispatcherEntry { kInvocationDispatcherName, kInvocationDispatcherArgsDesc, kInvocationDispatcherFunction, kInvocationDispatcherEntrySize, }; intptr_t instance_size() const { ASSERT(is_finalized() || is_prefinalized()); return (raw_ptr()->instance_size_in_words_ * kWordSize); } static intptr_t instance_size(RawClass* clazz) { return (clazz->ptr()->instance_size_in_words_ * kWordSize); } void set_instance_size(intptr_t value_in_bytes) const { ASSERT(kWordSize != 0); set_instance_size_in_words(value_in_bytes / kWordSize); } void set_instance_size_in_words(intptr_t value) const { ASSERT(Utils::IsAligned((value * kWordSize), kObjectAlignment)); StoreNonPointer(&raw_ptr()->instance_size_in_words_, value); } intptr_t next_field_offset() const { return raw_ptr()->next_field_offset_in_words_ * kWordSize; } void set_next_field_offset(intptr_t value_in_bytes) const { ASSERT(kWordSize != 0); set_next_field_offset_in_words(value_in_bytes / kWordSize); } void set_next_field_offset_in_words(intptr_t value) const { ASSERT((value == -1) || (Utils::IsAligned((value * kWordSize), kObjectAlignment) && (value == raw_ptr()->instance_size_in_words_)) || (!Utils::IsAligned((value * kWordSize), kObjectAlignment) && ((value + 1) == raw_ptr()->instance_size_in_words_))); StoreNonPointer(&raw_ptr()->next_field_offset_in_words_, value); } cpp_vtable handle_vtable() const { return raw_ptr()->handle_vtable_; } void set_handle_vtable(cpp_vtable value) const { StoreNonPointer(&raw_ptr()->handle_vtable_, value); } static bool is_valid_id(intptr_t value) { return RawObject::ClassIdTag::is_valid(value); } intptr_t id() const { return raw_ptr()->id_; } void set_id(intptr_t value) const { ASSERT(is_valid_id(value)); StoreNonPointer(&raw_ptr()->id_, value); } static intptr_t id_offset() { return OFFSET_OF(RawClass, id_); } static intptr_t num_type_arguments_offset() { return OFFSET_OF(RawClass, num_type_arguments_); } RawString* Name() const; RawString* ScrubbedName() const; RawString* UserVisibleName() const; // The mixin for this class if one exists. Otherwise, returns a raw pointer // to this class. RawClass* Mixin() const; bool IsInFullSnapshot() const; virtual RawString* DictionaryName() const { return Name(); } RawScript* script() const { return raw_ptr()->script_; } void set_script(const Script& value) const; TokenPosition token_pos() const { return raw_ptr()->token_pos_; } void set_token_pos(TokenPosition value) const; TokenPosition end_token_pos() const { return raw_ptr()->end_token_pos_; } void set_end_token_pos(TokenPosition value) const; int32_t SourceFingerprint() const; // This class represents a typedef if the signature function is not null. RawFunction* signature_function() const { return raw_ptr()->signature_function_; } void set_signature_function(const Function& value) const; // Return the Type with type parameters declared by this class filled in with // dynamic and type parameters declared in superclasses filled in as declared // in superclass clauses. RawAbstractType* RareType() const; // Return the Type whose arguments are the type parameters declared by this // class preceded by the type arguments declared for superclasses, etc. // e.g. given // class B // class C extends B // C.DeclarationType() --> C [R, int, R] RawType* DeclarationType() const; static intptr_t declaration_type_offset() { return OFFSET_OF(RawClass, declaration_type_); } RawLibrary* library() const { return raw_ptr()->library_; } void set_library(const Library& value) const; // The type parameters (and their bounds) are specified as an array of // TypeParameter. RawTypeArguments* type_parameters() const { ASSERT(is_declaration_loaded()); return raw_ptr()->type_parameters_; } void set_type_parameters(const TypeArguments& value) const; intptr_t NumTypeParameters(Thread* thread) const; intptr_t NumTypeParameters() const { return NumTypeParameters(Thread::Current()); } static intptr_t type_parameters_offset() { return OFFSET_OF(RawClass, type_parameters_); } // Return a TypeParameter if the type_name is a type parameter of this class. // Return null otherwise. RawTypeParameter* LookupTypeParameter(const String& type_name) const; // The type argument vector is flattened and includes the type arguments of // the super class. intptr_t NumTypeArguments() const; // Return true if this class declares type parameters. bool IsGeneric() const { return NumTypeParameters(Thread::Current()) > 0; } // If this class is parameterized, each instance has a type_arguments field. static const intptr_t kNoTypeArguments = -1; intptr_t type_arguments_field_offset() const { ASSERT(is_type_finalized() || is_prefinalized()); if (raw_ptr()->type_arguments_field_offset_in_words_ == kNoTypeArguments) { return kNoTypeArguments; } return raw_ptr()->type_arguments_field_offset_in_words_ * kWordSize; } void set_type_arguments_field_offset(intptr_t value_in_bytes) const { intptr_t value; if (value_in_bytes == kNoTypeArguments) { value = kNoTypeArguments; } else { ASSERT(kWordSize != 0); value = value_in_bytes / kWordSize; } set_type_arguments_field_offset_in_words(value); } void set_type_arguments_field_offset_in_words(intptr_t value) const { StoreNonPointer(&raw_ptr()->type_arguments_field_offset_in_words_, value); } static intptr_t type_arguments_field_offset_in_words_offset() { return OFFSET_OF(RawClass, type_arguments_field_offset_in_words_); } // The super type of this class, Object type if not explicitly specified. RawAbstractType* super_type() const { ASSERT(is_declaration_loaded()); return raw_ptr()->super_type_; } void set_super_type(const AbstractType& value) const; static intptr_t super_type_offset() { return OFFSET_OF(RawClass, super_type_); } // Asserts that the class of the super type has been resolved. // |original_classes| only has an effect when reloading. If true and we // are reloading, it will prefer the original classes to the replacement // classes. RawClass* SuperClass(bool original_classes = false) const; // Interfaces is an array of Types. RawArray* interfaces() const { ASSERT(is_declaration_loaded()); return raw_ptr()->interfaces_; } void set_interfaces(const Array& value) const; // Returns the list of classes directly implementing this class. RawGrowableObjectArray* direct_implementors() const { return raw_ptr()->direct_implementors_; } void AddDirectImplementor(const Class& subclass, bool is_mixin) const; void ClearDirectImplementors() const; // Returns the list of classes having this class as direct superclass. RawGrowableObjectArray* direct_subclasses() const { return raw_ptr()->direct_subclasses_; } void AddDirectSubclass(const Class& subclass) const; void ClearDirectSubclasses() const; // Check if this class represents the class of null. bool IsNullClass() const { return id() == kNullCid; } // Check if this class represents the 'dynamic' class. bool IsDynamicClass() const { return id() == kDynamicCid; } // Check if this class represents the 'void' class. bool IsVoidClass() const { return id() == kVoidCid; } // Check if this class represents the 'Object' class. bool IsObjectClass() const { return id() == kInstanceCid; } // Check if this class represents the 'Function' class. bool IsDartFunctionClass() const; // Check if this class represents the 'Future' class. bool IsFutureClass() const; // Check if this class represents the 'FutureOr' class. bool IsFutureOrClass() const; // Check if this class represents the 'Closure' class. bool IsClosureClass() const { return id() == kClosureCid; } static bool IsClosureClass(RawClass* cls) { NoSafepointScope no_safepoint; return cls->ptr()->id_ == kClosureCid; } // Check if this class represents a typedef class. bool IsTypedefClass() const { return signature_function() != Object::null(); } static bool IsInFullSnapshot(RawClass* cls) { NoSafepointScope no_safepoint; return cls->ptr()->library_->ptr()->is_in_fullsnapshot_; } // Returns true if the type specified by cls and type_arguments is a // subtype of the type specified by other class and other_type_arguments. static bool IsSubtypeOf(const Class& cls, const TypeArguments& type_arguments, const Class& other, const TypeArguments& other_type_arguments, Heap::Space space); // Returns true if the type specified by cls and type_arguments is a // subtype of FutureOr specified by other class and other_type_arguments. // Returns false if other class is not a FutureOr. static bool IsSubtypeOfFutureOr(Zone* zone, const Class& cls, const TypeArguments& type_arguments, const Class& other, const TypeArguments& other_type_arguments, Heap::Space space); // Check if this is the top level class. bool IsTopLevel() const; bool IsPrivate() const; DART_WARN_UNUSED_RESULT RawError* VerifyEntryPoint() const; // Returns an array of instance and static fields defined by this class. RawArray* fields() const { return raw_ptr()->fields_; } void SetFields(const Array& value) const; void AddField(const Field& field) const; void AddFields(const GrowableArray& fields) const; // If this is a dart:internal.ClassID class, then inject our own const // fields. Returns true if synthetic fields are injected and regular // field declarations should be ignored. bool InjectCIDFields() const; // Returns an array of all instance fields of this class and its superclasses // indexed by offset in words. // |original_classes| only has an effect when reloading. If true and we // are reloading, it will prefer the original classes to the replacement // classes. RawArray* OffsetToFieldMap(bool original_classes = false) const; // Returns true if non-static fields are defined. bool HasInstanceFields() const; // TODO(koda): Unite w/ hash table. RawArray* functions() const { return raw_ptr()->functions_; } void SetFunctions(const Array& value) const; void AddFunction(const Function& function) const; void RemoveFunction(const Function& function) const; RawFunction* FunctionFromIndex(intptr_t idx) const; intptr_t FindImplicitClosureFunctionIndex(const Function& needle) const; RawFunction* ImplicitClosureFunctionFromIndex(intptr_t idx) const; RawFunction* LookupDynamicFunction(const String& name) const; RawFunction* LookupDynamicFunctionAllowAbstract(const String& name) const; RawFunction* LookupDynamicFunctionAllowPrivate(const String& name) const; RawFunction* LookupStaticFunction(const String& name) const; RawFunction* LookupStaticFunctionAllowPrivate(const String& name) const; RawFunction* LookupConstructor(const String& name) const; RawFunction* LookupConstructorAllowPrivate(const String& name) const; RawFunction* LookupFactory(const String& name) const; RawFunction* LookupFactoryAllowPrivate(const String& name) const; RawFunction* LookupFunction(const String& name) const; RawFunction* LookupFunctionAllowPrivate(const String& name) const; RawFunction* LookupGetterFunction(const String& name) const; RawFunction* LookupSetterFunction(const String& name) const; RawField* LookupInstanceField(const String& name) const; RawField* LookupStaticField(const String& name) const; RawField* LookupField(const String& name) const; RawField* LookupFieldAllowPrivate(const String& name, bool instance_only = false) const; RawField* LookupInstanceFieldAllowPrivate(const String& name) const; RawField* LookupStaticFieldAllowPrivate(const String& name) const; RawDouble* LookupCanonicalDouble(Zone* zone, double value) const; RawMint* LookupCanonicalMint(Zone* zone, int64_t value) const; // The methods above are more efficient than this generic one. RawInstance* LookupCanonicalInstance(Zone* zone, const Instance& value) const; RawInstance* InsertCanonicalConstant(Zone* zone, const Instance& constant) const; void InsertCanonicalDouble(Zone* zone, const Double& constant) const; void InsertCanonicalMint(Zone* zone, const Mint& constant) const; void RehashConstants(Zone* zone) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawClass)); } bool is_implemented() const { return ImplementedBit::decode(raw_ptr()->state_bits_); } void set_is_implemented() const; bool is_abstract() const { return AbstractBit::decode(raw_ptr()->state_bits_); } void set_is_abstract() const; RawClass::ClassLoadingState class_loading_state() const { return ClassLoadingBits::decode(raw_ptr()->state_bits_); } bool is_declaration_loaded() const { return class_loading_state() >= RawClass::kDeclarationLoaded; } void set_is_declaration_loaded() const; bool is_type_finalized() const { return class_loading_state() >= RawClass::kTypeFinalized; } void set_is_type_finalized() const; bool is_patch() const { return PatchBit::decode(raw_ptr()->state_bits_); } void set_is_patch() const; bool is_synthesized_class() const { return SynthesizedClassBit::decode(raw_ptr()->state_bits_); } void set_is_synthesized_class() const; bool is_enum_class() const { return EnumBit::decode(raw_ptr()->state_bits_); } void set_is_enum_class() const; bool is_finalized() const { return ClassFinalizedBits::decode(raw_ptr()->state_bits_) == RawClass::kFinalized; } void set_is_finalized() const; bool is_prefinalized() const { return ClassFinalizedBits::decode(raw_ptr()->state_bits_) == RawClass::kPreFinalized; } void set_is_prefinalized() const; bool is_const() const { return ConstBit::decode(raw_ptr()->state_bits_); } void set_is_const() const; // Tests if this is a mixin application class which was desugared // to a normal class by kernel mixin transformation // (pkg/kernel/lib/transformations/mixin_full_resolution.dart). // // In such case, its mixed-in type was pulled into the end of // interfaces list. bool is_transformed_mixin_application() const { return TransformedMixinApplicationBit::decode(raw_ptr()->state_bits_); } void set_is_transformed_mixin_application() const; bool is_fields_marked_nullable() const { return FieldsMarkedNullableBit::decode(raw_ptr()->state_bits_); } void set_is_fields_marked_nullable() const; bool is_allocated() const { return IsAllocatedBit::decode(raw_ptr()->state_bits_); } void set_is_allocated(bool value) const; bool is_loaded() const { return IsLoadedBit::decode(raw_ptr()->state_bits_); } void set_is_loaded(bool value) const; uint16_t num_native_fields() const { return raw_ptr()->num_native_fields_; } void set_num_native_fields(uint16_t value) const { StoreNonPointer(&raw_ptr()->num_native_fields_, value); } RawCode* allocation_stub() const { return raw_ptr()->allocation_stub_; } void set_allocation_stub(const Code& value) const; #if !defined(DART_PRECOMPILED_RUNTIME) intptr_t binary_declaration_offset() const { return RawClass::BinaryDeclarationOffset::decode( raw_ptr()->binary_declaration_); } void set_binary_declaration_offset(intptr_t value) const { ASSERT(value >= 0); StoreNonPointer(&raw_ptr()->binary_declaration_, RawClass::BinaryDeclarationOffset::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) intptr_t kernel_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(!is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_kernel_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(!is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } intptr_t bytecode_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_bytecode_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } bool is_declared_in_bytecode() const { #if defined(DART_PRECOMPILED_RUNTIME) return false; #else return RawClass::IsDeclaredInBytecode::decode( raw_ptr()->binary_declaration_); #endif } #if !defined(DART_PRECOMPILED_RUNTIME) void set_is_declared_in_bytecode(bool value) const { StoreNonPointer(&raw_ptr()->binary_declaration_, RawClass::IsDeclaredInBytecode::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) void DisableAllocationStub() const; RawArray* constants() const; void set_constants(const Array& value) const; intptr_t FindInvocationDispatcherFunctionIndex(const Function& needle) const; RawFunction* InvocationDispatcherFunctionFromIndex(intptr_t idx) const; RawFunction* GetInvocationDispatcher(const String& target_name, const Array& args_desc, RawFunction::Kind kind, bool create_if_absent) const; void Finalize() const; RawObject* Invoke(const String& selector, const Array& arguments, const Array& argument_names, bool respect_reflectable = true, bool check_is_entrypoint = false) const; RawObject* InvokeGetter(const String& selector, bool throw_nsm_if_absent, bool respect_reflectable = true, bool check_is_entrypoint = false) const; RawObject* InvokeSetter(const String& selector, const Instance& argument, bool respect_reflectable = true, bool check_is_entrypoint = false) const; // Evaluate the given expression as if it appeared in a static method of this // class and return the resulting value, or an error object if evaluating the // expression fails. The method has the formal (type) parameters given in // (type_)param_names, and is invoked with the (type)argument values given in // (type_)param_values. RawObject* EvaluateCompiledExpression( const uint8_t* kernel_bytes, intptr_t kernel_length, const Array& type_definitions, const Array& param_values, const TypeArguments& type_param_values) const; // Load class declaration (super type, interfaces, type parameters and // number of type arguments) if it is not loaded yet. void EnsureDeclarationLoaded() const; RawError* EnsureIsFinalized(Thread* thread) const; // Allocate a class used for VM internal objects. template static RawClass* New(Isolate* isolate, bool register_class = true); // Allocate instance classes. static RawClass* New(const Library& lib, const String& name, const Script& script, TokenPosition token_pos, bool register_class = true); static RawClass* NewNativeWrapper(const Library& library, const String& name, int num_fields); // Allocate the raw string classes. static RawClass* NewStringClass(intptr_t class_id, Isolate* isolate); // Allocate the raw TypedData classes. static RawClass* NewTypedDataClass(intptr_t class_id, Isolate* isolate); // Allocate the raw TypedDataView/ByteDataView classes. static RawClass* NewTypedDataViewClass(intptr_t class_id, Isolate* isolate); // Allocate the raw ExternalTypedData classes. static RawClass* NewExternalTypedDataClass(intptr_t class_id, Isolate* isolate); // Allocate the raw Pointer classes. static RawClass* NewPointerClass(intptr_t class_id, Isolate* isolate); // Register code that has used CHA for optimization. // TODO(srdjan): Also register kind of CHA optimization (e.g.: leaf class, // leaf method, ...). void RegisterCHACode(const Code& code); void DisableCHAOptimizedCode(const Class& subclass); void DisableAllCHAOptimizedCode(); void DisableCHAImplementorUsers() { DisableAllCHAOptimizedCode(); } // Return the list of code objects that were compiled using CHA of this class. // These code objects will be invalidated if new subclasses of this class // are finalized. RawArray* dependent_code() const { return raw_ptr()->dependent_code_; } void set_dependent_code(const Array& array) const; bool TraceAllocation(Isolate* isolate) const; void SetTraceAllocation(bool trace_allocation) const; void ReplaceEnum(IsolateReloadContext* reload_context, const Class& old_enum) const; void CopyStaticFieldValues(IsolateReloadContext* reload_context, const Class& old_cls) const; void PatchFieldsAndFunctions() const; void MigrateImplicitStaticClosures(IsolateReloadContext* context, const Class& new_cls) const; void CopyCanonicalConstants(const Class& old_cls) const; void CopyDeclarationType(const Class& old_cls) const; void CheckReload(const Class& replacement, IsolateReloadContext* context) const; void AddInvocationDispatcher(const String& target_name, const Array& args_desc, const Function& dispatcher) const; private: RawType* declaration_type() const { return raw_ptr()->declaration_type_; } // Caches the declaration type of this class. void set_declaration_type(const Type& type) const; bool CanReloadFinalized(const Class& replacement, IsolateReloadContext* context) const; bool CanReloadPreFinalized(const Class& replacement, IsolateReloadContext* context) const; // Tells whether instances need morphing for reload. bool RequiresInstanceMorphing(const Class& replacement) const; template static RawClass* NewCommon(intptr_t index); enum MemberKind { kAny = 0, kStatic, kInstance, kInstanceAllowAbstract, kConstructor, kFactory, }; enum StateBits { kConstBit = 0, kImplementedBit = 1, kClassFinalizedPos = 2, kClassFinalizedSize = 2, kClassLoadingPos = kClassFinalizedPos + kClassFinalizedSize, // = 4 kClassLoadingSize = 2, kAbstractBit = kClassLoadingPos + kClassLoadingSize, // = 6 kPatchBit, kSynthesizedClassBit, kMixinAppAliasBit, kMixinTypeAppliedBit, kFieldsMarkedNullableBit, kEnumBit, kTransformedMixinApplicationBit, kIsAllocatedBit, kIsLoadedBit, kHasPragmaBit, }; class ConstBit : public BitField {}; class ImplementedBit : public BitField {}; class ClassFinalizedBits : public BitField {}; class ClassLoadingBits : public BitField {}; class AbstractBit : public BitField {}; class PatchBit : public BitField {}; class SynthesizedClassBit : public BitField {}; class FieldsMarkedNullableBit : public BitField {}; class EnumBit : public BitField {}; class TransformedMixinApplicationBit : public BitField {}; class IsAllocatedBit : public BitField {}; class IsLoadedBit : public BitField {}; class HasPragmaBit : public BitField {}; void set_name(const String& value) const; void set_user_name(const String& value) const; RawString* GenerateUserVisibleName() const; void set_state_bits(intptr_t bits) const; RawArray* invocation_dispatcher_cache() const; void set_invocation_dispatcher_cache(const Array& cache) const; RawFunction* CreateInvocationDispatcher(const String& target_name, const Array& args_desc, RawFunction::Kind kind) const; void CalculateFieldOffsets() const; // functions_hash_table is in use iff there are at least this many functions. static const intptr_t kFunctionLookupHashTreshold = 16; // Initial value for the cached number of type arguments. static const intptr_t kUnknownNumTypeArguments = -1; int16_t num_type_arguments() const { return raw_ptr()->num_type_arguments_; } public: void set_num_type_arguments(intptr_t value) const; bool has_pragma() const { return HasPragmaBit::decode(raw_ptr()->state_bits_); } void set_has_pragma(bool has_pragma) const; private: // Calculates number of type arguments of this class. // This includes type arguments of a superclass and takes overlapping // of type arguments into account. intptr_t ComputeNumTypeArguments() const; // Assigns empty array to all raw class array fields. void InitEmptyFields(); static RawFunction* CheckFunctionType(const Function& func, MemberKind kind); RawFunction* LookupFunction(const String& name, MemberKind kind) const; RawFunction* LookupFunctionAllowPrivate(const String& name, MemberKind kind) const; RawField* LookupField(const String& name, MemberKind kind) const; RawFunction* LookupAccessorFunction(const char* prefix, intptr_t prefix_length, const String& name) const; // Allocate an instance class which has a VM implementation. template static RawClass* New(intptr_t id, Isolate* isolate, bool register_class = true); // Helper that calls 'Class::New(kIllegalCid)'. static RawClass* NewInstanceClass(); FINAL_HEAP_OBJECT_IMPLEMENTATION(Class, Object); friend class AbstractType; friend class Instance; friend class Object; friend class Type; friend class InterpreterHelpers; friend class Intrinsifier; friend class ClassFunctionVisitor; }; // Classification of type genericity according to type parameter owners. enum Genericity { kAny, // Consider type params of current class and functions. kCurrentClass, // Consider type params of current class only. kFunctions, // Consider type params of current and parent functions. }; class PatchClass : public Object { public: RawClass* patched_class() const { return raw_ptr()->patched_class_; } RawClass* origin_class() const { return raw_ptr()->origin_class_; } RawScript* script() const { return raw_ptr()->script_; } RawExternalTypedData* library_kernel_data() const { return raw_ptr()->library_kernel_data_; } void set_library_kernel_data(const ExternalTypedData& data) const; intptr_t library_kernel_offset() const { #if !defined(DART_PRECOMPILED_RUNTIME) return raw_ptr()->library_kernel_offset_; #else return -1; #endif } void set_library_kernel_offset(intptr_t offset) const { NOT_IN_PRECOMPILED( StoreNonPointer(&raw_ptr()->library_kernel_offset_, offset)); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawPatchClass)); } static bool IsInFullSnapshot(RawPatchClass* cls) { NoSafepointScope no_safepoint; return Class::IsInFullSnapshot(cls->ptr()->patched_class_); } static RawPatchClass* New(const Class& patched_class, const Class& origin_class); static RawPatchClass* New(const Class& patched_class, const Script& source); private: void set_patched_class(const Class& value) const; void set_origin_class(const Class& value) const; void set_script(const Script& value) const; static RawPatchClass* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(PatchClass, Object); friend class Class; }; class ParameterTypeCheck : public Object { public: // The FP-relative index of the parameter in a bytecode frame (after optional // parameter marshalling) whose assignability needs to be checked, or 0 if // this is a type parameter check. intptr_t index() const { return raw_ptr()->index_; } void set_index(intptr_t i) const { StoreNonPointer(&raw_ptr()->index_, i); } // The type parameter to whose bound needs to be checked, or null if this is // an ordinary parameter check. RawAbstractType* param() const { return raw_ptr()->param_; } void set_param(const AbstractType& t) const; // FP[index] assignable to type, OR param is subtype of bound. RawAbstractType* type_or_bound() const { return raw_ptr()->type_or_bound_; } void set_type_or_bound(const AbstractType& t) const; // The parameter or type parameter's name to use in an error message. RawString* name() const { return raw_ptr()->name_; } void set_name(const String& n) const; RawSubtypeTestCache* cache() const { return raw_ptr()->cache_; } void set_cache(const SubtypeTestCache& c) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawParameterTypeCheck)); } static RawParameterTypeCheck* New(); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(ParameterTypeCheck, Object); friend class Class; }; class SingleTargetCache : public Object { public: RawCode* target() const { return raw_ptr()->target_; } void set_target(const Code& target) const; static intptr_t target_offset() { return OFFSET_OF(RawSingleTargetCache, target_); } #define DEFINE_NON_POINTER_FIELD_ACCESSORS(type, name) \ type name() const { return raw_ptr()->name##_; } \ void set_##name(type value) const { \ StoreNonPointer(&raw_ptr()->name##_, value); \ } \ static intptr_t name##_offset() { \ return OFFSET_OF(RawSingleTargetCache, name##_); \ } DEFINE_NON_POINTER_FIELD_ACCESSORS(uword, entry_point); DEFINE_NON_POINTER_FIELD_ACCESSORS(intptr_t, lower_limit); DEFINE_NON_POINTER_FIELD_ACCESSORS(intptr_t, upper_limit); #undef DEFINE_NON_POINTER_FIELD_ACCESSORS static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawSingleTargetCache)); } static RawSingleTargetCache* New(); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(SingleTargetCache, Object); friend class Class; }; class UnlinkedCall : public Object { public: RawString* target_name() const { return raw_ptr()->target_name_; } void set_target_name(const String& target_name) const; RawArray* args_descriptor() const { return raw_ptr()->args_descriptor_; } void set_args_descriptor(const Array& args_descriptor) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawUnlinkedCall)); } static RawUnlinkedCall* New(); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(UnlinkedCall, Object); friend class Class; }; // Object holding information about an IC: test classes and their // corresponding targets. The owner of the ICData can be either the function // or the original ICData object. In case of background compilation we // copy the ICData in a child object, thus freezing it during background // compilation. Code may contain only original ICData objects. class ICData : public Object { public: RawFunction* Owner() const; RawICData* Original() const; void SetOriginal(const ICData& value) const; bool IsOriginal() const { return Original() == this->raw(); } RawString* target_name() const { return raw_ptr()->target_name_; } RawArray* arguments_descriptor() const { return raw_ptr()->args_descriptor_; } intptr_t NumArgsTested() const; intptr_t TypeArgsLen() const; intptr_t CountWithTypeArgs() const; intptr_t CountWithoutTypeArgs() const; intptr_t deopt_id() const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); return -1; #else return raw_ptr()->deopt_id_; #endif } bool IsImmutable() const; #if !defined(DART_PRECOMPILED_RUNTIME) RawAbstractType* receivers_static_type() const { return raw_ptr()->receivers_static_type_; } void SetReceiversStaticType(const AbstractType& type) const; bool is_tracking_exactness() const { return TrackingExactnessBit::decode(raw_ptr()->state_bits_); } void set_tracking_exactness(bool value) const { StoreNonPointer( &raw_ptr()->state_bits_, TrackingExactnessBit::update(value, raw_ptr()->state_bits_)); } #else bool is_tracking_exactness() const { return false; } #endif void Reset(Zone* zone) const; // Note: only deopts with reasons before Unknown in this list are recorded in // the ICData. All other reasons are used purely for informational messages // printed during deoptimization itself. #define DEOPT_REASONS(V) \ V(BinarySmiOp) \ V(BinaryInt64Op) \ V(DoubleToSmi) \ V(CheckSmi) \ V(CheckClass) \ V(Unknown) \ V(PolymorphicInstanceCallTestFail) \ V(UnaryInt64Op) \ V(BinaryDoubleOp) \ V(UnaryOp) \ V(UnboxInteger) \ V(Unbox) \ V(CheckArrayBound) \ V(AtCall) \ V(GuardField) \ V(TestCids) \ V(NumReasons) enum DeoptReasonId { #define DEFINE_ENUM_LIST(name) kDeopt##name, DEOPT_REASONS(DEFINE_ENUM_LIST) #undef DEFINE_ENUM_LIST }; static const intptr_t kLastRecordedDeoptReason = kDeoptUnknown - 1; enum DeoptFlags { // Deoptimization is caused by an optimistically hoisted instruction. kHoisted = 1 << 0, // Deoptimization is caused by an optimistically generalized bounds check. kGeneralized = 1 << 1 }; bool HasDeoptReasons() const { return DeoptReasons() != 0; } uint32_t DeoptReasons() const; void SetDeoptReasons(uint32_t reasons) const; bool HasDeoptReason(ICData::DeoptReasonId reason) const; void AddDeoptReason(ICData::DeoptReasonId reason) const; // Call site classification that is helpful for hot-reload. Call sites with // different `RebindRule` have to be rebound differently. #define FOR_EACH_REBIND_RULE(V) \ V(Instance) \ V(NoRebind) \ V(NSMDispatch) \ V(Optimized) \ V(Static) \ V(Super) enum RebindRule { #define REBIND_ENUM_DEF(name) k##name, FOR_EACH_REBIND_RULE(REBIND_ENUM_DEF) #undef REBIND_ENUM_DEF kNumRebindRules, }; static const char* RebindRuleToCString(RebindRule r); static bool RebindRuleFromCString(const char* str, RebindRule* out); RebindRule rebind_rule() const; void set_rebind_rule(uint32_t rebind_rule) const; void set_is_megamorphic(bool value) const { // We don't have concurrent RW access to [state_bits_]. const uint32_t updated_bits = MegamorphicBit::update(value, raw_ptr()->state_bits_); // Though we ensure that once the state bits are updated, all other previous // writes to the IC are visible as well. StoreNonPointer( &raw_ptr()->state_bits_, updated_bits); } // The length of the array. This includes all sentinel entries including // the final one. intptr_t Length() const; // Takes O(result) time! intptr_t NumberOfChecks() const; // Discounts any checks with usage of zero. // Takes O(result)) time! intptr_t NumberOfUsedChecks() const; // Takes O(n) time! bool NumberOfChecksIs(intptr_t n) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawICData)); } static intptr_t target_name_offset() { return OFFSET_OF(RawICData, target_name_); } static intptr_t state_bits_offset() { return OFFSET_OF(RawICData, state_bits_); } static intptr_t NumArgsTestedShift() { return kNumArgsTestedPos; } static intptr_t NumArgsTestedMask() { return ((1 << kNumArgsTestedSize) - 1) << kNumArgsTestedPos; } static intptr_t arguments_descriptor_offset() { return OFFSET_OF(RawICData, args_descriptor_); } static intptr_t entries_offset() { return OFFSET_OF(RawICData, entries_); } static intptr_t owner_offset() { return OFFSET_OF(RawICData, owner_); } #if !defined(DART_PRECOMPILED_RUNTIME) static intptr_t receivers_static_type_offset() { return OFFSET_OF(RawICData, receivers_static_type_); } #endif // Replaces entry |index| with the sentinel. void WriteSentinelAt(intptr_t index) const; // Clears the count for entry |index|. void ClearCountAt(intptr_t index) const; // Clear all entries with the sentinel value and reset the first entry // with the dummy target entry. void ClearAndSetStaticTarget(const Function& func) const; void DebugDump() const; // Returns true if this is a two arg smi operation. bool AddSmiSmiCheckForFastSmiStubs() const; // Used for unoptimized static calls when no class-ids are checked. void AddTarget(const Function& target) const; // Adding checks. // Adds one more class test to ICData. Length of 'classes' must be equal to // the number of arguments tested. Use only for num_args_tested > 1. void AddCheck(const GrowableArray& class_ids, const Function& target, intptr_t count = 1) const; StaticTypeExactnessState GetExactnessAt(intptr_t count) const; // Adds sorted so that Smi is the first class-id. Use only for // num_args_tested == 1. void AddReceiverCheck(intptr_t receiver_class_id, const Function& target, intptr_t count = 1, StaticTypeExactnessState exactness = StaticTypeExactnessState::NotTracking()) const; // Does entry |index| contain the sentinel value? bool IsSentinelAt(intptr_t index) const; // Retrieving checks. void GetCheckAt(intptr_t index, GrowableArray* class_ids, Function* target) const; void GetClassIdsAt(intptr_t index, GrowableArray* class_ids) const; // Only for 'num_args_checked == 1'. void GetOneClassCheckAt(intptr_t index, intptr_t* class_id, Function* target) const; // Only for 'num_args_checked == 1'. intptr_t GetCidAt(intptr_t index) const; intptr_t GetReceiverClassIdAt(intptr_t index) const; intptr_t GetClassIdAt(intptr_t index, intptr_t arg_nr) const; RawFunction* GetTargetAt(intptr_t index) const; RawObject* GetTargetOrCodeAt(intptr_t index) const; void SetCodeAt(intptr_t index, const Code& value) const; void SetEntryPointAt(intptr_t index, const Smi& value) const; void IncrementCountAt(intptr_t index, intptr_t value) const; void SetCountAt(intptr_t index, intptr_t value) const; intptr_t GetCountAt(intptr_t index) const; intptr_t AggregateCount() const; // Returns this->raw() if num_args_tested == 1 and arg_nr == 1, otherwise // returns a new ICData object containing only unique arg_nr checks. // Returns only used entries. RawICData* AsUnaryClassChecksForArgNr(intptr_t arg_nr) const; RawICData* AsUnaryClassChecks() const { return AsUnaryClassChecksForArgNr(0); } RawICData* AsUnaryClassChecksForCid(intptr_t cid, const Function& target) const; // Returns ICData with aggregated receiver count, sorted by highest count. // Smi not first!! (the convention for ICData used in code generation is that // Smi check is first) // Used for printing and optimizations. RawICData* AsUnaryClassChecksSortedByCount() const; RawUnlinkedCall* AsUnlinkedCall() const; bool HasReceiverClassId(intptr_t class_id) const; // Note: passing non-null receiver_type enables exactness tracking for // the receiver type. Receiver type is expected to be a fully // instantiated generic (but not a FutureOr). // See StaticTypeExactnessState for more information. static RawICData* New( const Function& owner, const String& target_name, const Array& arguments_descriptor, intptr_t deopt_id, intptr_t num_args_tested, RebindRule rebind_rule, const AbstractType& receiver_type = Object::null_abstract_type()); static RawICData* NewFrom(const ICData& from, intptr_t num_args_tested); // Generates a new ICData with descriptor and data array copied (deep clone). static RawICData* Clone(const ICData& from); static intptr_t TestEntryLengthFor(intptr_t num_args, bool tracking_exactness); static intptr_t CountIndexFor(intptr_t num_args) { return num_args; } static intptr_t EntryPointIndexFor(intptr_t num_args) { return num_args; } static intptr_t TargetIndexFor(intptr_t num_args) { return num_args + 1; } static intptr_t CodeIndexFor(intptr_t num_args) { return num_args + 1; } static intptr_t ExactnessIndexFor(intptr_t num_args) { return num_args + 2; } bool IsUsedAt(intptr_t i) const; void PrintToJSONArray(const JSONArray& jsarray, TokenPosition token_pos) const; // Initialize the preallocated empty ICData entry arrays. static void Init(); // Clear the preallocated empty ICData entry arrays. static void Cleanup(); // We cache ICData with 0, 1, 2 arguments tested without exactness // tracking and with 1 argument tested with exactness tracking. enum { kCachedICDataZeroArgTestedWithoutExactnessTrackingIdx = 0, kCachedICDataMaxArgsTestedWithoutExactnessTracking = 2, kCachedICDataOneArgWithExactnessTrackingIdx = kCachedICDataZeroArgTestedWithoutExactnessTrackingIdx + kCachedICDataMaxArgsTestedWithoutExactnessTracking + 1, kCachedICDataArrayCount = kCachedICDataOneArgWithExactnessTrackingIdx + 1, }; bool is_static_call() const; intptr_t FindCheck(const GrowableArray& cids) const; RawArray* entries() const { return AtomicOperations::LoadAcquire(&raw_ptr()->entries_); } private: static RawICData* New(); // Grows the array and also sets the argument to the index that should be used // for the new entry. RawArray* Grow(intptr_t* index) const; void set_owner(const Function& value) const; void set_target_name(const String& value) const; void set_arguments_descriptor(const Array& value) const; void set_deopt_id(intptr_t value) const; void SetNumArgsTested(intptr_t value) const; void set_entries(const Array& value) const; void set_state_bits(uint32_t bits) const; // This bit is set when a call site becomes megamorphic and starts using a // MegamorphicCache instead of ICData. It means that the entries in the // ICData are incomplete and the MegamorphicCache needs to also be consulted // to list the call site's observed receiver classes and targets. // In the compiler, this should only be read once by CallTargets to avoid the // compiler seeing an unstable set of feedback. bool is_megamorphic() const { // Ensure any following load instructions do not get performed before this // one. const uint32_t bits = LoadNonPointer( &raw_ptr()->state_bits_); return MegamorphicBit::decode(bits); } bool ValidateInterceptor(const Function& target) const; enum { kNumArgsTestedPos = 0, kNumArgsTestedSize = 2, kTrackingExactnessPos = kNumArgsTestedPos + kNumArgsTestedSize, kTrackingExactnessSize = 1, kDeoptReasonPos = kTrackingExactnessPos + kTrackingExactnessSize, kDeoptReasonSize = kLastRecordedDeoptReason + 1, kRebindRulePos = kDeoptReasonPos + kDeoptReasonSize, kRebindRuleSize = 3, kMegamorphicPos = kRebindRulePos + kRebindRuleSize, kMegamorphicSize = 1, }; COMPILE_ASSERT(kNumRebindRules <= (1 << kRebindRuleSize)); class NumArgsTestedBits : public BitField {}; class TrackingExactnessBit : public BitField {}; class DeoptReasonBits : public BitField {}; class RebindRuleBits : public BitField {}; class MegamorphicBit : public BitField {}; #if defined(DEBUG) // Used in asserts to verify that a check is not added twice. bool HasCheck(const GrowableArray& cids) const; #endif // DEBUG intptr_t TestEntryLength() const; static RawArray* NewNonCachedEmptyICDataArray(intptr_t num_args_tested, bool tracking_exactness); static RawArray* CachedEmptyICDataArray(intptr_t num_args_tested, bool tracking_exactness); static RawICData* NewDescriptor(Zone* zone, const Function& owner, const String& target_name, const Array& arguments_descriptor, intptr_t deopt_id, intptr_t num_args_tested, RebindRule rebind_rule, const AbstractType& receiver_type); static void WriteSentinel(const Array& data, intptr_t test_entry_length); // A cache of VM heap allocated preinitialized empty ic data entry arrays. static RawArray* cached_icdata_arrays_[kCachedICDataArrayCount]; FINAL_HEAP_OBJECT_IMPLEMENTATION(ICData, Object); friend class CallSiteResetter; friend class CallTargets; friend class Class; friend class Deserializer; friend class ICDataTestTask; friend class Interpreter; friend class Serializer; friend class SnapshotWriter; }; // Often used constants for number of free function type parameters. enum { kNoneFree = 0, // 'kCurrentAndEnclosingFree' is used when partially applying a signature // function to a set of type arguments. It indicates that the set of type // parameters declared by the current function and enclosing functions should // be considered free, and the current function type parameters should be // substituted as well. // // For instance, if the signature "(T, R) => T" is instantiated with // function type arguments [int, String] and kCurrentAndEnclosingFree is // supplied, the result of the instantiation will be "(String, int) => int". kCurrentAndEnclosingFree = kMaxInt32 - 1, // Only parameters declared by enclosing functions are free. kAllFree = kMaxInt32, }; class Function : public Object { public: RawString* name() const { return raw_ptr()->name_; } RawString* UserVisibleName() const; // Same as scrubbed name. RawString* QualifiedScrubbedName() const { return QualifiedName(kScrubbedName); } RawString* QualifiedUserVisibleName() const { return QualifiedName(kUserVisibleName); } virtual RawString* DictionaryName() const { return name(); } RawString* GetSource() const; // Return the type of this function's signature. It may not be canonical yet. // For example, if this function has a signature of the form // '(T, [B, C]) => R', where 'T' and 'R' are type parameters of the // owner class of this function, then its signature type is a parameterized // function type with uninstantiated type arguments 'T' and 'R' as elements of // its type argument vector. RawType* SignatureType() const; RawType* ExistingSignatureType() const; // Update the signature type (with a canonical version). void SetSignatureType(const Type& value) const; // Set the "C signature" function for an FFI trampoline. // Can only be used on FFI trampolines. void SetFfiCSignature(const Function& sig) const; // Retrieves the "C signature" function for an FFI trampoline. // Can only be used on FFI trampolines. RawFunction* FfiCSignature() const; // Can only be called on FFI trampolines. // -1 for Dart -> native calls. int32_t FfiCallbackId() const; // Can only be called on FFI trampolines. void SetFfiCallbackId(int32_t value) const; // Can only be called on FFI trampolines. // Null for Dart -> native calls. RawFunction* FfiCallbackTarget() const; // Can only be called on FFI trampolines. void SetFfiCallbackTarget(const Function& target) const; // Can only be called on FFI trampolines. // Null for Dart -> native calls. RawInstance* FfiCallbackExceptionalReturn() const; // Can only be called on FFI trampolines. void SetFfiCallbackExceptionalReturn(const Instance& value) const; // Return a new function with instantiated result and parameter types. RawFunction* InstantiateSignatureFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, intptr_t num_free_fun_type_params, Heap::Space space) const; // Build a string of the form '(T, {B b, C c}) => R' representing the // internal signature of the given function. In this example, T is a type // parameter of this function and R is a type parameter of class C, the owner // of the function. B and C are not type parameters. RawString* Signature() const { return BuildSignature(kInternalName); } // Build a string of the form '(T, {B b, C c}) => R' representing the // user visible signature of the given function. In this example, T is a type // parameter of this function and R is a type parameter of class C, the owner // of the function. B and C are not type parameters. // Implicit parameters are hidden. RawString* UserVisibleSignature() const { return BuildSignature(kUserVisibleName); } // Returns true if the signature of this function is instantiated, i.e. if it // does not involve generic parameter types or generic result type. // Note that function type parameters declared by this function do not make // its signature uninstantiated, only type parameters declared by parent // generic functions or class type parameters. bool HasInstantiatedSignature(Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const; RawClass* Owner() const; void set_owner(const Object& value) const; RawClass* origin() const; RawScript* script() const; RawObject* RawOwner() const { return raw_ptr()->owner_; } RawRegExp* regexp() const; intptr_t string_specialization_cid() const; bool is_sticky_specialization() const; void SetRegExpData(const RegExp& regexp, intptr_t string_specialization_cid, bool sticky) const; RawString* native_name() const; void set_native_name(const String& name) const; RawAbstractType* result_type() const { return raw_ptr()->result_type_; } void set_result_type(const AbstractType& value) const; // The parameters, starting with NumImplicitParameters() parameters which are // only visible to the VM, but not to Dart users. // Note that type checks exclude implicit parameters. RawAbstractType* ParameterTypeAt(intptr_t index) const; void SetParameterTypeAt(intptr_t index, const AbstractType& value) const; RawArray* parameter_types() const { return raw_ptr()->parameter_types_; } void set_parameter_types(const Array& value) const; // Parameter names are valid for all valid parameter indices, and are not // limited to named optional parameters. RawString* ParameterNameAt(intptr_t index) const; void SetParameterNameAt(intptr_t index, const String& value) const; RawArray* parameter_names() const { return raw_ptr()->parameter_names_; } void set_parameter_names(const Array& value) const; // The type parameters (and their bounds) are specified as an array of // TypeParameter. RawTypeArguments* type_parameters() const { return raw_ptr()->type_parameters_; } void set_type_parameters(const TypeArguments& value) const; intptr_t NumTypeParameters(Thread* thread) const; intptr_t NumTypeParameters() const { return NumTypeParameters(Thread::Current()); } // Returns true if this function has the same number of type parameters with // equal bounds as the other function. Type parameter names are ignored. bool HasSameTypeParametersAndBounds(const Function& other) const; // Return the number of type parameters declared in parent generic functions. intptr_t NumParentTypeParameters() const; // Print the signature type of this function and of all of its parents. void PrintSignatureTypes() const; // Return a TypeParameter if the type_name is a type parameter of this // function or of one of its parent functions. // Unless NULL, adjust function_level accordingly (in and out parameter). // Return null otherwise. RawTypeParameter* LookupTypeParameter(const String& type_name, intptr_t* function_level) const; // Return true if this function declares type parameters. bool IsGeneric() const { return NumTypeParameters(Thread::Current()) > 0; } // Return true if any parent function of this function is generic. bool HasGenericParent() const; // Not thread-safe; must be called in the main thread. // Sets function's code and code's function. void InstallOptimizedCode(const Code& code) const; void AttachCode(const Code& value) const; void SetInstructions(const Code& value) const; void ClearCode() const; void ClearBytecode() const; // Disables optimized code and switches to unoptimized code. void SwitchToUnoptimizedCode() const; // Ensures that the function has code. If there is no code it compiles the // unoptimized version of the code. If the code contains errors, it calls // Exceptions::PropagateError and does not return. Normally returns the // current code, whether it is optimized or unoptimized. RawCode* EnsureHasCode() const; // Disables optimized code and switches to unoptimized code (or the lazy // compilation stub). void SwitchToLazyCompiledUnoptimizedCode() const; // Compiles unoptimized code (if necessary) and attaches it to the function. void EnsureHasCompiledUnoptimizedCode() const; // Return the most recently compiled and installed code for this function. // It is not the only Code object that points to this function. RawCode* CurrentCode() const { return CurrentCodeOf(raw()); } bool SafeToClosurize() const; static RawCode* CurrentCodeOf(const RawFunction* function) { return function->ptr()->code_; } RawCode* unoptimized_code() const { #if defined(DART_PRECOMPILED_RUNTIME) return static_cast(Object::null()); #else return raw_ptr()->unoptimized_code_; #endif } void set_unoptimized_code(const Code& value) const; bool HasCode() const; static bool HasCode(RawFunction* function); #if !defined(DART_PRECOMPILED_RUNTIME) static inline bool HasBytecode(RawFunction* function); #endif static intptr_t code_offset() { return OFFSET_OF(RawFunction, code_); } static intptr_t result_type_offset() { return OFFSET_OF(RawFunction, result_type_); } static intptr_t entry_point_offset() { return OFFSET_OF(RawFunction, entry_point_); } static intptr_t unchecked_entry_point_offset() { return OFFSET_OF(RawFunction, unchecked_entry_point_); } #if !defined(DART_PRECOMPILED_RUNTIME) bool IsBytecodeAllowed(Zone* zone) const; void AttachBytecode(const Bytecode& bytecode) const; RawBytecode* bytecode() const { return raw_ptr()->bytecode_; } inline bool HasBytecode() const; #else inline bool HasBytecode() const { return false; } #endif virtual intptr_t Hash() const; // Returns true if there is at least one debugger breakpoint // set in this function. bool HasBreakpoint() const; RawContextScope* context_scope() const; void set_context_scope(const ContextScope& value) const; // Enclosing function of this local function. RawFunction* parent_function() const; // Enclosing outermost function of this local function. RawFunction* GetOutermostFunction() const; void set_extracted_method_closure(const Function& function) const; RawFunction* extracted_method_closure() const; void set_saved_args_desc(const Array& array) const; RawArray* saved_args_desc() const; void set_accessor_field(const Field& value) const; RawField* accessor_field() const; bool IsMethodExtractor() const { return kind() == RawFunction::kMethodExtractor; } bool IsNoSuchMethodDispatcher() const { return kind() == RawFunction::kNoSuchMethodDispatcher; } bool IsInvokeFieldDispatcher() const { return kind() == RawFunction::kInvokeFieldDispatcher; } bool IsDynamicInvocationForwarder() const { return kind() == RawFunction::kDynamicInvocationForwarder; } bool IsImplicitGetterOrSetter() const { return kind() == RawFunction::kImplicitGetter || kind() == RawFunction::kImplicitSetter || kind() == RawFunction::kImplicitStaticGetter; } // Returns true iff an implicit closure function has been created // for this function. bool HasImplicitClosureFunction() const { return implicit_closure_function() != null(); } // Returns the closure function implicitly created for this function. If none // exists yet, create one and remember it. Implicit closure functions are // used in VM Closure instances that represent results of tear-off operations. RawFunction* ImplicitClosureFunction() const; void DropUncompiledImplicitClosureFunction() const; // Return the closure implicitly created for this function. // If none exists yet, create one and remember it. RawInstance* ImplicitStaticClosure() const; RawInstance* ImplicitInstanceClosure(const Instance& receiver) const; intptr_t ComputeClosureHash() const; // Redirection information for a redirecting factory. bool IsRedirectingFactory() const; RawType* RedirectionType() const; void SetRedirectionType(const Type& type) const; RawString* RedirectionIdentifier() const; void SetRedirectionIdentifier(const String& identifier) const; RawFunction* RedirectionTarget() const; void SetRedirectionTarget(const Function& target) const; RawFunction* ForwardingTarget() const; void SetForwardingChecks(const Array& checks) const; RawFunction::Kind kind() const { return KindBits::decode(raw_ptr()->kind_tag_); } static RawFunction::Kind kind(RawFunction* function) { return KindBits::decode(function->ptr()->kind_tag_); } RawFunction::AsyncModifier modifier() const { return ModifierBits::decode(raw_ptr()->kind_tag_); } static const char* KindToCString(RawFunction::Kind kind); bool IsGenerativeConstructor() const { return (kind() == RawFunction::kConstructor) && !is_static(); } bool IsImplicitConstructor() const; bool IsFactory() const { return (kind() == RawFunction::kConstructor) && is_static(); } // Whether this function can receive an invocation where the number and names // of arguments have not been checked. bool CanReceiveDynamicInvocation() const { return IsClosureFunction() || IsFfiTrampoline(); } bool IsDynamicFunction(bool allow_abstract = false) const { if (is_static() || (!allow_abstract && is_abstract())) { return false; } switch (kind()) { case RawFunction::kRegularFunction: case RawFunction::kGetterFunction: case RawFunction::kSetterFunction: case RawFunction::kImplicitGetter: case RawFunction::kImplicitSetter: case RawFunction::kMethodExtractor: case RawFunction::kNoSuchMethodDispatcher: case RawFunction::kInvokeFieldDispatcher: case RawFunction::kDynamicInvocationForwarder: return true; case RawFunction::kClosureFunction: case RawFunction::kImplicitClosureFunction: case RawFunction::kSignatureFunction: case RawFunction::kConstructor: case RawFunction::kImplicitStaticGetter: case RawFunction::kFieldInitializer: case RawFunction::kIrregexpFunction: return false; default: UNREACHABLE(); return false; } } bool IsStaticFunction() const { if (!is_static()) { return false; } switch (kind()) { case RawFunction::kRegularFunction: case RawFunction::kGetterFunction: case RawFunction::kSetterFunction: case RawFunction::kImplicitGetter: case RawFunction::kImplicitSetter: case RawFunction::kImplicitStaticGetter: case RawFunction::kFieldInitializer: case RawFunction::kIrregexpFunction: return true; case RawFunction::kClosureFunction: case RawFunction::kImplicitClosureFunction: case RawFunction::kSignatureFunction: case RawFunction::kConstructor: case RawFunction::kMethodExtractor: case RawFunction::kNoSuchMethodDispatcher: case RawFunction::kInvokeFieldDispatcher: case RawFunction::kDynamicInvocationForwarder: return false; default: UNREACHABLE(); return false; } } bool IsInFactoryScope() const; bool NeedsArgumentTypeChecks(Isolate* I) const { if (!I->should_emit_strong_mode_checks()) { return false; } return IsClosureFunction() || !(is_static() || (kind() == RawFunction::kConstructor)); } bool MayHaveUncheckedEntryPoint(Isolate* I) const; TokenPosition token_pos() const { #if defined(DART_PRECOMPILED_RUNTIME) return TokenPosition(); #else return raw_ptr()->token_pos_; #endif } void set_token_pos(TokenPosition value) const; TokenPosition end_token_pos() const { #if defined(DART_PRECOMPILED_RUNTIME) return TokenPosition(); #else return raw_ptr()->end_token_pos_; #endif } void set_end_token_pos(TokenPosition value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else StoreNonPointer(&raw_ptr()->end_token_pos_, value); #endif } intptr_t num_fixed_parameters() const { return RawFunction::PackedNumFixedParameters::decode( raw_ptr()->packed_fields_); } void set_num_fixed_parameters(intptr_t value) const; uint32_t packed_fields() const { return raw_ptr()->packed_fields_; } void set_packed_fields(uint32_t packed_fields) const; bool HasOptionalParameters() const { return RawFunction::PackedNumOptionalParameters::decode( raw_ptr()->packed_fields_) > 0; } bool HasOptionalNamedParameters() const { return HasOptionalParameters() && RawFunction::PackedHasNamedOptionalParameters::decode( raw_ptr()->packed_fields_); } bool HasOptionalPositionalParameters() const { return HasOptionalParameters() && !HasOptionalNamedParameters(); } intptr_t NumOptionalParameters() const { return RawFunction::PackedNumOptionalParameters::decode( raw_ptr()->packed_fields_); } void SetNumOptionalParameters(intptr_t num_optional_parameters, bool are_optional_positional) const; intptr_t NumOptionalPositionalParameters() const { return HasOptionalPositionalParameters() ? NumOptionalParameters() : 0; } intptr_t NumOptionalNamedParameters() const { return HasOptionalNamedParameters() ? NumOptionalParameters() : 0; } intptr_t NumParameters() const; intptr_t NumImplicitParameters() const; #if defined(DART_PRECOMPILED_RUNTIME) #define DEFINE_GETTERS_AND_SETTERS(return_type, type, name) \ static intptr_t name##_offset() { \ UNREACHABLE(); \ return 0; \ } \ return_type name() const { return 0; } \ \ void set_##name(type value) const { UNREACHABLE(); } #else #define DEFINE_GETTERS_AND_SETTERS(return_type, type, name) \ static intptr_t name##_offset() { return OFFSET_OF(RawFunction, name##_); } \ return_type name() const { return raw_ptr()->name##_; } \ \ void set_##name(type value) const { \ StoreNonPointer(&raw_ptr()->name##_, value); \ } #endif JIT_FUNCTION_COUNTERS(DEFINE_GETTERS_AND_SETTERS) #undef DEFINE_GETTERS_AND_SETTERS #if !defined(DART_PRECOMPILED_RUNTIME) intptr_t binary_declaration_offset() const { return RawFunction::BinaryDeclarationOffset::decode( raw_ptr()->binary_declaration_); } void set_binary_declaration_offset(intptr_t value) const { ASSERT(value >= 0); StoreNonPointer(&raw_ptr()->binary_declaration_, RawFunction::BinaryDeclarationOffset::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) intptr_t kernel_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(!is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_kernel_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(!is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } intptr_t bytecode_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_bytecode_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } bool is_declared_in_bytecode() const { #if defined(DART_PRECOMPILED_RUNTIME) return false; #else return RawFunction::IsDeclaredInBytecode::decode( raw_ptr()->binary_declaration_); #endif } #if !defined(DART_PRECOMPILED_RUNTIME) void set_is_declared_in_bytecode(bool value) const { StoreNonPointer(&raw_ptr()->binary_declaration_, RawFunction::IsDeclaredInBytecode::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) void InheritBinaryDeclarationFrom(const Function& src) const; void InheritBinaryDeclarationFrom(const Field& src) const; static const intptr_t kMaxInstructionCount = (1 << 16) - 1; void SetOptimizedInstructionCountClamped(uintptr_t value) const { if (value > kMaxInstructionCount) value = kMaxInstructionCount; set_optimized_instruction_count(value); } void SetOptimizedCallSiteCountClamped(uintptr_t value) const { if (value > kMaxInstructionCount) value = kMaxInstructionCount; set_optimized_call_site_count(value); } void SetKernelDataAndScript(const Script& script, const ExternalTypedData& data, intptr_t offset) const; intptr_t KernelDataProgramOffset() const; RawExternalTypedData* KernelData() const; bool IsOptimizable() const; void SetIsOptimizable(bool value) const; // Whether this function must be optimized immediately and cannot be compiled // with the unoptimizing compiler. Such a function must be sure to not // deoptimize, since we won't generate deoptimization info or register // dependencies. It will be compiled into optimized code immediately when it's // run. bool ForceOptimize() const { if (IsFfiTrampoline()) { return true; } // On DBC we use native calls instead of IR for the view factories (see // kernel_to_il.cc) #if !defined(TARGET_ARCH_DBC) if (IsTypedDataViewFactory()) { return true; } #endif return false; } bool CanBeInlined() const; MethodRecognizer::Kind recognized_kind() const { return RecognizedBits::decode(raw_ptr()->kind_tag_); } void set_recognized_kind(MethodRecognizer::Kind value) const; bool IsRecognized() const { return recognized_kind() != MethodRecognizer::kUnknown; } bool HasOptimizedCode() const; // Whether the function is ready for compiler optimizations. bool ShouldCompilerOptimize() const; // Returns true if the argument counts are valid for calling this function. // Otherwise, it returns false and the reason (if error_message is not NULL). bool AreValidArgumentCounts(intptr_t num_type_arguments, intptr_t num_arguments, intptr_t num_named_arguments, String* error_message) const; // Returns a TypeError if the provided arguments don't match the function // parameter types, NULL otherwise. Assumes AreValidArguments is called first. RawObject* DoArgumentTypesMatch( const Array& args, const ArgumentsDescriptor& arg_names, const TypeArguments& instantiator_type_args) const; // Returns true if the type argument count, total argument count and the names // of optional arguments are valid for calling this function. // Otherwise, it returns false and the reason (if error_message is not NULL). bool AreValidArguments(intptr_t num_type_arguments, intptr_t num_arguments, const Array& argument_names, String* error_message) const; bool AreValidArguments(const ArgumentsDescriptor& args_desc, String* error_message) const; // Fully qualified name uniquely identifying the function under gdb and during // ast printing. The special ':' character, if present, is replaced by '_'. const char* ToFullyQualifiedCString() const; const char* ToLibNamePrefixedQualifiedCString() const; const char* ToQualifiedCString() const; // Returns true if the type of this function is a subtype of the type of // the other function. bool IsSubtypeOf(const Function& other, Heap::Space space) const; bool IsDispatcherOrImplicitAccessor() const { switch (kind()) { case RawFunction::kImplicitGetter: case RawFunction::kImplicitSetter: case RawFunction::kImplicitStaticGetter: case RawFunction::kNoSuchMethodDispatcher: case RawFunction::kInvokeFieldDispatcher: case RawFunction::kDynamicInvocationForwarder: return true; default: return false; } } // Returns true if this function represents an explicit getter function. bool IsGetterFunction() const { return kind() == RawFunction::kGetterFunction; } // Returns true if this function represents an implicit getter function. bool IsImplicitGetterFunction() const { return kind() == RawFunction::kImplicitGetter; } // Returns true if this function represents an explicit setter function. bool IsSetterFunction() const { return kind() == RawFunction::kSetterFunction; } // Returns true if this function represents an implicit setter function. bool IsImplicitSetterFunction() const { return kind() == RawFunction::kImplicitSetter; } // Returns true if this function represents an the initializer for a static or // instance field. The function returns the initial value and the caller is // responsible for setting the field. bool IsFieldInitializer() const { return kind() == RawFunction::kFieldInitializer; } // Returns true if this function represents a (possibly implicit) closure // function. bool IsClosureFunction() const { RawFunction::Kind k = kind(); return (k == RawFunction::kClosureFunction) || (k == RawFunction::kImplicitClosureFunction); } // Returns true if this function represents a generated irregexp function. bool IsIrregexpFunction() const { return kind() == RawFunction::kIrregexpFunction; } // Returns true if this function represents an implicit closure function. bool IsImplicitClosureFunction() const { return kind() == RawFunction::kImplicitClosureFunction; } // Returns true if this function represents a non implicit closure function. bool IsNonImplicitClosureFunction() const { return IsClosureFunction() && !IsImplicitClosureFunction(); } // Returns true if this function represents an implicit static closure // function. bool IsImplicitStaticClosureFunction() const { return IsImplicitClosureFunction() && is_static(); } static bool IsImplicitStaticClosureFunction(RawFunction* func); // Returns true if this function represents an implicit instance closure // function. bool IsImplicitInstanceClosureFunction() const { return IsImplicitClosureFunction() && !is_static(); } // Returns true if this function represents a local function. bool IsLocalFunction() const { return parent_function() != Function::null(); } // Returns true if this function represents a signature function without code. bool IsSignatureFunction() const { return kind() == RawFunction::kSignatureFunction; } static bool IsSignatureFunction(RawFunction* function) { NoSafepointScope no_safepoint; return KindBits::decode(function->ptr()->kind_tag_) == RawFunction::kSignatureFunction; } // Returns true if this function represents an ffi trampoline. bool IsFfiTrampoline() const { return kind() == RawFunction::kFfiTrampoline; } static bool IsFfiTrampoline(RawFunction* function) { NoSafepointScope no_safepoint; return KindBits::decode(function->ptr()->kind_tag_) == RawFunction::kFfiTrampoline; } bool IsAsyncFunction() const { return modifier() == RawFunction::kAsync; } bool IsAsyncClosure() const { return is_generated_body() && Function::Handle(parent_function()).IsAsyncFunction(); } bool IsGenerator() const { return (modifier() & RawFunction::kGeneratorBit) != 0; } bool IsSyncGenerator() const { return modifier() == RawFunction::kSyncGen; } bool IsSyncGenClosure() const { return is_generated_body() && Function::Handle(parent_function()).IsSyncGenerator(); } bool IsGeneratorClosure() const { return is_generated_body() && Function::Handle(parent_function()).IsGenerator(); } bool IsAsyncGenerator() const { return modifier() == RawFunction::kAsyncGen; } bool IsAsyncGenClosure() const { return is_generated_body() && Function::Handle(parent_function()).IsAsyncGenerator(); } bool IsAsyncOrGenerator() const { return modifier() != RawFunction::kNoModifier; } bool IsTypedDataViewFactory() const { if (is_native() && kind() == RawFunction::kConstructor) { // This is a native factory constructor. const Class& klass = Class::Handle(Owner()); return RawObject::IsTypedDataViewClassId(klass.id()); } return false; } DART_WARN_UNUSED_RESULT RawError* VerifyCallEntryPoint() const; DART_WARN_UNUSED_RESULT RawError* VerifyClosurizedEntryPoint() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawFunction)); } static RawFunction* New(const String& name, RawFunction::Kind kind, bool is_static, bool is_const, bool is_abstract, bool is_external, bool is_native, const Object& owner, TokenPosition token_pos, Heap::Space space = Heap::kOld); // Allocates a new Function object representing a closure function // with given kind - kClosureFunction or kImplicitClosureFunction. static RawFunction* NewClosureFunctionWithKind(RawFunction::Kind kind, const String& name, const Function& parent, TokenPosition token_pos, const Object& owner); // Allocates a new Function object representing a closure function. static RawFunction* NewClosureFunction(const String& name, const Function& parent, TokenPosition token_pos); // Allocates a new Function object representing an implicit closure function. static RawFunction* NewImplicitClosureFunction(const String& name, const Function& parent, TokenPosition token_pos); // Allocates a new Function object representing a signature function. // The owner is the scope class of the function type. // The parent is the enclosing function or null if none. static RawFunction* NewSignatureFunction(const Object& owner, const Function& parent, TokenPosition token_pos, Heap::Space space = Heap::kOld); static RawFunction* NewEvalFunction(const Class& owner, const Script& script, bool is_static); RawFunction* CreateMethodExtractor(const String& getter_name) const; RawFunction* GetMethodExtractor(const String& getter_name) const; static bool IsDynamicInvocationForwarderName(const String& name); static RawString* DemangleDynamicInvocationForwarderName(const String& name); #if !defined(DART_PRECOMPILED_RUNTIME) static RawString* CreateDynamicInvocationForwarderName(const String& name); RawFunction* CreateDynamicInvocationForwarder( const String& mangled_name) const; RawFunction* GetDynamicInvocationForwarder(const String& mangled_name, bool allow_add = true) const; RawFunction* GetTargetOfDynamicInvocationForwarder() const; #endif // Slow function, use in asserts to track changes in important library // functions. int32_t SourceFingerprint() const; // Return false and report an error if the fingerprint does not match. bool CheckSourceFingerprint(const char* prefix, int32_t fp) const; // Works with map [deopt-id] -> ICData. void SaveICDataMap( const ZoneGrowableArray& deopt_id_to_ic_data, const Array& edge_counters_array) const; // Uses 'ic_data_array' to populate the table 'deopt_id_to_ic_data'. Clone // ic_data (array and descriptor) if 'clone_ic_data' is true. void RestoreICDataMap(ZoneGrowableArray* deopt_id_to_ic_data, bool clone_ic_data) const; RawArray* ic_data_array() const; void ClearICDataArray() const; RawICData* FindICData(intptr_t deopt_id) const; // Sets deopt reason in all ICData-s with given deopt_id. void SetDeoptReasonForAll(intptr_t deopt_id, ICData::DeoptReasonId reason); void set_modifier(RawFunction::AsyncModifier value) const; // 'WasCompiled' is true if the function was compiled once in this // VM instantiation. It is independent from presence of type feedback // (ic_data_array) and code, which may be loaded from a snapshot. // 'WasExecuted' is true if the usage counter has ever been positive. // 'ProhibitsHoistingCheckClass' is true if this function deoptimized before on // a hoisted check class instruction. // 'ProhibitsBoundsCheckGeneralization' is true if this function deoptimized // before on a generalized bounds check. #define STATE_BITS_LIST(V) \ V(WasCompiled) \ V(WasExecutedBit) \ V(ProhibitsHoistingCheckClass) \ V(ProhibitsBoundsCheckGeneralization) enum StateBits { #define DECLARE_FLAG_POS(Name) k##Name##Pos, STATE_BITS_LIST(DECLARE_FLAG_POS) #undef DECLARE_FLAG_POS }; #define DEFINE_FLAG_BIT(Name) \ class Name##Bit : public BitField {}; STATE_BITS_LIST(DEFINE_FLAG_BIT) #undef DEFINE_FLAG_BIT #define DEFINE_FLAG_ACCESSORS(Name) \ void Set##Name(bool value) const { \ set_state_bits(Name##Bit::update(value, state_bits())); \ } \ bool Name() const { return Name##Bit::decode(state_bits()); } STATE_BITS_LIST(DEFINE_FLAG_ACCESSORS) #undef DEFINE_FLAG_ACCESSORS void SetUsageCounter(intptr_t value) const { if (usage_counter() > 0) { SetWasExecuted(true); } set_usage_counter(value); } bool WasExecuted() const { return (usage_counter() > 0) || WasExecutedBit(); } void SetWasExecuted(bool value) const { SetWasExecutedBit(value); } // static: Considered during class-side or top-level resolution rather than // instance-side resolution. // const: Valid target of a const constructor call. // abstract: Skipped during instance-side resolution. // reflectable: Enumerated by mirrors, invocable by mirrors. False for private // functions of dart: libraries. // debuggable: Valid location of a breakpoint. Synthetic code is not // debuggable. // visible: Frame is included in stack traces. Synthetic code such as // dispatchers is not visible. Synthetic code that can trigger // exceptions such as the outer async functions that create Futures // is visible. // instrinsic: Has a hand-written assembly prologue. // inlinable: Candidate for inlining. False for functions with features we // don't support during inlining (e.g., optional parameters), // functions which are too big, etc. // native: Bridge to C/C++ code. // redirecting: Redirecting generative or factory constructor. // external: Just a declaration that expects to be defined in another patch // file. // generated_body: Has a generated body. // polymorphic_target: A polymorphic method. // has_pragma: Has a @pragma decoration. // no_such_method_forwarder: A stub method that just calls noSuchMethod. #define FOR_EACH_FUNCTION_KIND_BIT(V) \ V(Static, is_static) \ V(Const, is_const) \ V(Abstract, is_abstract) \ V(Reflectable, is_reflectable) \ V(Visible, is_visible) \ V(Debuggable, is_debuggable) \ V(Inlinable, is_inlinable) \ V(Intrinsic, is_intrinsic) \ V(Native, is_native) \ V(Redirecting, is_redirecting) \ V(External, is_external) \ V(GeneratedBody, is_generated_body) \ V(PolymorphicTarget, is_polymorphic_target) \ V(HasPragma, has_pragma) \ V(IsNoSuchMethodForwarder, is_no_such_method_forwarder) #define DEFINE_ACCESSORS(name, accessor_name) \ void set_##accessor_name(bool value) const { \ set_kind_tag(name##Bit::update(value, raw_ptr()->kind_tag_)); \ } \ bool accessor_name() const { return name##Bit::decode(raw_ptr()->kind_tag_); } FOR_EACH_FUNCTION_KIND_BIT(DEFINE_ACCESSORS) #undef DEFINE_ACCESSORS // optimizable: Candidate for going through the optimizing compiler. False for // some functions known to be execute infrequently and functions // which have been de-optimized too many times. bool is_optimizable() const { return RawFunction::OptimizableBit::decode(raw_ptr()->packed_fields_); } void set_is_optimizable(bool value) const { set_packed_fields( RawFunction::OptimizableBit::update(value, raw_ptr()->packed_fields_)); } // Indicates whether this function can be optimized on the background compiler // thread. bool is_background_optimizable() const { return RawFunction::BackgroundOptimizableBit::decode( raw_ptr()->packed_fields_); } void set_is_background_optimizable(bool value) const { set_packed_fields(RawFunction::BackgroundOptimizableBit::update( value, raw_ptr()->packed_fields_)); } private: void set_ic_data_array(const Array& value) const; void SetInstructionsSafe(const Code& value) const; enum KindTagBits { kKindTagPos = 0, kKindTagSize = 5, kRecognizedTagPos = kKindTagPos + kKindTagSize, kRecognizedTagSize = 9, kModifierPos = kRecognizedTagPos + kRecognizedTagSize, kModifierSize = 2, kLastModifierBitPos = kModifierPos + (kModifierSize - 1), // Single bit sized fields start here. #define DECLARE_BIT(name, _) k##name##Bit, FOR_EACH_FUNCTION_KIND_BIT(DECLARE_BIT) #undef DECLARE_BIT kNumTagBits }; COMPILE_ASSERT(MethodRecognizer::kNumRecognizedMethods < (1 << kRecognizedTagSize)); COMPILE_ASSERT(kNumTagBits <= (kBitsPerByte * sizeof(static_cast(0)->kind_tag_))); class KindBits : public BitField {}; class RecognizedBits : public BitField {}; class ModifierBits : public BitField {}; #define DEFINE_BIT(name, _) \ class name##Bit : public BitField {}; FOR_EACH_FUNCTION_KIND_BIT(DEFINE_BIT) #undef DEFINE_BIT void set_name(const String& value) const; void set_kind(RawFunction::Kind value) const; void set_parent_function(const Function& value) const; RawFunction* implicit_closure_function() const; void set_implicit_closure_function(const Function& value) const; RawInstance* implicit_static_closure() const; void set_implicit_static_closure(const Instance& closure) const; RawScript* eval_script() const; void set_eval_script(const Script& value) const; void set_num_optional_parameters(intptr_t value) const; // Encoded value. void set_kind_tag(uint32_t value) const; void set_data(const Object& value) const; static RawFunction* New(Heap::Space space = Heap::kOld); RawString* QualifiedName(NameVisibility name_visibility) const; void BuildSignatureParameters( Thread* thread, Zone* zone, NameVisibility name_visibility, GrowableHandlePtrArray* pieces) const; RawString* BuildSignature(NameVisibility name_visibility) const; // Returns true if the type of the formal parameter at the given position in // this function is contravariant with the type of the other formal parameter // at the given position in the other function. bool IsContravariantParameter(intptr_t parameter_position, const Function& other, intptr_t other_parameter_position, Heap::Space space) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(Function, Object); friend class Class; friend class SnapshotWriter; friend class Parser; // For set_eval_script. // RawFunction::VisitFunctionPointers accesses the private constructor of // Function. friend class RawFunction; friend class ClassFinalizer; // To reset parent_function. friend class Type; // To adjust parent_function. }; class ClosureData : public Object { public: static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawClosureData)); } private: RawContextScope* context_scope() const { return raw_ptr()->context_scope_; } void set_context_scope(const ContextScope& value) const; // Enclosing function of this local function. RawFunction* parent_function() const { return raw_ptr()->parent_function_; } void set_parent_function(const Function& value) const; // Signature type of this closure function. RawType* signature_type() const { return raw_ptr()->signature_type_; } void set_signature_type(const Type& value) const; RawInstance* implicit_static_closure() const { return raw_ptr()->closure_; } void set_implicit_static_closure(const Instance& closure) const; static RawClosureData* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(ClosureData, Object); friend class Class; friend class Function; friend class HeapProfiler; }; class SignatureData : public Object { public: static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawSignatureData)); } private: // Enclosing function of this signature function. RawFunction* parent_function() const { return raw_ptr()->parent_function_; } void set_parent_function(const Function& value) const; // Signature type of this signature function. RawType* signature_type() const { return raw_ptr()->signature_type_; } void set_signature_type(const Type& value) const; static RawSignatureData* New(Heap::Space space = Heap::kOld); FINAL_HEAP_OBJECT_IMPLEMENTATION(SignatureData, Object); friend class Class; friend class Function; friend class HeapProfiler; }; class RedirectionData : public Object { public: static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawRedirectionData)); } private: // The type specifies the class and type arguments of the target constructor. RawType* type() const { return raw_ptr()->type_; } void set_type(const Type& value) const; // The optional identifier specifies a named constructor. RawString* identifier() const { return raw_ptr()->identifier_; } void set_identifier(const String& value) const; // The resolved constructor or factory target of the redirection. RawFunction* target() const { return raw_ptr()->target_; } void set_target(const Function& value) const; static RawRedirectionData* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(RedirectionData, Object); friend class Class; friend class Function; friend class HeapProfiler; }; enum class EntryPointPragma { kAlways, kNever, kGetterOnly, kSetterOnly, kCallOnly }; class FfiTrampolineData : public Object { public: static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawFfiTrampolineData)); } private: // Signature type of this closure function. RawType* signature_type() const { return raw_ptr()->signature_type_; } void set_signature_type(const Type& value) const; RawFunction* c_signature() const { return raw_ptr()->c_signature_; } void set_c_signature(const Function& value) const; RawFunction* callback_target() const { return raw_ptr()->callback_target_; } void set_callback_target(const Function& value) const; RawInstance* callback_exceptional_return() const { return raw_ptr()->callback_exceptional_return_; } void set_callback_exceptional_return(const Instance& value) const; int32_t callback_id() const { return raw_ptr()->callback_id_; } void set_callback_id(int32_t value) const; static RawFfiTrampolineData* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(FfiTrampolineData, Object); friend class Class; friend class Function; friend class HeapProfiler; }; class Field : public Object { public: // The field that this field was cloned from, or this field itself if it isn't // a clone. The purpose of cloning is that the fields the background compiler // sees are consistent. RawField* Original() const; // Set the original field that this field was cloned from. void SetOriginal(const Field& value) const; // Returns whether this field is an original or a clone. bool IsOriginal() const { if (IsNull()) { return true; } NoSafepointScope no_safepoint; return !raw_ptr()->owner_->IsField(); } // Returns a field cloned from 'this'. 'this' is set as the // original field of result. RawField* CloneFromOriginal() const; RawString* name() const { return raw_ptr()->name_; } RawString* UserVisibleName() const; // Same as scrubbed name. virtual RawString* DictionaryName() const { return name(); } bool is_static() const { return StaticBit::decode(raw_ptr()->kind_bits_); } bool is_instance() const { return !is_static(); } bool is_final() const { return FinalBit::decode(raw_ptr()->kind_bits_); } bool is_const() const { return ConstBit::decode(raw_ptr()->kind_bits_); } bool is_reflectable() const { return ReflectableBit::decode(raw_ptr()->kind_bits_); } void set_is_reflectable(bool value) const { ASSERT(IsOriginal()); set_kind_bits(ReflectableBit::update(value, raw_ptr()->kind_bits_)); } bool is_double_initialized() const { return DoubleInitializedBit::decode(raw_ptr()->kind_bits_); } // Called in parser after allocating field, immutable property otherwise. // Marks fields that are initialized with a simple double constant. void set_is_double_initialized(bool value) const { ASSERT(Thread::Current()->IsMutatorThread()); ASSERT(IsOriginal()); set_kind_bits(DoubleInitializedBit::update(value, raw_ptr()->kind_bits_)); } bool initializer_changed_after_initialization() const { return InitializerChangedAfterInitializatonBit::decode( raw_ptr()->kind_bits_); } void set_initializer_changed_after_initialization(bool value) const { set_kind_bits(InitializerChangedAfterInitializatonBit::update( value, raw_ptr()->kind_bits_)); } bool has_pragma() const { return HasPragmaBit::decode(raw_ptr()->kind_bits_); } void set_has_pragma(bool value) const { set_kind_bits(HasPragmaBit::update(value, raw_ptr()->kind_bits_)); } bool is_covariant() const { return CovariantBit::decode(raw_ptr()->kind_bits_); } void set_is_covariant(bool value) const { set_kind_bits(CovariantBit::update(value, raw_ptr()->kind_bits_)); } bool is_generic_covariant_impl() const { return GenericCovariantImplBit::decode(raw_ptr()->kind_bits_); } void set_is_generic_covariant_impl(bool value) const { set_kind_bits( GenericCovariantImplBit::update(value, raw_ptr()->kind_bits_)); } #if !defined(DART_PRECOMPILED_RUNTIME) intptr_t binary_declaration_offset() const { return RawField::BinaryDeclarationOffset::decode( raw_ptr()->binary_declaration_); } void set_binary_declaration_offset(intptr_t value) const { ASSERT(value >= 0); StoreNonPointer(&raw_ptr()->binary_declaration_, RawField::BinaryDeclarationOffset::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) intptr_t kernel_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(!is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_kernel_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(!is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } intptr_t bytecode_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_bytecode_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } bool is_declared_in_bytecode() const { #if defined(DART_PRECOMPILED_RUNTIME) return false; #else return RawField::IsDeclaredInBytecode::decode( raw_ptr()->binary_declaration_); #endif } #if !defined(DART_PRECOMPILED_RUNTIME) void set_is_declared_in_bytecode(bool value) const { StoreNonPointer(&raw_ptr()->binary_declaration_, RawField::IsDeclaredInBytecode::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) void InheritBinaryDeclarationFrom(const Field& src) const; RawExternalTypedData* KernelData() const; intptr_t KernelDataProgramOffset() const; inline intptr_t Offset() const; // Called during class finalization. inline void SetOffset(intptr_t offset_in_bytes) const; inline RawInstance* StaticValue() const; inline void SetStaticValue(const Instance& value, bool save_initial_value = false) const; #ifndef DART_PRECOMPILED_RUNTIME RawInstance* saved_initial_value() const { return raw_ptr()->saved_initial_value_; } inline void set_saved_initial_value(const Instance& value) const; #endif RawClass* Owner() const; RawClass* Origin() const; // Either mixin class, or same as owner(). RawScript* Script() const; RawObject* RawOwner() const; RawAbstractType* type() const { return raw_ptr()->type_; } // Used by class finalizer, otherwise initialized in constructor. void SetFieldType(const AbstractType& value) const; DART_WARN_UNUSED_RESULT RawError* VerifyEntryPoint(EntryPointPragma kind) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawField)); } static RawField* New(const String& name, bool is_static, bool is_final, bool is_const, bool is_reflectable, const Object& owner, const AbstractType& type, TokenPosition token_pos, TokenPosition end_token_pos); static RawField* NewTopLevel(const String& name, bool is_final, bool is_const, const Object& owner, TokenPosition token_pos, TokenPosition end_token_pos); // Allocate new field object, clone values from this field. The // original is specified. RawField* Clone(const Field& original) const; static intptr_t instance_field_offset() { return OFFSET_OF(RawField, value_.offset_); } static intptr_t static_value_offset() { return OFFSET_OF(RawField, value_.static_value_); } static intptr_t kind_bits_offset() { return OFFSET_OF(RawField, kind_bits_); } TokenPosition token_pos() const { return raw_ptr()->token_pos_; } TokenPosition end_token_pos() const { return raw_ptr()->end_token_pos_; } int32_t SourceFingerprint() const; RawString* InitializingExpression() const; bool has_initializer() const { return HasInitializerBit::decode(raw_ptr()->kind_bits_); } // Called by parser after allocating field. void set_has_initializer(bool has_initializer) const { ASSERT(IsOriginal()); ASSERT(Thread::Current()->IsMutatorThread()); set_kind_bits( HasInitializerBit::update(has_initializer, raw_ptr()->kind_bits_)); } StaticTypeExactnessState static_type_exactness_state() const { return StaticTypeExactnessState::Decode( raw_ptr()->static_type_exactness_state_); } void set_static_type_exactness_state(StaticTypeExactnessState state) const { StoreNonPointer(&raw_ptr()->static_type_exactness_state_, state.Encode()); } static intptr_t static_type_exactness_state_offset() { return OFFSET_OF(RawField, static_type_exactness_state_); } // Return class id that any non-null value read from this field is guaranteed // to have or kDynamicCid if such class id is not known. // Stores to this field must update this information hence the name. intptr_t guarded_cid() const { #if defined(DEBUG) // This assertion ensures that the cid seen by the background compiler is // consistent. So the assertion passes if the field is a clone. It also // passes if the field is static, because we don't use field guards on // static fields. Thread* thread = Thread::Current(); ASSERT(!IsOriginal() || is_static() || thread->IsMutatorThread() || thread->IsAtSafepoint()); #endif return raw_ptr()->guarded_cid_; } void set_guarded_cid(intptr_t cid) const { #if defined(DEBUG) Thread* thread = Thread::Current(); ASSERT(!IsOriginal() || is_static() || thread->IsMutatorThread() || thread->IsAtSafepoint()); #endif StoreNonPointer(&raw_ptr()->guarded_cid_, cid); } static intptr_t guarded_cid_offset() { return OFFSET_OF(RawField, guarded_cid_); } // Return the list length that any list stored in this field is guaranteed // to have. If length is kUnknownFixedLength the length has not // been determined. If length is kNoFixedLength this field has multiple // list lengths associated with it and cannot be predicted. intptr_t guarded_list_length() const; void set_guarded_list_length(intptr_t list_length) const; static intptr_t guarded_list_length_offset() { return OFFSET_OF(RawField, guarded_list_length_); } intptr_t guarded_list_length_in_object_offset() const; void set_guarded_list_length_in_object_offset(intptr_t offset) const; static intptr_t guarded_list_length_in_object_offset_offset() { return OFFSET_OF(RawField, guarded_list_length_in_object_offset_); } bool needs_length_check() const { const bool r = guarded_list_length() >= Field::kUnknownFixedLength; ASSERT(!r || is_final()); return r; } const char* GuardedPropertiesAsCString() const; intptr_t UnboxedFieldCid() const { return guarded_cid(); } bool is_unboxing_candidate() const { return UnboxingCandidateBit::decode(raw_ptr()->kind_bits_); } // Default 'true', set to false once optimizing compiler determines it should // be boxed. void set_is_unboxing_candidate(bool b) const { ASSERT(IsOriginal()); set_kind_bits(UnboxingCandidateBit::update(b, raw_ptr()->kind_bits_)); } enum { kUnknownLengthOffset = -1, kUnknownFixedLength = -1, kNoFixedLength = -2, }; // Returns false if any value read from this field is guaranteed to be // not null. // Internally we is_nullable_ field contains either kNullCid (nullable) or // kInvalidCid (non-nullable) instead of boolean. This is done to simplify // guarding sequence in the generated code. bool is_nullable(bool silence_assert = false) const { #if defined(DEBUG) if (!silence_assert) { // Same assert as guarded_cid(), because is_nullable() also needs to be // consistent for the background compiler. Thread* thread = Thread::Current(); ASSERT(!IsOriginal() || is_static() || thread->IsMutatorThread() || thread->IsAtSafepoint()); } #endif return raw_ptr()->is_nullable_ == kNullCid; } void set_is_nullable(bool val) const { ASSERT(Thread::Current()->IsMutatorThread()); StoreNonPointer(&raw_ptr()->is_nullable_, val ? kNullCid : kIllegalCid); } static intptr_t is_nullable_offset() { return OFFSET_OF(RawField, is_nullable_); } // Record store of the given value into this field. May trigger // deoptimization of dependent optimized code. void RecordStore(const Object& value) const; void InitializeGuardedListLengthInObjectOffset() const; // Return the list of optimized code objects that were optimized under // assumptions about guarded class id and nullability of this field. // These code objects must be deoptimized when field's properties change. // Code objects are held weakly via an indirection through WeakProperty. RawArray* dependent_code() const; void set_dependent_code(const Array& array) const; // Add the given code object to the list of dependent ones. void RegisterDependentCode(const Code& code) const; // Deoptimize all dependent code objects. void DeoptimizeDependentCode() const; // Used by background compiler to check consistency of field copy with its // original. bool IsConsistentWith(const Field& field) const; bool IsUninitialized() const; // Run initializer and set field value. DART_WARN_UNUSED_RESULT RawError* Initialize() const; // Run initializer only. DART_WARN_UNUSED_RESULT RawObject* EvaluateInitializer() const; RawFunction* EnsureInitializerFunction() const; RawFunction* InitializerFunction() const { return raw_ptr()->initializer_function_; } void SetInitializerFunction(const Function& initializer) const; bool HasInitializerFunction() const; // For static fields only. Constructs a closure that gets/sets the // field value. RawInstance* GetterClosure() const; RawInstance* SetterClosure() const; RawInstance* AccessorClosure(bool make_setter) const; // Constructs getter and setter names for fields and vice versa. static RawString* GetterName(const String& field_name); static RawString* GetterSymbol(const String& field_name); // Returns String::null() if getter symbol does not exist. static RawString* LookupGetterSymbol(const String& field_name); static RawString* SetterName(const String& field_name); static RawString* SetterSymbol(const String& field_name); // Returns String::null() if setter symbol does not exist. static RawString* LookupSetterSymbol(const String& field_name); static RawString* NameFromGetter(const String& getter_name); static RawString* NameFromSetter(const String& setter_name); static RawString* NameFromInit(const String& init_name); static bool IsGetterName(const String& function_name); static bool IsSetterName(const String& function_name); static bool IsInitName(const String& function_name); private: static void InitializeNew(const Field& result, const String& name, bool is_static, bool is_final, bool is_const, bool is_reflectable, const Object& owner, TokenPosition token_pos, TokenPosition end_token_pos); friend class Interpreter; // Access to bit field. friend class StoreInstanceFieldInstr; // Generated code access to bit field. enum { kConstBit = 0, kStaticBit, kFinalBit, kHasInitializerBit, kUnboxingCandidateBit, kReflectableBit, kDoubleInitializedBit, kInitializerChangedAfterInitializatonBit, kHasPragmaBit, kCovariantBit, kGenericCovariantImplBit, }; class ConstBit : public BitField {}; class StaticBit : public BitField {}; class FinalBit : public BitField {}; class HasInitializerBit : public BitField {}; class UnboxingCandidateBit : public BitField {}; class ReflectableBit : public BitField {}; class DoubleInitializedBit : public BitField {}; class InitializerChangedAfterInitializatonBit : public BitField {}; class HasPragmaBit : public BitField {}; class CovariantBit : public BitField {}; class GenericCovariantImplBit : public BitField {}; // Update guarded cid and guarded length for this field. Returns true, if // deoptimization of dependent code is required. bool UpdateGuardedCidAndLength(const Object& value) const; // Update guarded exactness state for this field. Returns true, if // deoptimization of dependent code is required. // Assumes that guarded cid was already updated. bool UpdateGuardedExactnessState(const Object& value) const; // Force this field's guard to be dynamic and deoptimize dependent code. void ForceDynamicGuardedCidAndLength() const; void set_name(const String& value) const; void set_is_static(bool is_static) const { set_kind_bits(StaticBit::update(is_static, raw_ptr()->kind_bits_)); } void set_is_final(bool is_final) const { set_kind_bits(FinalBit::update(is_final, raw_ptr()->kind_bits_)); } void set_is_const(bool value) const { set_kind_bits(ConstBit::update(value, raw_ptr()->kind_bits_)); } void set_owner(const Object& value) const { StorePointer(&raw_ptr()->owner_, value.raw()); } void set_token_pos(TokenPosition token_pos) const { StoreNonPointer(&raw_ptr()->token_pos_, token_pos); } void set_end_token_pos(TokenPosition token_pos) const { StoreNonPointer(&raw_ptr()->end_token_pos_, token_pos); } void set_kind_bits(uint16_t value) const { StoreNonPointer(&raw_ptr()->kind_bits_, value); } static RawField* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(Field, Object); friend class Class; friend class HeapProfiler; friend class RawField; friend class FieldSerializationCluster; }; class Script : public Object { public: RawString* url() const { return raw_ptr()->url_; } void set_url(const String& value) const; // The actual url which was loaded from disk, if provided by the embedder. RawString* resolved_url() const { return raw_ptr()->resolved_url_; } bool HasSource() const; RawString* Source() const; bool IsPartOfDartColonLibrary() const; void LookupSourceAndLineStarts(Zone* zone) const; RawGrowableObjectArray* GenerateLineNumberArray() const; RawScript::Kind kind() const { return static_cast(raw_ptr()->kind_); } const char* GetKindAsCString() const; intptr_t line_offset() const { return raw_ptr()->line_offset_; } intptr_t col_offset() const { return raw_ptr()->col_offset_; } // The load time in milliseconds since epoch. int64_t load_timestamp() const { return raw_ptr()->load_timestamp_; } RawArray* compile_time_constants() const { return raw_ptr()->compile_time_constants_; } void set_compile_time_constants(const Array& value) const; RawKernelProgramInfo* kernel_program_info() const { return raw_ptr()->kernel_program_info_; } void set_kernel_program_info(const KernelProgramInfo& info) const; intptr_t kernel_script_index() const { return raw_ptr()->kernel_script_index_; } void set_kernel_script_index(const intptr_t kernel_script_index) const; RawTypedData* kernel_string_offsets() const; RawTypedData* line_starts() const; void set_line_starts(const TypedData& value) const; void set_debug_positions(const Array& value) const; void set_yield_positions(const Array& value) const; RawArray* yield_positions() const; RawLibrary* FindLibrary() const; RawString* GetLine(intptr_t line_number, Heap::Space space = Heap::kNew) const; RawString* GetSnippet(TokenPosition from, TokenPosition to) const; RawString* GetSnippet(intptr_t from_line, intptr_t from_column, intptr_t to_line, intptr_t to_column) const; void SetLocationOffset(intptr_t line_offset, intptr_t col_offset) const; intptr_t GetTokenLineUsingLineStarts(TokenPosition token_pos) const; void GetTokenLocation(TokenPosition token_pos, intptr_t* line, intptr_t* column, intptr_t* token_len = NULL) const; // Returns index of first and last token on the given line. Returns both // indices < 0 if no token exists on or after the line. If a token exists // after, but not on given line, returns in *first_token_index the index of // the first token after the line, and a negative value in *last_token_index. void TokenRangeAtLine(intptr_t line_number, TokenPosition* first_token_index, TokenPosition* last_token_index) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawScript)); } static RawScript* New(const String& url, const String& source, RawScript::Kind kind); static RawScript* New(const String& url, const String& resolved_url, const String& source, RawScript::Kind kind); #if !defined(DART_PRECOMPILED_RUNTIME) void LoadSourceFromKernel(const uint8_t* kernel_buffer, intptr_t kernel_buffer_len) const; #endif // !defined(DART_PRECOMPILED_RUNTIME) private: void set_resolved_url(const String& value) const; void set_source(const String& value) const; void set_kind(RawScript::Kind value) const; void set_load_timestamp(int64_t value) const; RawArray* debug_positions() const; static RawScript* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(Script, Object); friend class Class; friend class Precompiler; }; class DictionaryIterator : public ValueObject { public: explicit DictionaryIterator(const Library& library); bool HasNext() const { return next_ix_ < size_; } // Returns next non-null raw object. RawObject* GetNext(); private: void MoveToNextObject(); const Array& array_; const int size_; // Number of elements to iterate over. int next_ix_; // Index of next element. friend class ClassDictionaryIterator; friend class LibraryPrefixIterator; DISALLOW_COPY_AND_ASSIGN(DictionaryIterator); }; class ClassDictionaryIterator : public DictionaryIterator { public: enum IterationKind { // TODO(hausner): fix call sites that use kIteratePrivate. There is only // one top-level class per library left, not an array to iterate over. kIteratePrivate, kNoIteratePrivate }; ClassDictionaryIterator(const Library& library, IterationKind kind = kNoIteratePrivate); bool HasNext() const { return (next_ix_ < size_) || !toplevel_class_.IsNull(); } // Returns a non-null raw class. RawClass* GetNextClass(); private: void MoveToNextClass(); Class& toplevel_class_; DISALLOW_COPY_AND_ASSIGN(ClassDictionaryIterator); }; class LibraryPrefixIterator : public DictionaryIterator { public: explicit LibraryPrefixIterator(const Library& library); RawLibraryPrefix* GetNext(); private: void Advance(); DISALLOW_COPY_AND_ASSIGN(LibraryPrefixIterator); }; class Library : public Object { public: RawString* name() const { return raw_ptr()->name_; } void SetName(const String& name) const; RawString* url() const { return raw_ptr()->url_; } RawString* private_key() const { return raw_ptr()->private_key_; } bool LoadNotStarted() const { return raw_ptr()->load_state_ == RawLibrary::kAllocated; } bool LoadRequested() const { return raw_ptr()->load_state_ == RawLibrary::kLoadRequested; } bool LoadInProgress() const { return raw_ptr()->load_state_ == RawLibrary::kLoadInProgress; } void SetLoadRequested() const; void SetLoadInProgress() const; bool Loaded() const { return raw_ptr()->load_state_ == RawLibrary::kLoaded; } void SetLoaded() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawLibrary)); } static RawLibrary* New(const String& url); RawObject* Invoke(const String& selector, const Array& arguments, const Array& argument_names, bool respect_reflectable = true, bool check_is_entrypoint = false) const; RawObject* InvokeGetter(const String& selector, bool throw_nsm_if_absent, bool respect_reflectable = true, bool check_is_entrypoint = false) const; RawObject* InvokeSetter(const String& selector, const Instance& argument, bool respect_reflectable = true, bool check_is_entrypoint = false) const; // Evaluate the given expression as if it appeared in an top-level method of // this library and return the resulting value, or an error object if // evaluating the expression fails. The method has the formal (type) // parameters given in (type_)param_names, and is invoked with the (type) // argument values given in (type_)param_values. RawObject* EvaluateCompiledExpression( const uint8_t* kernel_bytes, intptr_t kernel_length, const Array& type_definitions, const Array& param_values, const TypeArguments& type_param_values) const; // Library scope name dictionary. // // TODO(turnidge): The Lookup functions are not consistent in how // they deal with private names. Go through and make them a bit // more regular. void AddClass(const Class& cls) const; void AddObject(const Object& obj, const String& name) const; RawObject* LookupReExport(const String& name, ZoneGrowableArray* visited = NULL) const; RawObject* LookupObjectAllowPrivate(const String& name) const; RawObject* LookupLocalOrReExportObject(const String& name) const; RawObject* LookupImportedObject(const String& name) const; RawClass* LookupClass(const String& name) const; RawClass* LookupClassAllowPrivate(const String& name) const; RawClass* SlowLookupClassAllowMultiPartPrivate(const String& name) const; RawClass* LookupLocalClass(const String& name) const; RawField* LookupFieldAllowPrivate(const String& name) const; RawField* LookupLocalField(const String& name) const; RawFunction* LookupFunctionAllowPrivate(const String& name) const; RawFunction* LookupLocalFunction(const String& name) const; RawLibraryPrefix* LookupLocalLibraryPrefix(const String& name) const; // Look up a Script based on a url. If 'useResolvedUri' is not provided or is // false, 'url' should have a 'dart:' scheme for Dart core libraries, // a 'package:' scheme for packages, and 'file:' scheme otherwise. // // If 'useResolvedUri' is true, 'url' should have a 'org-dartlang-sdk:' scheme // for Dart core libraries and a 'file:' scheme otherwise. RawScript* LookupScript(const String& url, bool useResolvedUri = false) const; RawArray* LoadedScripts() const; // Resolve name in the scope of this library. First check the cache // of already resolved names for this library. Then look in the // local dictionary for the unmangled name N, the getter name get:N // and setter name set:N. // If the local dictionary contains no entry for these names, // look in the scopes of all libraries that are imported // without a library prefix. RawObject* ResolveName(const String& name) const; void AddAnonymousClass(const Class& cls) const; void AddExport(const Namespace& ns) const; void AddClassMetadata(const Class& cls, const Object& tl_owner, TokenPosition token_pos, intptr_t kernel_offset, intptr_t bytecode_offset) const; void AddFieldMetadata(const Field& field, TokenPosition token_pos, intptr_t kernel_offset, intptr_t bytecode_offset) const; void AddFunctionMetadata(const Function& func, TokenPosition token_pos, intptr_t kernel_offset, intptr_t bytecode_offset) const; void AddLibraryMetadata(const Object& tl_owner, TokenPosition token_pos, intptr_t kernel_offset, intptr_t bytecode_offset) const; void AddTypeParameterMetadata(const TypeParameter& param, TokenPosition token_pos) const; void CloneMetadataFrom(const Library& from_library, const Function& from_fun, const Function& to_fun) const; RawObject* GetMetadata(const Object& obj) const; RawArray* GetExtendedMetadata(const Object& obj, intptr_t count) const; // Tries to finds a @pragma annotation on [object]. // // If successful returns `true`. If an error happens during constant // evaluation, returns `false. // // If [only_core] is true, then the annotations on the object will only // be inspected if it is part of a core library. // // WARNING: If the isolate received an [UnwindError] this function will not // return and rather unwinds until the enclosing setjmp() handler. static bool FindPragma(Thread* T, bool only_core, const Object& object, const String& pragma_name, Object* options); RawClass* toplevel_class() const { return raw_ptr()->toplevel_class_; } void set_toplevel_class(const Class& value) const; RawGrowableObjectArray* owned_scripts() const { return raw_ptr()->owned_scripts_; } // Library imports. RawArray* imports() const { return raw_ptr()->imports_; } RawArray* exports() const { return raw_ptr()->exports_; } void AddImport(const Namespace& ns) const; intptr_t num_imports() const { return raw_ptr()->num_imports_; } RawNamespace* ImportAt(intptr_t index) const; RawLibrary* ImportLibraryAt(intptr_t index) const; void DropDependenciesAndCaches() const; // Resolving native methods for script loaded in the library. Dart_NativeEntryResolver native_entry_resolver() const { return raw_ptr()->native_entry_resolver_; } void set_native_entry_resolver(Dart_NativeEntryResolver value) const { StoreNonPointer(&raw_ptr()->native_entry_resolver_, value); } Dart_NativeEntrySymbol native_entry_symbol_resolver() const { return raw_ptr()->native_entry_symbol_resolver_; } void set_native_entry_symbol_resolver( Dart_NativeEntrySymbol native_symbol_resolver) const { StoreNonPointer(&raw_ptr()->native_entry_symbol_resolver_, native_symbol_resolver); } bool is_in_fullsnapshot() const { return raw_ptr()->is_in_fullsnapshot_; } void set_is_in_fullsnapshot(bool value) const { StoreNonPointer(&raw_ptr()->is_in_fullsnapshot_, value); } RawString* PrivateName(const String& name) const; intptr_t index() const { return raw_ptr()->index_; } void set_index(intptr_t value) const { StoreNonPointer(&raw_ptr()->index_, value); } void Register(Thread* thread) const; static void RegisterLibraries(Thread* thread, const GrowableObjectArray& libs); bool IsDebuggable() const { return raw_ptr()->debuggable_; } void set_debuggable(bool value) const { StoreNonPointer(&raw_ptr()->debuggable_, value); } bool is_dart_scheme() const { return raw_ptr()->is_dart_scheme_; } void set_is_dart_scheme(bool value) const { StoreNonPointer(&raw_ptr()->is_dart_scheme_, value); } // Includes 'dart:async', 'dart:typed_data', etc. bool IsAnyCoreLibrary() const; inline intptr_t UrlHash() const; RawExternalTypedData* kernel_data() const { return raw_ptr()->kernel_data_; } void set_kernel_data(const ExternalTypedData& data) const; #if !defined(DART_PRECOMPILED_RUNTIME) intptr_t binary_declaration_offset() const { return RawLibrary::BinaryDeclarationOffset::decode( raw_ptr()->binary_declaration_); } void set_binary_declaration_offset(intptr_t value) const { ASSERT(value >= 0); StoreNonPointer(&raw_ptr()->binary_declaration_, RawLibrary::BinaryDeclarationOffset::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) intptr_t kernel_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(!is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_kernel_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(!is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } intptr_t bytecode_offset() const { #if defined(DART_PRECOMPILED_RUNTIME) return 0; #else ASSERT(is_declared_in_bytecode()); return binary_declaration_offset(); #endif } void set_bytecode_offset(intptr_t value) const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); #else ASSERT(is_declared_in_bytecode()); set_binary_declaration_offset(value); #endif } bool is_declared_in_bytecode() const { #if defined(DART_PRECOMPILED_RUNTIME) return false; #else return RawLibrary::IsDeclaredInBytecode::decode( raw_ptr()->binary_declaration_); #endif } #if !defined(DART_PRECOMPILED_RUNTIME) void set_is_declared_in_bytecode(bool value) const { StoreNonPointer(&raw_ptr()->binary_declaration_, RawLibrary::IsDeclaredInBytecode::update( value, raw_ptr()->binary_declaration_)); } #endif // !defined(DART_PRECOMPILED_RUNTIME) static RawLibrary* LookupLibrary(Thread* thread, const String& url); static RawLibrary* GetLibrary(intptr_t index); static void InitCoreLibrary(Isolate* isolate); static void InitNativeWrappersLibrary(Isolate* isolate, bool is_kernel_file); static RawLibrary* AsyncLibrary(); static RawLibrary* ConvertLibrary(); static RawLibrary* CoreLibrary(); static RawLibrary* CollectionLibrary(); static RawLibrary* DeveloperLibrary(); static RawLibrary* FfiLibrary(); static RawLibrary* InternalLibrary(); static RawLibrary* IsolateLibrary(); static RawLibrary* MathLibrary(); #if !defined(DART_PRECOMPILED_RUNTIME) static RawLibrary* MirrorsLibrary(); #endif static RawLibrary* NativeWrappersLibrary(); static RawLibrary* ProfilerLibrary(); static RawLibrary* TypedDataLibrary(); static RawLibrary* VMServiceLibrary(); static RawLibrary* WasmLibrary(); // Eagerly compile all classes and functions in the library. static RawError* CompileAll(bool ignore_error = false); #if !defined(DART_PRECOMPILED_RUNTIME) // Finalize all classes in all libraries. static RawError* FinalizeAllClasses(); // Eagerly read all bytecode. static RawError* ReadAllBytecode(); #endif #if defined(DART_NO_SNAPSHOT) // Checks function fingerprints. Prints mismatches and aborts if // mismatch found. static void CheckFunctionFingerprints(); #endif // defined(DART_NO_SNAPSHOT). static bool IsPrivate(const String& name); // Construct the full name of a corelib member. static const String& PrivateCoreLibName(const String& member); // Returns true if [name] matches full name of corelib [member]. static bool IsPrivateCoreLibName(const String& name, const String& member); // Lookup class in the core lib which also contains various VM // helper methods and classes. Allow look up of private classes. static RawClass* LookupCoreClass(const String& class_name); // Return Function::null() if function does not exist in libs. static RawFunction* GetFunction(const GrowableArray& libs, const char* class_name, const char* function_name); // Character used to indicate a private identifier. static const char kPrivateIdentifierStart = '_'; // Character used to separate private identifiers from // the library-specific key. static const char kPrivateKeySeparator = '@'; void CheckReload(const Library& replacement, IsolateReloadContext* context) const; // Returns a closure of top level function 'name' in the exported namespace // of this library. If a top level function 'name' does not exist we look // for a top level getter 'name' that returns a closure. RawObject* GetFunctionClosure(const String& name) const; // Ensures that all top-level functions and variables (fields) are loaded. void EnsureTopLevelClassIsFinalized() const; private: static const int kInitialImportsCapacity = 4; static const int kImportsCapacityIncrement = 8; static RawLibrary* New(); // These methods are only used by the Precompiler to obfuscate // the name and url. void set_name(const String& name) const; void set_url(const String& url) const; void set_num_imports(intptr_t value) const; bool HasExports() const; RawArray* loaded_scripts() const { return raw_ptr()->loaded_scripts_; } RawGrowableObjectArray* metadata() const { return raw_ptr()->metadata_; } void set_metadata(const GrowableObjectArray& value) const; RawArray* dictionary() const { return raw_ptr()->dictionary_; } void InitClassDictionary() const; RawArray* resolved_names() const { return raw_ptr()->resolved_names_; } bool LookupResolvedNamesCache(const String& name, Object* obj) const; void AddToResolvedNamesCache(const String& name, const Object& obj) const; void InitResolvedNamesCache() const; void ClearResolvedNamesCache() const; void InvalidateResolvedName(const String& name) const; void InvalidateResolvedNamesCache() const; RawArray* exported_names() const { return raw_ptr()->exported_names_; } bool LookupExportedNamesCache(const String& name, Object* obj) const; void AddToExportedNamesCache(const String& name, const Object& obj) const; void InitExportedNamesCache() const; void ClearExportedNamesCache() const; static void InvalidateExportedNamesCaches(); void InitImportList() const; void RehashDictionary(const Array& old_dict, intptr_t new_dict_size) const; static RawLibrary* NewLibraryHelper(const String& url, bool import_core_lib); RawObject* LookupEntry(const String& name, intptr_t* index) const; RawObject* LookupLocalObjectAllowPrivate(const String& name) const; RawObject* LookupLocalObject(const String& name) const; void AllocatePrivateKey() const; RawString* MakeMetadataName(const Object& obj) const; RawField* GetMetadataField(const String& metaname) const; void AddMetadata(const Object& owner, const String& name, TokenPosition token_pos, intptr_t kernel_offset, intptr_t bytecode_offset) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(Library, Object); friend class Bootstrap; friend class Class; friend class Debugger; friend class DictionaryIterator; friend class Isolate; friend class LibraryDeserializationCluster; friend class Namespace; friend class Object; friend class Precompiler; }; // A Namespace contains the names in a library dictionary, filtered by // the show/hide combinators. class Namespace : public Object { public: RawLibrary* library() const { return raw_ptr()->library_; } RawArray* show_names() const { return raw_ptr()->show_names_; } RawArray* hide_names() const { return raw_ptr()->hide_names_; } void AddMetadata(const Object& owner, TokenPosition token_pos, intptr_t kernel_offset = 0); RawObject* GetMetadata() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawNamespace)); } bool HidesName(const String& name) const; RawObject* Lookup(const String& name, ZoneGrowableArray* trail = NULL) const; static RawNamespace* New(const Library& library, const Array& show_names, const Array& hide_names); private: static RawNamespace* New(); RawField* metadata_field() const { return raw_ptr()->metadata_field_; } void set_metadata_field(const Field& value) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(Namespace, Object); friend class Class; friend class Precompiler; }; class KernelProgramInfo : public Object { public: static RawKernelProgramInfo* New(const TypedData& string_offsets, const ExternalTypedData& string_data, const TypedData& canonical_names, const ExternalTypedData& metadata_payload, const ExternalTypedData& metadata_mappings, const ExternalTypedData& constants_table, const Array& scripts, const Array& libraries_cache, const Array& classes_cache, const uint32_t binary_version); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawKernelProgramInfo)); } RawTypedData* string_offsets() const { return raw_ptr()->string_offsets_; } RawExternalTypedData* string_data() const { return raw_ptr()->string_data_; } RawTypedData* canonical_names() const { return raw_ptr()->canonical_names_; } RawExternalTypedData* metadata_payloads() const { return raw_ptr()->metadata_payloads_; } RawExternalTypedData* metadata_mappings() const { return raw_ptr()->metadata_mappings_; } RawExternalTypedData* constants_table() const { return raw_ptr()->constants_table_; } void set_constants_table(const ExternalTypedData& value) const; RawArray* scripts() const { return raw_ptr()->scripts_; } void set_scripts(const Array& scripts) const; RawArray* constants() const { return raw_ptr()->constants_; } void set_constants(const Array& constants) const; uint32_t kernel_binary_version() const { return raw_ptr()->kernel_binary_version_; } void set_kernel_binary_version(uint32_t version) const; // If we load a kernel blob with evaluated constants, then we delay setting // the native names of [Function] objects until we've read the constant table // (since native names are encoded as constants). // // This array will hold the functions which might need their native name set. RawGrowableObjectArray* potential_natives() const { return raw_ptr()->potential_natives_; } void set_potential_natives(const GrowableObjectArray& candidates) const; RawGrowableObjectArray* potential_pragma_functions() const { return raw_ptr()->potential_pragma_functions_; } void set_potential_pragma_functions( const GrowableObjectArray& candidates) const; RawScript* ScriptAt(intptr_t index) const; RawArray* libraries_cache() const { return raw_ptr()->libraries_cache_; } void set_libraries_cache(const Array& cache) const; RawLibrary* LookupLibrary(Thread* thread, const Smi& name_index) const; RawLibrary* InsertLibrary(Thread* thread, const Smi& name_index, const Library& lib) const; RawArray* classes_cache() const { return raw_ptr()->classes_cache_; } void set_classes_cache(const Array& cache) const; RawClass* LookupClass(Thread* thread, const Smi& name_index) const; RawClass* InsertClass(Thread* thread, const Smi& name_index, const Class& klass) const; RawArray* bytecode_component() const { return raw_ptr()->bytecode_component_; } void set_bytecode_component(const Array& bytecode_component) const; private: static RawKernelProgramInfo* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(KernelProgramInfo, Object); friend class Class; }; // ObjectPool contains constants, immediates and addresses referenced by // generated code and deoptimization infos. Each entry has an type associated // with it which is stored in-inline after all the entries. class ObjectPool : public Object { public: using EntryType = compiler::ObjectPoolBuilderEntry::EntryType; using Patchability = compiler::ObjectPoolBuilderEntry::Patchability; using TypeBits = compiler::ObjectPoolBuilderEntry::TypeBits; using PatchableBit = compiler::ObjectPoolBuilderEntry::PatchableBit; struct Entry { Entry() : raw_value_(), type_() {} explicit Entry(const Object* obj) : obj_(obj), type_(EntryType::kTaggedObject) {} Entry(uword value, EntryType info) : raw_value_(value), type_(info) {} union { const Object* obj_; uword raw_value_; }; EntryType type_; }; intptr_t Length() const { return raw_ptr()->length_; } void SetLength(intptr_t value) const { StoreNonPointer(&raw_ptr()->length_, value); } static intptr_t length_offset() { return OFFSET_OF(RawObjectPool, length_); } static intptr_t data_offset() { return OFFSET_OF_RETURNED_VALUE(RawObjectPool, data); } static intptr_t element_offset(intptr_t index) { return OFFSET_OF_RETURNED_VALUE(RawObjectPool, data) + sizeof(RawObjectPool::Entry) * index; } struct ArrayLayout { static intptr_t elements_start_offset() { return ObjectPool::data_offset(); } static constexpr intptr_t kElementSize = sizeof(RawObjectPool::Entry); }; EntryType TypeAt(intptr_t index) const { return TypeBits::decode(raw_ptr()->entry_bits()[index]); } Patchability PatchableAt(intptr_t index) const { return PatchableBit::decode(raw_ptr()->entry_bits()[index]); } void SetTypeAt(intptr_t index, EntryType type, Patchability patchable) const { const uint8_t bits = PatchableBit::encode(patchable) | TypeBits::encode(type); StoreNonPointer(&raw_ptr()->entry_bits()[index], bits); } RawObject* ObjectAt(intptr_t index) const { ASSERT((TypeAt(index) == EntryType::kTaggedObject) || (TypeAt(index) == EntryType::kNativeEntryData)); return EntryAddr(index)->raw_obj_; } void SetObjectAt(intptr_t index, const Object& obj) const { ASSERT((TypeAt(index) == EntryType::kTaggedObject) || (TypeAt(index) == EntryType::kNativeEntryData) || (TypeAt(index) == EntryType::kImmediate && obj.IsSmi())); StorePointer(&EntryAddr(index)->raw_obj_, obj.raw()); } uword RawValueAt(intptr_t index) const { ASSERT(TypeAt(index) != EntryType::kTaggedObject); return EntryAddr(index)->raw_value_; } void SetRawValueAt(intptr_t index, uword raw_value) const { ASSERT(TypeAt(index) != EntryType::kTaggedObject); StoreNonPointer(&EntryAddr(index)->raw_value_, raw_value); } static intptr_t InstanceSize() { ASSERT(sizeof(RawObjectPool) == OFFSET_OF_RETURNED_VALUE(RawObjectPool, data)); return 0; } static const intptr_t kBytesPerElement = sizeof(RawObjectPool::Entry) + sizeof(uint8_t); static const intptr_t kMaxElements = kSmiMax / kBytesPerElement; static intptr_t InstanceSize(intptr_t len) { // Ensure that variable length data is not adding to the object length. ASSERT(sizeof(RawObjectPool) == (sizeof(RawObject) + (1 * kWordSize))); ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize(sizeof(RawObjectPool) + (len * kBytesPerElement)); } static RawObjectPool* NewFromBuilder( const compiler::ObjectPoolBuilder& builder); static RawObjectPool* New(intptr_t len); void CopyInto(compiler::ObjectPoolBuilder* builder) const; // Returns the pool index from the offset relative to a tagged RawObjectPool*, // adjusting for the tag-bit. static intptr_t IndexFromOffset(intptr_t offset) { ASSERT( Utils::IsAligned(offset + kHeapObjectTag, compiler::target::kWordSize)); return (offset + kHeapObjectTag - data_offset()) / sizeof(RawObjectPool::Entry); } static intptr_t OffsetFromIndex(intptr_t index) { return element_offset(index) - kHeapObjectTag; } void DebugPrint() const; private: RawObjectPool::Entry const* EntryAddr(intptr_t index) const { ASSERT((index >= 0) && (index < Length())); return &raw_ptr()->data()[index]; } FINAL_HEAP_OBJECT_IMPLEMENTATION(ObjectPool, Object); friend class Class; friend class Object; friend class RawObjectPool; }; class Instructions : public Object { public: enum { kSizePos = 0, kSizeSize = 31, kFlagsPos = kSizePos + kSizeSize, kFlagsSize = 1, // Currently, only flag is single entry flag. }; class SizeBits : public BitField {}; class FlagsBits : public BitField {}; // Excludes HeaderSize(). intptr_t Size() const { return SizeBits::decode(raw_ptr()->size_and_flags_); } static intptr_t Size(const RawInstructions* instr) { return SizeBits::decode(instr->ptr()->size_and_flags_); } bool HasSingleEntryPoint() const { return FlagsBits::decode(raw_ptr()->size_and_flags_); } static bool HasSingleEntryPoint(const RawInstructions* instr) { return FlagsBits::decode(instr->ptr()->size_and_flags_); } static bool ContainsPc(RawInstructions* instruction, uword pc) { const uword offset = pc - PayloadStart(instruction); // We use <= instead of < here because the saved-pc can be outside the // instruction stream if the last instruction is a call we don't expect to // return (e.g. because it throws an exception). return offset <= static_cast(Size(instruction)); } uword PayloadStart() const { return PayloadStart(raw()); } uword MonomorphicEntryPoint() const { return MonomorphicEntryPoint(raw()); } uword MonomorphicUncheckedEntryPoint() const { return MonomorphicUncheckedEntryPoint(raw()); } uword EntryPoint() const { return EntryPoint(raw()); } uword UncheckedEntryPoint() const { return UncheckedEntryPoint(raw()); } static uword PayloadStart(const RawInstructions* instr) { return reinterpret_cast(instr->ptr()) + HeaderSize(); } // Note: We keep the checked entrypoint offsets even (emitting NOPs if // necessary) to allow them to be seen as Smis by the GC. #if defined(TARGET_ARCH_IA32) static const intptr_t kMonomorphicEntryOffsetJIT = 6; static const intptr_t kPolymorphicEntryOffsetJIT = 34; static const intptr_t kMonomorphicEntryOffsetAOT = 0; static const intptr_t kPolymorphicEntryOffsetAOT = 0; #elif defined(TARGET_ARCH_X64) static const intptr_t kMonomorphicEntryOffsetJIT = 8; static const intptr_t kPolymorphicEntryOffsetJIT = 40; static const intptr_t kMonomorphicEntryOffsetAOT = 8; static const intptr_t kPolymorphicEntryOffsetAOT = 32; #elif defined(TARGET_ARCH_ARM) static const intptr_t kMonomorphicEntryOffsetJIT = 0; static const intptr_t kPolymorphicEntryOffsetJIT = 40; static const intptr_t kMonomorphicEntryOffsetAOT = 0; static const intptr_t kPolymorphicEntryOffsetAOT = 20; #elif defined(TARGET_ARCH_ARM64) static const intptr_t kMonomorphicEntryOffsetJIT = 8; static const intptr_t kPolymorphicEntryOffsetJIT = 48; static const intptr_t kMonomorphicEntryOffsetAOT = 8; static const intptr_t kPolymorphicEntryOffsetAOT = 28; #elif defined(TARGET_ARCH_DBC) static const intptr_t kMonomorphicEntryOffsetJIT = 0; static const intptr_t kPolymorphicEntryOffsetJIT = 0; static const intptr_t kMonomorphicEntryOffsetAOT = 0; static const intptr_t kPolymorphicEntryOffsetAOT = 0; #else #error Missing entry offsets for current architecture #endif static uword MonomorphicEntryPoint(const RawInstructions* instr) { uword entry = PayloadStart(instr); if (!HasSingleEntryPoint(instr)) { entry += !FLAG_precompiled_mode ? kMonomorphicEntryOffsetJIT : kMonomorphicEntryOffsetAOT; } return entry; } static uword EntryPoint(const RawInstructions* instr) { uword entry = PayloadStart(instr); if (!HasSingleEntryPoint(instr)) { entry += !FLAG_precompiled_mode ? kPolymorphicEntryOffsetJIT : kPolymorphicEntryOffsetAOT; } return entry; } static uword UncheckedEntryPoint(const RawInstructions* instr) { uword entry = PayloadStart(instr) + instr->ptr()->unchecked_entrypoint_pc_offset_; if (!HasSingleEntryPoint(instr)) { entry += !FLAG_precompiled_mode ? kPolymorphicEntryOffsetJIT : kPolymorphicEntryOffsetAOT; } return entry; } static uword MonomorphicUncheckedEntryPoint(const RawInstructions* instr) { uword entry = PayloadStart(instr) + instr->ptr()->unchecked_entrypoint_pc_offset_; if (!HasSingleEntryPoint(instr)) { entry += !FLAG_precompiled_mode ? kMonomorphicEntryOffsetJIT : kMonomorphicEntryOffsetAOT; } return entry; } static const intptr_t kMaxElements = (kMaxInt32 - (sizeof(RawInstructions) + sizeof(RawObject) + (2 * OS::kMaxPreferredCodeAlignment))); static intptr_t InstanceSize() { ASSERT(sizeof(RawInstructions) == OFFSET_OF_RETURNED_VALUE(RawInstructions, data)); return 0; } static intptr_t InstanceSize(intptr_t size) { intptr_t instructions_size = Utils::RoundUp(size, OS::PreferredCodeAlignment()); intptr_t result = instructions_size + HeaderSize(); ASSERT(result % OS::PreferredCodeAlignment() == 0); return result; } static intptr_t HeaderSize() { intptr_t alignment = OS::PreferredCodeAlignment(); intptr_t aligned_size = Utils::RoundUp(sizeof(RawInstructions), alignment); #if !defined(IS_SIMARM_X64) ASSERT(aligned_size == alignment); #endif // !defined(IS_SIMARM_X64) return aligned_size; } static RawInstructions* FromPayloadStart(uword payload_start) { return reinterpret_cast(payload_start - HeaderSize() + kHeapObjectTag); } bool Equals(const Instructions& other) const { return Equals(raw(), other.raw()); } static bool Equals(RawInstructions* a, RawInstructions* b) { if (Size(a) != Size(b)) return false; NoSafepointScope no_safepoint; return memcmp(a->ptr(), b->ptr(), InstanceSize(Size(a))) == 0; } CodeStatistics* stats() const { #if defined(DART_PRECOMPILER) return raw_ptr()->stats_; #else return nullptr; #endif } void set_stats(CodeStatistics* stats) const { #if defined(DART_PRECOMPILER) StoreNonPointer(&raw_ptr()->stats_, stats); #endif } uword unchecked_entrypoint_pc_offset() const { return raw_ptr()->unchecked_entrypoint_pc_offset_; } private: void SetSize(intptr_t value) const { ASSERT(value >= 0); StoreNonPointer(&raw_ptr()->size_and_flags_, SizeBits::update(value, raw_ptr()->size_and_flags_)); } void SetHasSingleEntryPoint(bool value) const { StoreNonPointer(&raw_ptr()->size_and_flags_, FlagsBits::update(value, raw_ptr()->size_and_flags_)); } void set_unchecked_entrypoint_pc_offset(uword value) const { StoreNonPointer(&raw_ptr()->unchecked_entrypoint_pc_offset_, value); } // New is a private method as RawInstruction and RawCode objects should // only be created using the Code::FinalizeCode method. This method creates // the RawInstruction and RawCode objects, sets up the pointer offsets // and links the two in a GC safe manner. static RawInstructions* New(intptr_t size, bool has_single_entry_point, uword unchecked_entrypoint_pc_offset); FINAL_HEAP_OBJECT_IMPLEMENTATION(Instructions, Object); friend class Class; friend class Code; friend class AssemblyImageWriter; friend class BlobImageWriter; friend class ImageWriter; }; class LocalVarDescriptors : public Object { public: intptr_t Length() const; RawString* GetName(intptr_t var_index) const; void SetVar(intptr_t var_index, const String& name, RawLocalVarDescriptors::VarInfo* info) const; void GetInfo(intptr_t var_index, RawLocalVarDescriptors::VarInfo* info) const; static const intptr_t kBytesPerElement = sizeof(RawLocalVarDescriptors::VarInfo); static const intptr_t kMaxElements = RawLocalVarDescriptors::kMaxIndex; static intptr_t InstanceSize() { ASSERT(sizeof(RawLocalVarDescriptors) == OFFSET_OF_RETURNED_VALUE(RawLocalVarDescriptors, names)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize( sizeof(RawLocalVarDescriptors) + (len * kWordSize) // RawStrings for names. + (len * sizeof(RawLocalVarDescriptors::VarInfo))); } static RawLocalVarDescriptors* New(intptr_t num_variables); static const char* KindToCString(RawLocalVarDescriptors::VarInfoKind kind); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(LocalVarDescriptors, Object); friend class Class; friend class Object; }; class PcDescriptors : public Object { public: static const intptr_t kBytesPerElement = 1; static const intptr_t kMaxElements = kMaxInt32 / kBytesPerElement; static intptr_t UnroundedSize(RawPcDescriptors* desc) { return UnroundedSize(desc->ptr()->length_); } static intptr_t UnroundedSize(intptr_t len) { return sizeof(RawPcDescriptors) + len; } static intptr_t InstanceSize() { ASSERT(sizeof(RawPcDescriptors) == OFFSET_OF_RETURNED_VALUE(RawPcDescriptors, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize(UnroundedSize(len)); } static RawPcDescriptors* New(GrowableArray* delta_encoded_data); // Verify (assert) assumptions about pc descriptors in debug mode. void Verify(const Function& function) const; static void PrintHeaderString(); void PrintToJSONObject(JSONObject* jsobj, bool ref) const; // Encode integer in SLEB128 format. static void EncodeInteger(GrowableArray* data, intptr_t value); // Decode SLEB128 encoded integer. Update byte_index to the next integer. intptr_t DecodeInteger(intptr_t* byte_index) const; // We would have a VisitPointers function here to traverse the // pc descriptors table to visit objects if any in the table. // Note: never return a reference to a RawPcDescriptors::PcDescriptorRec // as the object can move. class Iterator : ValueObject { public: Iterator(const PcDescriptors& descriptors, intptr_t kind_mask) : descriptors_(descriptors), kind_mask_(kind_mask), byte_index_(0), cur_pc_offset_(0), cur_kind_(0), cur_deopt_id_(0), cur_token_pos_(0), cur_try_index_(0) {} bool MoveNext() { // Moves to record that matches kind_mask_. while (byte_index_ < descriptors_.Length()) { int32_t merged_kind_try = descriptors_.DecodeInteger(&byte_index_); cur_kind_ = RawPcDescriptors::MergedKindTry::DecodeKind(merged_kind_try); cur_try_index_ = RawPcDescriptors::MergedKindTry::DecodeTryIndex(merged_kind_try); cur_pc_offset_ += descriptors_.DecodeInteger(&byte_index_); if (!FLAG_precompiled_mode) { cur_deopt_id_ += descriptors_.DecodeInteger(&byte_index_); cur_token_pos_ += descriptors_.DecodeInteger(&byte_index_); } if ((cur_kind_ & kind_mask_) != 0) { return true; // Current is valid. } } return false; } uword PcOffset() const { return cur_pc_offset_; } intptr_t DeoptId() const { return cur_deopt_id_; } TokenPosition TokenPos() const { return TokenPosition(cur_token_pos_); } intptr_t TryIndex() const { return cur_try_index_; } RawPcDescriptors::Kind Kind() const { return static_cast(cur_kind_); } private: friend class PcDescriptors; // For nested iterations, starting at element after. explicit Iterator(const Iterator& iter) : ValueObject(), descriptors_(iter.descriptors_), kind_mask_(iter.kind_mask_), byte_index_(iter.byte_index_), cur_pc_offset_(iter.cur_pc_offset_), cur_kind_(iter.cur_kind_), cur_deopt_id_(iter.cur_deopt_id_), cur_token_pos_(iter.cur_token_pos_), cur_try_index_(iter.cur_try_index_) {} const PcDescriptors& descriptors_; const intptr_t kind_mask_; intptr_t byte_index_; intptr_t cur_pc_offset_; intptr_t cur_kind_; intptr_t cur_deopt_id_; intptr_t cur_token_pos_; intptr_t cur_try_index_; }; intptr_t Length() const; bool Equals(const PcDescriptors& other) const { if (Length() != other.Length()) { return false; } NoSafepointScope no_safepoint; return memcmp(raw_ptr(), other.raw_ptr(), InstanceSize(Length())) == 0; } private: static const char* KindAsStr(RawPcDescriptors::Kind kind); static RawPcDescriptors* New(intptr_t length); void SetLength(intptr_t value) const; void CopyData(GrowableArray* data); FINAL_HEAP_OBJECT_IMPLEMENTATION(PcDescriptors, Object); friend class Class; friend class Object; }; class CodeSourceMap : public Object { public: static const intptr_t kBytesPerElement = 1; static const intptr_t kMaxElements = kMaxInt32 / kBytesPerElement; static intptr_t UnroundedSize(RawCodeSourceMap* map) { return UnroundedSize(map->ptr()->length_); } static intptr_t UnroundedSize(intptr_t len) { return sizeof(RawCodeSourceMap) + len; } static intptr_t InstanceSize() { ASSERT(sizeof(RawCodeSourceMap) == OFFSET_OF_RETURNED_VALUE(RawCodeSourceMap, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize(UnroundedSize(len)); } static RawCodeSourceMap* New(intptr_t length); intptr_t Length() const { return raw_ptr()->length_; } uint8_t* Data() const { return UnsafeMutableNonPointer(&raw_ptr()->data()[0]); } bool Equals(const CodeSourceMap& other) const { if (Length() != other.Length()) { return false; } NoSafepointScope no_safepoint; return memcmp(raw_ptr(), other.raw_ptr(), InstanceSize(Length())) == 0; } void PrintToJSONObject(JSONObject* jsobj, bool ref) const; private: void SetLength(intptr_t value) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(CodeSourceMap, Object); friend class Class; friend class Object; }; class StackMap : public Object { public: bool IsObject(intptr_t index) const { ASSERT(InRange(index)); return GetBit(index); } intptr_t Length() const { return raw_ptr()->length_; } uint32_t PcOffset() const { return raw_ptr()->pc_offset_; } void SetPcOffset(uint32_t value) const { ASSERT(value <= kMaxUint32); StoreNonPointer(&raw_ptr()->pc_offset_, value); } intptr_t SlowPathBitCount() const { return raw_ptr()->slow_path_bit_count_; } void SetSlowPathBitCount(intptr_t bit_count) const { ASSERT(bit_count <= kMaxUint16); StoreNonPointer(&raw_ptr()->slow_path_bit_count_, bit_count); } bool Equals(const StackMap& other) const { if (Length() != other.Length()) { return false; } NoSafepointScope no_safepoint; return memcmp(raw_ptr(), other.raw_ptr(), InstanceSize(Length())) == 0; } static const intptr_t kMaxLengthInBytes = kSmiMax; static intptr_t UnroundedSize(RawStackMap* map) { return UnroundedSize(map->ptr()->length_); } static intptr_t UnroundedSize(intptr_t len) { // The stackmap payload is in an array of bytes. intptr_t payload_size = Utils::RoundUp(len, kBitsPerByte) / kBitsPerByte; return sizeof(RawStackMap) + payload_size; } static intptr_t InstanceSize() { ASSERT(sizeof(RawStackMap) == OFFSET_OF_RETURNED_VALUE(RawStackMap, data)); return 0; } static intptr_t InstanceSize(intptr_t length) { return RoundedAllocationSize(UnroundedSize(length)); } static RawStackMap* New(intptr_t pc_offset, BitmapBuilder* bmap, intptr_t register_bit_count); static RawStackMap* New(intptr_t length, intptr_t register_bit_count, intptr_t pc_offset); private: void SetLength(intptr_t length) const { ASSERT(length <= kMaxUint16); StoreNonPointer(&raw_ptr()->length_, length); } bool InRange(intptr_t index) const { return index < Length(); } bool GetBit(intptr_t bit_index) const; void SetBit(intptr_t bit_index, bool value) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(StackMap, Object); friend class BitmapBuilder; friend class Class; }; class ExceptionHandlers : public Object { public: static const intptr_t kInvalidPcOffset = 0; intptr_t num_entries() const; void GetHandlerInfo(intptr_t try_index, ExceptionHandlerInfo* info) const; uword HandlerPCOffset(intptr_t try_index) const; intptr_t OuterTryIndex(intptr_t try_index) const; bool NeedsStackTrace(intptr_t try_index) const; bool IsGenerated(intptr_t try_index) const; void SetHandlerInfo(intptr_t try_index, intptr_t outer_try_index, uword handler_pc_offset, bool needs_stacktrace, bool has_catch_all, TokenPosition token_pos, bool is_generated) const; RawArray* GetHandledTypes(intptr_t try_index) const; void SetHandledTypes(intptr_t try_index, const Array& handled_types) const; bool HasCatchAll(intptr_t try_index) const; static intptr_t InstanceSize() { ASSERT(sizeof(RawExceptionHandlers) == OFFSET_OF_RETURNED_VALUE(RawExceptionHandlers, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { return RoundedAllocationSize(sizeof(RawExceptionHandlers) + (len * sizeof(ExceptionHandlerInfo))); } static RawExceptionHandlers* New(intptr_t num_handlers); static RawExceptionHandlers* New(const Array& handled_types_data); // We would have a VisitPointers function here to traverse the // exception handler table to visit objects if any in the table. private: // Pick somewhat arbitrary maximum number of exception handlers // for a function. This value is used to catch potentially // malicious code. static const intptr_t kMaxHandlers = 1024 * 1024; void set_handled_types_data(const Array& value) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(ExceptionHandlers, Object); friend class Class; friend class Object; }; class Code : public Object { public: // When dual mapping, this returns the executable view. RawInstructions* active_instructions() const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); return NULL; #else return raw_ptr()->active_instructions_; #endif } // When dual mapping, these return the executable view. RawInstructions* instructions() const { return raw_ptr()->instructions_; } static RawInstructions* InstructionsOf(const RawCode* code) { return code->ptr()->instructions_; } static uword EntryPoint(const RawCode* code) { return Instructions::EntryPoint(InstructionsOf(code)); } static intptr_t saved_instructions_offset() { return OFFSET_OF(RawCode, instructions_); } using EntryKind = CodeEntryKind; static intptr_t entry_point_offset(EntryKind kind = EntryKind::kNormal) { switch (kind) { case EntryKind::kNormal: return OFFSET_OF(RawCode, entry_point_); case EntryKind::kUnchecked: return OFFSET_OF(RawCode, unchecked_entry_point_); case EntryKind::kMonomorphic: return OFFSET_OF(RawCode, monomorphic_entry_point_); case EntryKind::kMonomorphicUnchecked: return OFFSET_OF(RawCode, monomorphic_unchecked_entry_point_); default: UNREACHABLE(); } } static intptr_t function_entry_point_offset(EntryKind kind) { switch (kind) { case EntryKind::kNormal: return Function::entry_point_offset(); case EntryKind::kUnchecked: return Function::unchecked_entry_point_offset(); default: ASSERT(false && "Invalid entry kind."); UNREACHABLE(); } } RawObjectPool* object_pool() const { return raw_ptr()->object_pool_; } static intptr_t object_pool_offset() { return OFFSET_OF(RawCode, object_pool_); } intptr_t pointer_offsets_length() const { return PtrOffBits::decode(raw_ptr()->state_bits_); } bool is_optimized() const { return OptimizedBit::decode(raw_ptr()->state_bits_); } void set_is_optimized(bool value) const; static bool IsOptimized(RawCode* code) { return Code::OptimizedBit::decode(code->ptr()->state_bits_); } bool is_force_optimized() const { return ForceOptimizedBit::decode(raw_ptr()->state_bits_); } void set_is_force_optimized(bool value) const; static bool IsForceOptimized(RawCode* code) { return Code::ForceOptimizedBit::decode(code->ptr()->state_bits_); } bool is_alive() const { return AliveBit::decode(raw_ptr()->state_bits_); } void set_is_alive(bool value) const; uword PayloadStart() const { return Instructions::PayloadStart(instructions()); } uword EntryPoint() const { return Instructions::EntryPoint(instructions()); } uword UncheckedEntryPoint() const { return Instructions::UncheckedEntryPoint(instructions()); } uword MonomorphicEntryPoint() const { return Instructions::MonomorphicEntryPoint(instructions()); } uword MonomorphicUncheckedEntryPoint() const { return Instructions::MonomorphicUncheckedEntryPoint(instructions()); } intptr_t Size() const { return Instructions::Size(instructions()); } RawObjectPool* GetObjectPool() const; bool ContainsInstructionAt(uword addr) const { return ContainsInstructionAt(raw(), addr); } static bool ContainsInstructionAt(const RawCode* code, uword addr) { return Instructions::ContainsPc(code->ptr()->instructions_, addr); } // Returns true if there is a debugger breakpoint set in this code object. bool HasBreakpoint() const; RawPcDescriptors* pc_descriptors() const { return raw_ptr()->pc_descriptors_; } void set_pc_descriptors(const PcDescriptors& descriptors) const { ASSERT(descriptors.IsOld()); StorePointer(&raw_ptr()->pc_descriptors_, descriptors.raw()); } RawCodeSourceMap* code_source_map() const { return raw_ptr()->code_source_map_; } void set_code_source_map(const CodeSourceMap& code_source_map) const { ASSERT(code_source_map.IsOld()); StorePointer(&raw_ptr()->code_source_map_, code_source_map.raw()); } // Array of DeoptInfo objects. RawArray* deopt_info_array() const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); return NULL; #else return raw_ptr()->deopt_info_array_; #endif } void set_deopt_info_array(const Array& array) const; #if !defined(DART_PRECOMPILED_RUNTIME) && !defined(DART_PRECOMPILER) RawSmi* variables() const { return raw_ptr()->catch_entry_.variables_; } void set_variables(const Smi& smi) const; #else RawTypedData* catch_entry_moves_maps() const { return raw_ptr()->catch_entry_.catch_entry_moves_maps_; } void set_catch_entry_moves_maps(const TypedData& maps) const; #endif RawArray* stackmaps() const { return raw_ptr()->stackmaps_; } void set_stackmaps(const Array& maps) const; RawStackMap* GetStackMap(uint32_t pc_offset, Array* stackmaps, StackMap* map) const; enum CallKind { kPcRelativeCall = 1, kPcRelativeTailCall = 2, kCallViaCode = 3, }; enum CallEntryPoint { kDefaultEntry, kUncheckedEntry, }; enum SCallTableEntry { kSCallTableKindAndOffset = 0, kSCallTableCodeTarget = 1, kSCallTableFunctionTarget = 2, kSCallTableEntryLength = 3, }; enum class PoolAttachment { kAttachPool, kNotAttachPool, }; class KindField : public BitField {}; class EntryPointField : public BitField {}; class OffsetField : public BitField {}; void set_static_calls_target_table(const Array& value) const; RawArray* static_calls_target_table() const { #if defined(DART_PRECOMPILED_RUNTIME) UNREACHABLE(); return NULL; #else return raw_ptr()->static_calls_target_table_; #endif } RawTypedData* GetDeoptInfoAtPc(uword pc, ICData::DeoptReasonId* deopt_reason, uint32_t* deopt_flags) const; // Returns null if there is no static call at 'pc'. RawFunction* GetStaticCallTargetFunctionAt(uword pc) const; // Returns null if there is no static call at 'pc'. RawCode* GetStaticCallTargetCodeAt(uword pc) const; // Aborts if there is no static call at 'pc'. void SetStaticCallTargetCodeAt(uword pc, const Code& code) const; void SetStubCallTargetCodeAt(uword pc, const Code& code) const; void Disassemble(DisassemblyFormatter* formatter = NULL) const; class Comments : public ZoneAllocated { public: static Comments& New(intptr_t count); intptr_t Length() const; void SetPCOffsetAt(intptr_t idx, intptr_t pc_offset); void SetCommentAt(intptr_t idx, const String& comment); intptr_t PCOffsetAt(intptr_t idx) const; RawString* CommentAt(intptr_t idx) const; private: explicit Comments(const Array& comments); // Layout of entries describing comments. enum { kPCOffsetEntry = 0, // PC offset to a comment as a Smi. kCommentEntry, // Comment text as a String. kNumberOfEntries }; const Array& comments_; friend class Code; DISALLOW_COPY_AND_ASSIGN(Comments); }; const Comments& comments() const; void set_comments(const Comments& comments) const; RawObject* return_address_metadata() const { #if defined(PRODUCT) UNREACHABLE(); return NULL; #else return raw_ptr()->return_address_metadata_; #endif } // Sets |return_address_metadata|. void SetPrologueOffset(intptr_t offset) const; // Returns -1 if no prologue offset is available. intptr_t GetPrologueOffset() const; RawArray* inlined_id_to_function() const; void set_inlined_id_to_function(const Array& value) const; // Provides the call stack at the given pc offset, with the top-of-stack in // the last element and the root function (this) as the first element, along // with the corresponding source positions. Note the token position for each // function except the top-of-stack is the position of the call to the next // function. The stack will be empty if we lack the metadata to produce it, // which happens for stub code. // The pc offset is interpreted as an instruction address (as needed by the // disassembler or the top frame of a profiler sample). void GetInlinedFunctionsAtInstruction( intptr_t pc_offset, GrowableArray* functions, GrowableArray* token_positions) const; // Same as above, expect the pc is interpreted as a return address (as needed // for a stack trace or the bottom frames of a profiler sample). void GetInlinedFunctionsAtReturnAddress( intptr_t pc_offset, GrowableArray* functions, GrowableArray* token_positions) const { GetInlinedFunctionsAtInstruction(pc_offset - 1, functions, token_positions); } NOT_IN_PRODUCT(void PrintJSONInlineIntervals(JSONObject* object) const); void DumpInlineIntervals() const; void DumpSourcePositions() const; RawLocalVarDescriptors* var_descriptors() const { #if defined(PRODUCT) UNREACHABLE(); return NULL; #else return raw_ptr()->var_descriptors_; #endif } void set_var_descriptors(const LocalVarDescriptors& value) const { #if defined(PRODUCT) UNREACHABLE(); #else ASSERT(value.IsOld()); StorePointer(&raw_ptr()->var_descriptors_, value.raw()); #endif } // Will compute local var descriptors if necessary. RawLocalVarDescriptors* GetLocalVarDescriptors() const; RawExceptionHandlers* exception_handlers() const { return raw_ptr()->exception_handlers_; } void set_exception_handlers(const ExceptionHandlers& handlers) const { ASSERT(handlers.IsOld()); StorePointer(&raw_ptr()->exception_handlers_, handlers.raw()); } // WARNING: function() returns the owner which is not guaranteed to be // a Function. It is up to the caller to guarantee it isn't a stub, class, // or something else. // TODO(turnidge): Consider dropping this function and making // everybody use owner(). Currently this function is misused - even // while generating the snapshot. RawFunction* function() const { return reinterpret_cast(raw_ptr()->owner_); } RawObject* owner() const { return raw_ptr()->owner_; } void set_owner(const Object& owner) const { ASSERT(owner.IsFunction() || owner.IsClass() || owner.IsAbstractType()); StorePointer(&raw_ptr()->owner_, owner.raw()); } static intptr_t owner_offset() { return OFFSET_OF(RawCode, owner_); } // We would have a VisitPointers function here to traverse all the // embedded objects in the instructions using pointer_offsets. static const intptr_t kBytesPerElement = sizeof(reinterpret_cast(0)->data()[0]); static const intptr_t kMaxElements = kSmiMax / kBytesPerElement; static intptr_t InstanceSize() { ASSERT(sizeof(RawCode) == OFFSET_OF_RETURNED_VALUE(RawCode, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize(sizeof(RawCode) + (len * kBytesPerElement)); } #if !defined(DART_PRECOMPILED_RUNTIME) // Finalizes the generated code, by generating various kinds of metadata (e.g. // stack maps, pc descriptors, ...) and attach them to a newly generated // [Code] object. // // If Code::PoolAttachment::kAttachPool is specified for [pool_attachment] // then a new [ObjectPool] will be attached to the code object as well. // Otherwise the caller is responsible for doing this via // `Object::set_object_pool()`. static RawCode* FinalizeCode(FlowGraphCompiler* compiler, compiler::Assembler* assembler, PoolAttachment pool_attachment, bool optimized, CodeStatistics* stats); // Notifies all active [CodeObserver]s. static void NotifyCodeObservers(const Code& code, bool optimized); static void NotifyCodeObservers(const Function& function, const Code& code, bool optimized); static void NotifyCodeObservers(const char* name, const Code& code, bool optimized); // Calls [FinalizeCode] and also notifies [CodeObserver]s. static RawCode* FinalizeCodeAndNotify(const Function& function, FlowGraphCompiler* compiler, compiler::Assembler* assembler, PoolAttachment pool_attachment, bool optimized = false, CodeStatistics* stats = nullptr); static RawCode* FinalizeCodeAndNotify(const char* name, FlowGraphCompiler* compiler, compiler::Assembler* assembler, PoolAttachment pool_attachment, bool optimized = false, CodeStatistics* stats = nullptr); #endif static RawCode* LookupCode(uword pc); static RawCode* LookupCodeInVmIsolate(uword pc); static RawCode* FindCode(uword pc, int64_t timestamp); int32_t GetPointerOffsetAt(int index) const { NoSafepointScope no_safepoint; return *PointerOffsetAddrAt(index); } TokenPosition GetTokenIndexOfPC(uword pc) const; // Find pc, return 0 if not found. uword GetPcForDeoptId(intptr_t deopt_id, RawPcDescriptors::Kind kind) const; intptr_t GetDeoptIdForOsr(uword pc) const; const char* Name() const; const char* QualifiedName() const; int64_t compile_timestamp() const { #if defined(PRODUCT) return 0; #else return raw_ptr()->compile_timestamp_; #endif } bool IsStubCode() const; bool IsAllocationStubCode() const; bool IsTypeTestStubCode() const; bool IsFunctionCode() const; void DisableDartCode() const; void DisableStubCode() const; void Enable() const { if (!IsDisabled()) return; ASSERT(Thread::Current()->IsMutatorThread()); ASSERT(instructions() != active_instructions()); SetActiveInstructions(Instructions::Handle(instructions())); } bool IsDisabled() const { return instructions() != active_instructions(); } private: void set_state_bits(intptr_t bits) const; void set_object_pool(RawObjectPool* object_pool) const { StorePointer(&raw_ptr()->object_pool_, object_pool); } friend class RawObject; // For RawObject::SizeFromClass(). friend class RawCode; enum { kOptimizedBit = 0, kForceOptimizedBit = 1, kAliveBit = 2, kPtrOffBit = 3, kPtrOffSize = 29, }; class OptimizedBit : public BitField {}; // Force-optimized is true if the Code was generated for a function with // Function::ForceOptimize(). class ForceOptimizedBit : public BitField {}; class AliveBit : public BitField {}; class PtrOffBits : public BitField {}; class SlowFindRawCodeVisitor : public FindObjectVisitor { public: explicit SlowFindRawCodeVisitor(uword pc) : pc_(pc) {} virtual ~SlowFindRawCodeVisitor() {} // Check if object matches find condition. virtual bool FindObject(RawObject* obj) const; private: const uword pc_; DISALLOW_COPY_AND_ASSIGN(SlowFindRawCodeVisitor); }; static const intptr_t kEntrySize = sizeof(int32_t); // NOLINT void set_compile_timestamp(int64_t timestamp) const { #if defined(PRODUCT) UNREACHABLE(); #else StoreNonPointer(&raw_ptr()->compile_timestamp_, timestamp); #endif } void SetActiveInstructions(const Instructions& instructions) const; void set_instructions(const Instructions& instructions) const { ASSERT(Thread::Current()->IsMutatorThread() || !is_alive()); StorePointer(&raw_ptr()->instructions_, instructions.raw()); } void set_pointer_offsets_length(intptr_t value) { // The number of fixups is limited to 1-billion. ASSERT(Utils::IsUint(30, value)); set_state_bits(PtrOffBits::update(value, raw_ptr()->state_bits_)); } int32_t* PointerOffsetAddrAt(int index) const { ASSERT(index >= 0); ASSERT(index < pointer_offsets_length()); // TODO(iposva): Unit test is missing for this functionality. return &UnsafeMutableNonPointer(raw_ptr()->data())[index]; } void SetPointerOffsetAt(int index, int32_t offset_in_instructions) { NoSafepointScope no_safepoint; *PointerOffsetAddrAt(index) = offset_in_instructions; } intptr_t BinarySearchInSCallTable(uword pc) const; static RawCode* LookupCodeInIsolate(Isolate* isolate, uword pc); // New is a private method as RawInstruction and RawCode objects should // only be created using the Code::FinalizeCode method. This method creates // the RawInstruction and RawCode objects, sets up the pointer offsets // and links the two in a GC safe manner. static RawCode* New(intptr_t pointer_offsets_length); FINAL_HEAP_OBJECT_IMPLEMENTATION(Code, Object); friend class Class; friend class CodeTestHelper; friend class SnapshotWriter; friend class StubCode; // for set_object_pool friend class Precompiler; // for set_object_pool friend class FunctionSerializationCluster; friend class CodeSerializationCluster; friend class StubCode; // for set_object_pool friend class MegamorphicCacheTable; // for set_object_pool friend class CodePatcher; // for set_instructions friend class ProgramVisitor; // for set_instructions // So that the RawFunction pointer visitor can determine whether code the // function points to is optimized. friend class RawFunction; friend class CallSiteResetter; }; class Bytecode : public Object { public: uword instructions() const { return raw_ptr()->instructions_; } uword PayloadStart() const { return instructions(); } intptr_t Size() const { return raw_ptr()->instructions_size_; } RawObjectPool* object_pool() const { return raw_ptr()->object_pool_; } bool ContainsInstructionAt(uword addr) const { return RawBytecode::ContainsPC(raw(), addr); } RawPcDescriptors* pc_descriptors() const { return raw_ptr()->pc_descriptors_; } void set_pc_descriptors(const PcDescriptors& descriptors) const { ASSERT(descriptors.IsOld()); StorePointer(&raw_ptr()->pc_descriptors_, descriptors.raw()); } void Disassemble(DisassemblyFormatter* formatter = NULL) const; RawExceptionHandlers* exception_handlers() const { return raw_ptr()->exception_handlers_; } void set_exception_handlers(const ExceptionHandlers& handlers) const { ASSERT(handlers.IsOld()); StorePointer(&raw_ptr()->exception_handlers_, handlers.raw()); } RawFunction* function() const { return raw_ptr()->function_; } void set_function(const Function& function) const { ASSERT(function.IsOld()); StorePointer(&raw_ptr()->function_, function.raw()); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawBytecode)); } static RawBytecode* New(uword instructions, intptr_t instructions_size, intptr_t instructions_offset, const ObjectPool& object_pool); RawExternalTypedData* GetBinary(Zone* zone) const; TokenPosition GetTokenIndexOfPC(uword return_address) const; intptr_t GetTryIndexAtPc(uword return_address) const; // Return the pc of the first 'DebugCheck' opcode of the bytecode. // Return 0 if none is found. uword GetFirstDebugCheckOpcodePc() const; // Return the pc after the first 'debug checked' opcode in the range. // Return 0 if none is found. uword GetDebugCheckedOpcodeReturnAddress(uword from_offset, uword to_offset) const; intptr_t instructions_binary_offset() const { return raw_ptr()->instructions_binary_offset_; } void set_instructions_binary_offset(intptr_t value) const { StoreNonPointer(&raw_ptr()->instructions_binary_offset_, value); } intptr_t source_positions_binary_offset() const { return raw_ptr()->source_positions_binary_offset_; } void set_source_positions_binary_offset(intptr_t value) const { StoreNonPointer(&raw_ptr()->source_positions_binary_offset_, value); } bool HasSourcePositions() const { return (source_positions_binary_offset() != 0); } intptr_t local_variables_binary_offset() const { return raw_ptr()->local_variables_binary_offset_; } void set_local_variables_binary_offset(intptr_t value) const { StoreNonPointer(&raw_ptr()->local_variables_binary_offset_, value); } bool HasLocalVariablesInfo() const { return (local_variables_binary_offset() != 0); } RawLocalVarDescriptors* var_descriptors() const { #if defined(PRODUCT) UNREACHABLE(); return nullptr; #else return raw_ptr()->var_descriptors_; #endif } void set_var_descriptors(const LocalVarDescriptors& value) const { #if defined(PRODUCT) UNREACHABLE(); #else ASSERT(value.IsOld()); StorePointer(&raw_ptr()->var_descriptors_, value.raw()); #endif } // Will compute local var descriptors if necessary. RawLocalVarDescriptors* GetLocalVarDescriptors() const; const char* Name() const; const char* QualifiedName() const; const char* FullyQualifiedName() const; class SlowFindRawBytecodeVisitor : public FindObjectVisitor { public: explicit SlowFindRawBytecodeVisitor(uword pc) : pc_(pc) {} virtual ~SlowFindRawBytecodeVisitor() {} // Check if object matches find condition. virtual bool FindObject(RawObject* obj) const; private: const uword pc_; DISALLOW_COPY_AND_ASSIGN(SlowFindRawBytecodeVisitor); }; static RawBytecode* FindCode(uword pc); private: void set_instructions(uword instructions) const { StoreNonPointer(&raw_ptr()->instructions_, instructions); } void set_instructions_size(intptr_t size) const { StoreNonPointer(&raw_ptr()->instructions_size_, size); } void set_object_pool(const ObjectPool& object_pool) const { StorePointer(&raw_ptr()->object_pool_, object_pool.raw()); } friend class BytecodeDeserializationCluster; friend class RawObject; // For RawObject::SizeFromClass(). friend class RawBytecode; FINAL_HEAP_OBJECT_IMPLEMENTATION(Bytecode, Object); friend class Class; friend class SnapshotWriter; }; class Context : public Object { public: RawContext* parent() const { return raw_ptr()->parent_; } void set_parent(const Context& parent) const { StorePointer(&raw_ptr()->parent_, parent.raw()); } static intptr_t parent_offset() { return OFFSET_OF(RawContext, parent_); } intptr_t num_variables() const { return raw_ptr()->num_variables_; } static intptr_t num_variables_offset() { return OFFSET_OF(RawContext, num_variables_); } static intptr_t NumVariables(const RawContext* context) { return context->ptr()->num_variables_; } RawObject* At(intptr_t context_index) const { return *ObjectAddr(context_index); } inline void SetAt(intptr_t context_index, const Object& value) const; intptr_t GetLevel() const; void Dump(int indent = 0) const; static const intptr_t kBytesPerElement = kWordSize; static const intptr_t kMaxElements = kSmiMax / kBytesPerElement; static intptr_t variable_offset(intptr_t context_index) { return OFFSET_OF_RETURNED_VALUE(RawContext, data) + (kWordSize * context_index); } static bool IsValidLength(intptr_t len) { return 0 <= len && len <= compiler::target::Array::kMaxElements; } static intptr_t InstanceSize() { ASSERT(sizeof(RawContext) == OFFSET_OF_RETURNED_VALUE(RawContext, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(IsValidLength(len)); return RoundedAllocationSize(sizeof(RawContext) + (len * kBytesPerElement)); } static RawContext* New(intptr_t num_variables, Heap::Space space = Heap::kNew); private: RawObject* const* ObjectAddr(intptr_t context_index) const { ASSERT((context_index >= 0) && (context_index < num_variables())); return &raw_ptr()->data()[context_index]; } void set_num_variables(intptr_t num_variables) const { StoreNonPointer(&raw_ptr()->num_variables_, num_variables); } FINAL_HEAP_OBJECT_IMPLEMENTATION(Context, Object); friend class Class; friend class Object; }; // The ContextScope class makes it possible to delay the compilation of a local // function until it is invoked. A ContextScope instance collects the local // variables that are referenced by the local function to be compiled and that // belong to the outer scopes, that is, to the local scopes of (possibly nested) // functions enclosing the local function. Each captured variable is represented // by its token position in the source, its name, its type, its allocation index // in the context, and its context level. The function nesting level and loop // nesting level are not preserved, since they are only used until the context // level is assigned. In addition the ContextScope has a field 'is_implicit' // which is true if the ContextScope was created for an implicit closure. class ContextScope : public Object { public: intptr_t num_variables() const { return raw_ptr()->num_variables_; } TokenPosition TokenIndexAt(intptr_t scope_index) const; void SetTokenIndexAt(intptr_t scope_index, TokenPosition token_pos) const; TokenPosition DeclarationTokenIndexAt(intptr_t scope_index) const; void SetDeclarationTokenIndexAt(intptr_t scope_index, TokenPosition declaration_token_pos) const; RawString* NameAt(intptr_t scope_index) const; void SetNameAt(intptr_t scope_index, const String& name) const; bool IsFinalAt(intptr_t scope_index) const; void SetIsFinalAt(intptr_t scope_index, bool is_final) const; bool IsConstAt(intptr_t scope_index) const; void SetIsConstAt(intptr_t scope_index, bool is_const) const; RawAbstractType* TypeAt(intptr_t scope_index) const; void SetTypeAt(intptr_t scope_index, const AbstractType& type) const; RawInstance* ConstValueAt(intptr_t scope_index) const; void SetConstValueAt(intptr_t scope_index, const Instance& value) const; intptr_t ContextIndexAt(intptr_t scope_index) const; void SetContextIndexAt(intptr_t scope_index, intptr_t context_index) const; intptr_t ContextLevelAt(intptr_t scope_index) const; void SetContextLevelAt(intptr_t scope_index, intptr_t context_level) const; static const intptr_t kBytesPerElement = sizeof(RawContextScope::VariableDesc); static const intptr_t kMaxElements = kSmiMax / kBytesPerElement; static intptr_t InstanceSize() { ASSERT(sizeof(RawContextScope) == OFFSET_OF_RETURNED_VALUE(RawContextScope, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize(sizeof(RawContextScope) + (len * kBytesPerElement)); } static RawContextScope* New(intptr_t num_variables, bool is_implicit); private: void set_num_variables(intptr_t num_variables) const { StoreNonPointer(&raw_ptr()->num_variables_, num_variables); } void set_is_implicit(bool is_implicit) const { StoreNonPointer(&raw_ptr()->is_implicit_, is_implicit); } const RawContextScope::VariableDesc* VariableDescAddr(intptr_t index) const { ASSERT((index >= 0) && (index < num_variables())); return raw_ptr()->VariableDescAddr(index); } FINAL_HEAP_OBJECT_IMPLEMENTATION(ContextScope, Object); friend class Class; friend class Object; }; class MegamorphicCache : public Object { public: static const intptr_t kInitialCapacity = 16; static const intptr_t kSpreadFactor = 7; static const double kLoadFactor; enum EntryType { kClassIdIndex, kTargetFunctionIndex, kEntryLength, }; RawArray* buckets() const; void set_buckets(const Array& buckets) const; intptr_t mask() const; void set_mask(intptr_t mask) const; RawString* target_name() const { return raw_ptr()->target_name_; } RawArray* arguments_descriptor() const { return raw_ptr()->args_descriptor_; } intptr_t filled_entry_count() const; void set_filled_entry_count(intptr_t num) const; static intptr_t buckets_offset() { return OFFSET_OF(RawMegamorphicCache, buckets_); } static intptr_t mask_offset() { return OFFSET_OF(RawMegamorphicCache, mask_); } static intptr_t arguments_descriptor_offset() { return OFFSET_OF(RawMegamorphicCache, args_descriptor_); } static RawMegamorphicCache* New(const String& target_name, const Array& arguments_descriptor); void Insert(const Smi& class_id, const Object& target) const; void SwitchToBareInstructions(); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawMegamorphicCache)); } static RawMegamorphicCache* Clone(const MegamorphicCache& from); private: friend class Class; friend class MegamorphicCacheTable; friend class ProgramVisitor; static RawMegamorphicCache* New(); void set_target_name(const String& value) const; void set_arguments_descriptor(const Array& value) const; // The caller must hold Isolate::megamorphic_mutex(). void EnsureCapacityLocked() const; void InsertLocked(const Smi& class_id, const Object& target) const; static inline void SetEntry(const Array& array, intptr_t index, const Smi& class_id, const Object& target); static inline RawObject* GetClassId(const Array& array, intptr_t index); static inline RawObject* GetTargetFunction(const Array& array, intptr_t index); FINAL_HEAP_OBJECT_IMPLEMENTATION(MegamorphicCache, Object); }; class SubtypeTestCache : public Object { public: enum Entries { kTestResult = 0, kInstanceClassIdOrFunction = 1, kInstanceTypeArguments = 2, kInstantiatorTypeArguments = 3, kFunctionTypeArguments = 4, kInstanceParentFunctionTypeArguments = 5, kInstanceDelayedFunctionTypeArguments = 6, kTestEntryLength = 7, }; intptr_t NumberOfChecks() const; void AddCheck(const Object& instance_class_id_or_function, const TypeArguments& instance_type_arguments, const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, const TypeArguments& instance_parent_function_type_arguments, const TypeArguments& instance_delayed_type_arguments, const Bool& test_result) const; void GetCheck(intptr_t ix, Object* instance_class_id_or_function, TypeArguments* instance_type_arguments, TypeArguments* instantiator_type_arguments, TypeArguments* function_type_arguments, TypeArguments* instance_parent_function_type_arguments, TypeArguments* instance_delayed_type_arguments, Bool* test_result) const; void Reset() const; static RawSubtypeTestCache* New(); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawSubtypeTestCache)); } static intptr_t cache_offset() { return OFFSET_OF(RawSubtypeTestCache, cache_); } static void Init(); static void Cleanup(); private: // A VM heap allocated preinitialized empty subtype entry array. static RawArray* cached_array_; RawArray* cache() const { return raw_ptr()->cache_; } void set_cache(const Array& value) const; intptr_t TestEntryLength() const; FINAL_HEAP_OBJECT_IMPLEMENTATION(SubtypeTestCache, Object); friend class Class; friend class Serializer; friend class Deserializer; }; class Error : public Object { public: virtual const char* ToErrorCString() const; private: HEAP_OBJECT_IMPLEMENTATION(Error, Object); }; class ApiError : public Error { public: RawString* message() const { return raw_ptr()->message_; } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawApiError)); } static RawApiError* New(const String& message, Heap::Space space = Heap::kNew); virtual const char* ToErrorCString() const; private: void set_message(const String& message) const; static RawApiError* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(ApiError, Error); friend class Class; }; class LanguageError : public Error { public: Report::Kind kind() const { return static_cast(raw_ptr()->kind_); } // Build, cache, and return formatted message. RawString* FormatMessage() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawLanguageError)); } // A null script means no source and a negative token_pos means no position. static RawLanguageError* NewFormatted(const Error& prev_error, const Script& script, TokenPosition token_pos, bool report_after_token, Report::Kind kind, Heap::Space space, const char* format, ...) PRINTF_ATTRIBUTE(7, 8); static RawLanguageError* NewFormattedV(const Error& prev_error, const Script& script, TokenPosition token_pos, bool report_after_token, Report::Kind kind, Heap::Space space, const char* format, va_list args); static RawLanguageError* New(const String& formatted_message, Report::Kind kind = Report::kError, Heap::Space space = Heap::kNew); virtual const char* ToErrorCString() const; TokenPosition token_pos() const { return raw_ptr()->token_pos_; } private: RawError* previous_error() const { return raw_ptr()->previous_error_; } void set_previous_error(const Error& value) const; RawScript* script() const { return raw_ptr()->script_; } void set_script(const Script& value) const; void set_token_pos(TokenPosition value) const; bool report_after_token() const { return raw_ptr()->report_after_token_; } void set_report_after_token(bool value); void set_kind(uint8_t value) const; RawString* message() const { return raw_ptr()->message_; } void set_message(const String& value) const; RawString* formatted_message() const { return raw_ptr()->formatted_message_; } void set_formatted_message(const String& value) const; static RawLanguageError* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(LanguageError, Error); friend class Class; }; class UnhandledException : public Error { public: RawInstance* exception() const { return raw_ptr()->exception_; } static intptr_t exception_offset() { return OFFSET_OF(RawUnhandledException, exception_); } RawInstance* stacktrace() const { return raw_ptr()->stacktrace_; } static intptr_t stacktrace_offset() { return OFFSET_OF(RawUnhandledException, stacktrace_); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawUnhandledException)); } static RawUnhandledException* New(const Instance& exception, const Instance& stacktrace, Heap::Space space = Heap::kNew); virtual const char* ToErrorCString() const; private: static RawUnhandledException* New(Heap::Space space = Heap::kNew); void set_exception(const Instance& exception) const; void set_stacktrace(const Instance& stacktrace) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(UnhandledException, Error); friend class Class; friend class ObjectStore; }; class UnwindError : public Error { public: bool is_user_initiated() const { return raw_ptr()->is_user_initiated_; } void set_is_user_initiated(bool value) const; RawString* message() const { return raw_ptr()->message_; } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawUnwindError)); } static RawUnwindError* New(const String& message, Heap::Space space = Heap::kNew); virtual const char* ToErrorCString() const; private: void set_message(const String& message) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(UnwindError, Error); friend class Class; }; // Instance is the base class for all instance objects (aka the Object class // in Dart source code. class Instance : public Object { public: // Equality and identity testing. // 1. OperatorEquals: true iff 'this == other' is true in Dart code. // 2. IsIdenticalTo: true iff 'identical(this, other)' is true in Dart code. // 3. CanonicalizeEquals: used to canonicalize compile-time constants, e.g., // using bitwise equality of fields and list elements. // Subclasses where 1 and 3 coincide may also define a plain Equals, e.g., // String and Integer. virtual bool OperatorEquals(const Instance& other) const; bool IsIdenticalTo(const Instance& other) const; virtual bool CanonicalizeEquals(const Instance& other) const; virtual uint32_t CanonicalizeHash() const; intptr_t SizeFromClass() const { #if defined(DEBUG) const Class& cls = Class::Handle(clazz()); ASSERT(cls.is_finalized() || cls.is_prefinalized()); #endif return (clazz()->ptr()->instance_size_in_words_ * kWordSize); } // Returns Instance::null() if instance cannot be canonicalized. // Any non-canonical number of string will be canonicalized here. // An instance cannot be canonicalized if it still contains non-canonical // instances in its fields. // Returns error in error_str, pass NULL if an error cannot occur. virtual RawInstance* CheckAndCanonicalize(Thread* thread, const char** error_str) const; // Returns true if all fields are OK for canonicalization. virtual bool CheckAndCanonicalizeFields(Thread* thread, const char** error_str) const; RawInstance* CopyShallowToOldSpace(Thread* thread) const; #if defined(DEBUG) // Check if instance is canonical. virtual bool CheckIsCanonical(Thread* thread) const; #endif // DEBUG RawObject* GetField(const Field& field) const { return *FieldAddr(field); } void SetField(const Field& field, const Object& value) const { field.RecordStore(value); StorePointer(FieldAddr(field), value.raw()); } RawAbstractType* GetType(Heap::Space space) const; // Access the arguments of the [Type] of this [Instance]. // Note: for [Type]s instead of [Instance]s with a [Type] attached, use // [arguments()] and [set_arguments()] virtual RawTypeArguments* GetTypeArguments() const; virtual void SetTypeArguments(const TypeArguments& value) const; // Check if the type of this instance is a subtype of the given other type. // The type argument vectors are used to instantiate the other type if needed. bool IsInstanceOf(const AbstractType& other, const TypeArguments& other_instantiator_type_arguments, const TypeArguments& other_function_type_arguments) const; // Returns true if the type of this instance is a subtype of FutureOr // specified by instantiated type 'other'. // Returns false if other type is not a FutureOr. bool IsFutureOrInstanceOf(Zone* zone, const AbstractType& other) const; bool IsValidNativeIndex(int index) const { return ((index >= 0) && (index < clazz()->ptr()->num_native_fields_)); } intptr_t* NativeFieldsDataAddr() const; inline intptr_t GetNativeField(int index) const; inline void GetNativeFields(uint16_t num_fields, intptr_t* field_values) const; void SetNativeFields(uint16_t num_fields, const intptr_t* field_values) const; uint16_t NumNativeFields() const { return clazz()->ptr()->num_native_fields_; } void SetNativeField(int index, intptr_t value) const; // If the instance is a callable object, i.e. a closure or the instance of a // class implementing a 'call' method, return true and set the function // (if not NULL) to call. bool IsCallable(Function* function) const; RawObject* Invoke(const String& selector, const Array& arguments, const Array& argument_names, bool respect_reflectable = true, bool check_is_entrypoint = false) const; RawObject* InvokeGetter(const String& selector, bool respect_reflectable = true, bool check_is_entrypoint = false) const; RawObject* InvokeSetter(const String& selector, const Instance& argument, bool respect_reflectable = true, bool check_is_entrypoint = false) const; // Evaluate the given expression as if it appeared in an instance method of // this instance and return the resulting value, or an error object if // evaluating the expression fails. The method has the formal (type) // parameters given in (type_)param_names, and is invoked with the (type) // argument values given in (type_)param_values. RawObject* EvaluateCompiledExpression( const Class& method_cls, const uint8_t* kernel_bytes, intptr_t kernel_length, const Array& type_definitions, const Array& param_values, const TypeArguments& type_param_values) const; // Equivalent to invoking hashCode on this instance. virtual RawObject* HashCode() const; // Equivalent to invoking identityHashCode with this instance. RawObject* IdentityHashCode() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawInstance)); } static RawInstance* New(const Class& cls, Heap::Space space = Heap::kNew); // Array/list element address computations. static intptr_t DataOffsetFor(intptr_t cid); static intptr_t ElementSizeFor(intptr_t cid); // Pointers may be subtyped, but their subtypes may not get extra fields. // The subtype runtime representation has exactly the same object layout, // only the class_id is different. So, it is safe to use subtype instances in // Pointer handles. virtual bool IsPointer() const; static intptr_t NextFieldOffset() { return sizeof(RawInstance); } protected: #ifndef PRODUCT virtual void PrintSharedInstanceJSON(JSONObject* jsobj, bool ref) const; #endif private: RawObject** FieldAddrAtOffset(intptr_t offset) const { ASSERT(IsValidFieldOffset(offset)); return reinterpret_cast(raw_value() - kHeapObjectTag + offset); } RawObject** FieldAddr(const Field& field) const { return FieldAddrAtOffset(field.Offset()); } RawObject** NativeFieldsAddr() const { return FieldAddrAtOffset(sizeof(RawObject)); } void SetFieldAtOffset(intptr_t offset, const Object& value) const { StorePointer(FieldAddrAtOffset(offset), value.raw()); } bool IsValidFieldOffset(intptr_t offset) const; // The following raw methods are used for morphing. // They are needed due to the extraction of the class in IsValidFieldOffset. RawObject** RawFieldAddrAtOffset(intptr_t offset) const { return reinterpret_cast(raw_value() - kHeapObjectTag + offset); } RawObject* RawGetFieldAtOffset(intptr_t offset) const { return *RawFieldAddrAtOffset(offset); } void RawSetFieldAtOffset(intptr_t offset, const Object& value) const { StorePointer(RawFieldAddrAtOffset(offset), value.raw()); } // TODO(iposva): Determine if this gets in the way of Smi. HEAP_OBJECT_IMPLEMENTATION(Instance, Object); friend class ByteBuffer; friend class Class; friend class Closure; friend class Pointer; friend class DeferredObject; friend class RegExp; friend class SnapshotWriter; friend class StubCode; friend class TypedDataView; friend class InstanceSerializationCluster; friend class InstanceDeserializationCluster; friend class ClassDeserializationCluster; // vtable friend class InstanceMorpher; friend class Obfuscator; // RawGetFieldAtOffset, RawSetFieldAtOffset }; class LibraryPrefix : public Instance { public: RawString* name() const { return raw_ptr()->name_; } virtual RawString* DictionaryName() const { return name(); } RawArray* imports() const { return raw_ptr()->imports_; } intptr_t num_imports() const { return raw_ptr()->num_imports_; } RawLibrary* importer() const { return raw_ptr()->importer_; } RawLibrary* GetLibrary(int index) const; void AddImport(const Namespace& import) const; RawObject* LookupObject(const String& name) const; RawClass* LookupClass(const String& class_name) const; bool is_deferred_load() const { return raw_ptr()->is_deferred_load_; } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawLibraryPrefix)); } static RawLibraryPrefix* New(const String& name, const Namespace& import, bool deferred_load, const Library& importer); private: static const int kInitialSize = 2; static const int kIncrementSize = 2; void set_name(const String& value) const; void set_imports(const Array& value) const; void set_num_imports(intptr_t value) const; void set_importer(const Library& value) const; static RawLibraryPrefix* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(LibraryPrefix, Instance); friend class Class; }; // A TypeArguments is an array of AbstractType. class TypeArguments : public Instance { public: // We use 30 bits for the hash code so hashes in a snapshot taken on a // 64-bit architecture stay in Smi range when loaded on a 32-bit // architecture. static const intptr_t kHashBits = 30; intptr_t Length() const; RawAbstractType* TypeAt(intptr_t index) const; RawAbstractType* TypeAtNullSafe(intptr_t index) const; static intptr_t type_at_offset(intptr_t index) { return OFFSET_OF_RETURNED_VALUE(RawTypeArguments, types) + index * kWordSize; } void SetTypeAt(intptr_t index, const AbstractType& value) const; struct ArrayLayout { static intptr_t elements_start_offset() { return TypeArguments::type_at_offset(0); } static constexpr intptr_t kElementSize = kWordSize; }; // The name of this type argument vector, e.g. ", Smi>". RawString* Name() const { return SubvectorName(0, Length(), kInternalName); } // The name of this type argument vector, e.g. ", int>". // Names of internal classes are mapped to their public interfaces. RawString* UserVisibleName() const { return SubvectorName(0, Length(), kUserVisibleName); } // Check if the subvector of length 'len' starting at 'from_index' of this // type argument vector consists solely of DynamicType. bool IsRaw(intptr_t from_index, intptr_t len) const { return IsDynamicTypes(false, from_index, len); } // Check if this type argument vector would consist solely of DynamicType if // it was instantiated from both a raw (null) instantiator typearguments and // a raw (null) function type arguments, i.e. consider each class type // parameter and function type parameters as it would be first instantiated // from a vector of dynamic types. // Consider only a prefix of length 'len'. bool IsRawWhenInstantiatedFromRaw(intptr_t len) const { return IsDynamicTypes(true, 0, len); } RawTypeArguments* Prepend(Zone* zone, const TypeArguments& other, intptr_t other_length, intptr_t total_length) const; // Concatenate [this] and [other] vectors of type parameters. RawTypeArguments* ConcatenateTypeParameters(Zone* zone, const TypeArguments& other) const; // Check if the subvector of length 'len' starting at 'from_index' of this // type argument vector consists solely of DynamicType, ObjectType, or // VoidType. bool IsTopTypes(intptr_t from_index, intptr_t len) const; // Check the subtype relationship, considering only a subvector of length // 'len' starting at 'from_index'. bool IsSubtypeOf(const TypeArguments& other, intptr_t from_index, intptr_t len, Heap::Space space) const; // Check if the vectors are equal (they may be null). bool Equals(const TypeArguments& other) const { return IsSubvectorEquivalent(other, 0, IsNull() ? 0 : Length()); } bool IsEquivalent(const TypeArguments& other, TrailPtr trail = NULL) const { return IsSubvectorEquivalent(other, 0, IsNull() ? 0 : Length(), trail); } bool IsSubvectorEquivalent(const TypeArguments& other, intptr_t from_index, intptr_t len, TrailPtr trail = NULL) const; // Check if the vector is instantiated (it must not be null). bool IsInstantiated(Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const { return IsSubvectorInstantiated(0, Length(), genericity, num_free_fun_type_params, trail); } bool IsSubvectorInstantiated(intptr_t from_index, intptr_t len, Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const; bool IsUninstantiatedIdentity() const; bool CanShareInstantiatorTypeArguments(const Class& instantiator_class) const; bool CanShareFunctionTypeArguments(const Function& function) const; // Return true if all types of this vector are finalized. bool IsFinalized() const; // Return true if this vector contains a recursive type argument. bool IsRecursive() const; virtual RawInstance* CheckAndCanonicalize(Thread* thread, const char** error_str) const { return Canonicalize(); } // Canonicalize only if instantiated, otherwise returns 'this'. RawTypeArguments* Canonicalize(TrailPtr trail = NULL) const; // Add the class name and URI of each type argument of this vector to the uris // list and mark ambiguous triplets to be printed. void EnumerateURIs(URIs* uris) const; // Return 'this' if this type argument vector is instantiated, i.e. if it does // not refer to type parameters. Otherwise, return a new type argument vector // where each reference to a type parameter is replaced with the corresponding // type from the various type argument vectors (class instantiator, function, // or parent functions via the current context). RawTypeArguments* InstantiateFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, intptr_t num_free_fun_type_params, TrailPtr instantiation_trail, Heap::Space space) const; // Runtime instantiation with canonicalization. Not to be used during type // finalization at compile time. RawTypeArguments* InstantiateAndCanonicalizeFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments) const; // Return true if this type argument vector has cached instantiations. bool HasInstantiations() const; // Return the number of cached instantiations for this type argument vector. intptr_t NumInstantiations() const; static intptr_t instantiations_offset() { return OFFSET_OF(RawTypeArguments, instantiations_); } static const intptr_t kBytesPerElement = kWordSize; static const intptr_t kMaxElements = kSmiMax / kBytesPerElement; static intptr_t InstanceSize() { ASSERT(sizeof(RawTypeArguments) == OFFSET_OF_RETURNED_VALUE(RawTypeArguments, types)); return 0; } static intptr_t InstanceSize(intptr_t len) { // Ensure that the types() is not adding to the object size, which includes // 3 fields: instantiations_, length_ and hash_. ASSERT(sizeof(RawTypeArguments) == (sizeof(RawObject) + (kNumFields * kWordSize))); ASSERT(0 <= len && len <= kMaxElements); return RoundedAllocationSize(sizeof(RawTypeArguments) + (len * kBytesPerElement)); } virtual uint32_t CanonicalizeHash() const { // Hash() is not stable until finalization is done. return 0; } intptr_t Hash() const; static RawTypeArguments* New(intptr_t len, Heap::Space space = Heap::kOld); private: intptr_t ComputeHash() const; void SetHash(intptr_t value) const; // Check if the subvector of length 'len' starting at 'from_index' of this // type argument vector consists solely of DynamicType. // If raw_instantiated is true, consider each class type parameter to be first // instantiated from a vector of dynamic types. bool IsDynamicTypes(bool raw_instantiated, intptr_t from_index, intptr_t len) const; // Return the internal or public name of a subvector of this type argument // vector, e.g. ", int>". RawString* SubvectorName(intptr_t from_index, intptr_t len, NameVisibility name_visibility) const; RawArray* instantiations() const; void set_instantiations(const Array& value) const; RawAbstractType* const* TypeAddr(intptr_t index) const; void SetLength(intptr_t value) const; // Number of fields in the raw object=3 (instantiations_, length_ and hash_). static const int kNumFields = 3; FINAL_HEAP_OBJECT_IMPLEMENTATION(TypeArguments, Instance); friend class AbstractType; friend class Class; friend class ClearTypeHashVisitor; friend class Object; }; // AbstractType is an abstract superclass. // Subclasses of AbstractType are Type and TypeParameter. class AbstractType : public Instance { public: // We use 30 bits for the hash code so hashes in a snapshot taken on a // 64-bit architecture stay in Smi range when loaded on a 32-bit // architecture. static const intptr_t kHashBits = 30; virtual bool IsFinalized() const; virtual void SetIsFinalized() const; virtual bool IsBeingFinalized() const; virtual void SetIsBeingFinalized() const; virtual bool HasTypeClass() const { return type_class_id() != kIllegalCid; } virtual classid_t type_class_id() const; virtual RawClass* type_class() const; virtual RawTypeArguments* arguments() const; virtual void set_arguments(const TypeArguments& value) const; virtual TokenPosition token_pos() const; virtual bool IsInstantiated(Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const; virtual bool CanonicalizeEquals(const Instance& other) const { return Equals(other); } virtual uint32_t CanonicalizeHash() const { return Hash(); } virtual bool Equals(const Instance& other) const { return IsEquivalent(other); } virtual bool IsEquivalent(const Instance& other, TrailPtr trail = NULL) const; virtual bool IsRecursive() const; // Check if this type represents a function type. virtual bool IsFunctionType() const { return false; } // Instantiate this type using the given type argument vectors. // // Note that some type parameters appearing in this type may not require // instantiation. Consider a class C declaring a non-generic method // foo(bar(T t, B b)). Although foo is not a generic method, it takes a // generic function bar as argument and its function type refers to class // type parameter T and function type parameter B. When instantiating the // function type of foo for a particular value of T, function type parameter B // must remain uninstantiated, because only T is a free variable in this type. // // Return a new type, or return 'this' if it is already instantiated. virtual RawAbstractType* InstantiateFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, intptr_t num_free_fun_type_params, TrailPtr instantiation_trail, Heap::Space space) const; virtual RawInstance* CheckAndCanonicalize(Thread* thread, const char** error_str) const { return Canonicalize(); } // Return the canonical version of this type. virtual RawAbstractType* Canonicalize(TrailPtr trail = NULL) const; #if defined(DEBUG) // Check if abstract type is canonical. virtual bool CheckIsCanonical(Thread* thread) const { UNREACHABLE(); return false; } #endif // DEBUG // Return the object associated with the receiver in the trail or // AbstractType::null() if the receiver is not contained in the trail. RawAbstractType* OnlyBuddyInTrail(TrailPtr trail) const; // If the trail is null, allocate a trail, add the pair to // the trail. The receiver may only be added once with its only buddy. void AddOnlyBuddyToTrail(TrailPtr* trail, const AbstractType& buddy) const; // Return true if the receiver is contained in the trail. // Otherwise, if the trail is null, allocate a trail, then add the receiver to // the trail and return false. bool TestAndAddToTrail(TrailPtr* trail) const; // Return true if the pair is contained in the trail. // Otherwise, if the trail is null, allocate a trail, add the pair to the trail and return false. // The receiver may be added several times, each time with a different buddy. bool TestAndAddBuddyToTrail(TrailPtr* trail, const AbstractType& buddy) const; // Add the pair to the list, if not already present. static void AddURI(URIs* uris, const String& name, const String& uri); // Return a formatted string of the uris. static RawString* PrintURIs(URIs* uris); // The name of this type, including the names of its type arguments, if any. virtual RawString* Name() const { return BuildName(kInternalName); } // The name of this type, including the names of its type arguments, if any. // Names of internal classes are mapped to their public interfaces. virtual RawString* UserVisibleName() const { return BuildName(kUserVisibleName); } // Add the class name and URI of each occuring type to the uris // list and mark ambiguous triplets to be printed. virtual void EnumerateURIs(URIs* uris) const; virtual intptr_t Hash() const; // The name of this type's class, i.e. without the type argument names of this // type. RawString* ClassName() const; // Check if this type is a still uninitialized TypeRef. bool IsNullTypeRef() const; // Check if this type represents the 'dynamic' type. bool IsDynamicType() const; // Check if this type represents the 'void' type. bool IsVoidType() const; // Check if this type represents the 'Null' type. bool IsNullType() const; // Check if this type represents the 'Object' type. bool IsObjectType() const; // Check if this type represents a top type, i.e. 'dynamic', 'Object', or // 'void' type. bool IsTopType() const; // Check if this type represents the 'bool' type. bool IsBoolType() const; // Check if this type represents the 'int' type. bool IsIntType() const; // Check if this type represents the 'double' type. bool IsDoubleType() const; // Check if this type represents the 'Float32x4' type. bool IsFloat32x4Type() const; // Check if this type represents the 'Float64x2' type. bool IsFloat64x2Type() const; // Check if this type represents the 'Int32x4' type. bool IsInt32x4Type() const; // Check if this type represents the 'num' type. bool IsNumberType() const; // Check if this type represents the '_Smi' type. bool IsSmiType() const; // Check if this type represents the 'String' type. bool IsStringType() const; // Check if this type represents the Dart 'Function' type. bool IsDartFunctionType() const; // Check if this type represents the Dart '_Closure' type. bool IsDartClosureType() const; // Check if this type represents the 'Pointer' type from "dart:ffi". bool IsFfiPointerType() const; // Check the subtype relationship. bool IsSubtypeOf(const AbstractType& other, Heap::Space space) const; // Returns true iff subtype is a subtype of supertype, false otherwise or if // an error occurred. static bool InstantiateAndTestSubtype( AbstractType* subtype, AbstractType* supertype, const TypeArguments& instantiator_type_args, const TypeArguments& function_type_args); static intptr_t type_test_stub_entry_point_offset() { return OFFSET_OF(RawAbstractType, type_test_stub_entry_point_); } uword type_test_stub_entry_point() const { return raw_ptr()->type_test_stub_entry_point_; } RawCode* type_test_stub() const { return raw_ptr()->type_test_stub_; } void SetTypeTestingStub(const Code& stub) const; private: // Returns true if this type is a subtype of FutureOr specified by 'other'. // Returns false if other type is not a FutureOr. bool IsSubtypeOfFutureOr(Zone* zone, const AbstractType& other, Heap::Space space) const; // Return the internal or public name of this type, including the names of its // type arguments, if any. RawString* BuildName(NameVisibility visibility) const; protected: HEAP_OBJECT_IMPLEMENTATION(AbstractType, Instance); friend class Class; friend class Function; friend class TypeArguments; }; // A Type consists of a class, possibly parameterized with type // arguments. Example: C. // // Caution: 'RawType*' denotes a 'raw' pointer to a VM object of class Type, as // opposed to 'Type' denoting a 'handle' to the same object. 'RawType' does not // relate to a 'raw type', as opposed to a 'cooked type' or 'rare type'. class Type : public AbstractType { public: static intptr_t type_class_id_offset() { return OFFSET_OF(RawType, type_class_id_); } static intptr_t arguments_offset() { return OFFSET_OF(RawType, arguments_); } static intptr_t type_state_offset() { return OFFSET_OF(RawType, type_state_); } static intptr_t hash_offset() { return OFFSET_OF(RawType, hash_); } virtual bool IsFinalized() const { return (raw_ptr()->type_state_ == RawType::kFinalizedInstantiated) || (raw_ptr()->type_state_ == RawType::kFinalizedUninstantiated); } virtual void SetIsFinalized() const; void ResetIsFinalized() const; // Ignore current state and set again. virtual bool IsBeingFinalized() const { return raw_ptr()->type_state_ == RawType::kBeingFinalized; } virtual void SetIsBeingFinalized() const; virtual bool HasTypeClass() const { ASSERT(type_class_id() != kIllegalCid); return true; } virtual classid_t type_class_id() const; virtual RawClass* type_class() const; void set_type_class(const Class& value) const; virtual RawTypeArguments* arguments() const { return raw_ptr()->arguments_; } virtual void set_arguments(const TypeArguments& value) const; virtual TokenPosition token_pos() const { return raw_ptr()->token_pos_; } virtual bool IsInstantiated(Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const; virtual bool IsEquivalent(const Instance& other, TrailPtr trail = NULL) const; virtual bool IsRecursive() const; // If signature is not null, this type represents a function type. Note that // the signature fully represents the type and type arguments can be ignored. // However, in case of a generic typedef, they document how the typedef class // was parameterized to obtain the actual signature. RawFunction* signature() const; void set_signature(const Function& value) const; static intptr_t signature_offset() { return OFFSET_OF(RawType, signature_); } virtual bool IsFunctionType() const { return signature() != Function::null(); } virtual RawAbstractType* InstantiateFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, intptr_t num_free_fun_type_params, TrailPtr instantiation_trail, Heap::Space space) const; virtual RawAbstractType* Canonicalize(TrailPtr trail = NULL) const; #if defined(DEBUG) // Check if type is canonical. virtual bool CheckIsCanonical(Thread* thread) const; #endif // DEBUG virtual void EnumerateURIs(URIs* uris) const; virtual intptr_t Hash() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawType)); } // The type of the literal 'null'. static RawType* NullType(); // The 'dynamic' type. static RawType* DynamicType(); // The 'void' type. static RawType* VoidType(); // The 'Object' type. static RawType* ObjectType(); // The 'bool' type. static RawType* BoolType(); // The 'int' type. static RawType* IntType(); // The 'Smi' type. static RawType* SmiType(); // The 'Mint' type. static RawType* MintType(); // The 'double' type. static RawType* Double(); // The 'Float32x4' type. static RawType* Float32x4(); // The 'Float64x2' type. static RawType* Float64x2(); // The 'Int32x4' type. static RawType* Int32x4(); // The 'num' type. static RawType* Number(); // The 'String' type. static RawType* StringType(); // The 'Array' type. static RawType* ArrayType(); // The 'Function' type. static RawType* DartFunctionType(); // The 'Type' type. static RawType* DartTypeType(); // The finalized type of the given non-parameterized class. static RawType* NewNonParameterizedType(const Class& type_class); static RawType* New(const Class& clazz, const TypeArguments& arguments, TokenPosition token_pos, Heap::Space space = Heap::kOld); private: intptr_t ComputeHash() const; void SetHash(intptr_t value) const; void set_token_pos(TokenPosition token_pos) const; void set_type_state(int8_t state) const; static RawType* New(Heap::Space space = Heap::kOld); FINAL_HEAP_OBJECT_IMPLEMENTATION(Type, AbstractType); friend class Class; friend class TypeArguments; friend class ClearTypeHashVisitor; }; // A TypeRef is used to break cycles in the representation of recursive types. // Its only field is the recursive AbstractType it refers to, which can // temporarily be null during finalization. // Note that the cycle always involves type arguments. class TypeRef : public AbstractType { public: static intptr_t type_offset() { return OFFSET_OF(RawTypeRef, type_); } virtual bool IsFinalized() const { const AbstractType& ref_type = AbstractType::Handle(type()); return !ref_type.IsNull() && ref_type.IsFinalized(); } virtual bool IsBeingFinalized() const { const AbstractType& ref_type = AbstractType::Handle(type()); return ref_type.IsNull() || ref_type.IsBeingFinalized(); } virtual bool HasTypeClass() const { return (type() != AbstractType::null()) && AbstractType::Handle(type()).HasTypeClass(); } RawAbstractType* type() const { return raw_ptr()->type_; } void set_type(const AbstractType& value) const; virtual classid_t type_class_id() const { return AbstractType::Handle(type()).type_class_id(); } virtual RawClass* type_class() const { return AbstractType::Handle(type()).type_class(); } virtual RawTypeArguments* arguments() const { return AbstractType::Handle(type()).arguments(); } virtual TokenPosition token_pos() const { return AbstractType::Handle(type()).token_pos(); } virtual bool IsInstantiated(Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const; virtual bool IsEquivalent(const Instance& other, TrailPtr trail = NULL) const; virtual bool IsRecursive() const { return true; } virtual bool IsFunctionType() const { const AbstractType& ref_type = AbstractType::Handle(type()); return !ref_type.IsNull() && ref_type.IsFunctionType(); } virtual RawTypeRef* InstantiateFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, intptr_t num_free_fun_type_params, TrailPtr instantiation_trail, Heap::Space space) const; virtual RawAbstractType* Canonicalize(TrailPtr trail = NULL) const; #if defined(DEBUG) // Check if typeref is canonical. virtual bool CheckIsCanonical(Thread* thread) const; #endif // DEBUG virtual void EnumerateURIs(URIs* uris) const; virtual intptr_t Hash() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawTypeRef)); } static RawTypeRef* New(const AbstractType& type); private: static RawTypeRef* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(TypeRef, AbstractType); friend class Class; }; // A TypeParameter represents a type parameter of a parameterized class. // It specifies its index (and its name for debugging purposes), as well as its // upper bound. // For example, the type parameter 'V' is specified as index 1 in the context of // the class HashMap. At compile time, the TypeParameter is not // instantiated yet, i.e. it is only a place holder. // Upon finalization, the TypeParameter index is changed to reflect its position // as type argument (rather than type parameter) of the parameterized class. // If the type parameter is declared without an extends clause, its bound is set // to the ObjectType. class TypeParameter : public AbstractType { public: virtual bool IsFinalized() const { return RawTypeParameter::FinalizedBit::decode(raw_ptr()->flags_); } virtual void SetIsFinalized() const; virtual bool IsBeingFinalized() const { return false; } bool IsGenericCovariantImpl() const { return RawTypeParameter::GenericCovariantImplBit::decode(raw_ptr()->flags_); } void SetGenericCovariantImpl(bool value) const; virtual bool HasTypeClass() const { return false; } virtual classid_t type_class_id() const { return kIllegalCid; } classid_t parameterized_class_id() const; RawClass* parameterized_class() const; RawFunction* parameterized_function() const { return raw_ptr()->parameterized_function_; } bool IsClassTypeParameter() const { return parameterized_class_id() != kFunctionCid; } bool IsFunctionTypeParameter() const { return parameterized_function() != Function::null(); } RawString* name() const { return raw_ptr()->name_; } intptr_t index() const { return raw_ptr()->index_; } void set_index(intptr_t value) const; RawAbstractType* bound() const { return raw_ptr()->bound_; } void set_bound(const AbstractType& value) const; virtual TokenPosition token_pos() const { return raw_ptr()->token_pos_; } virtual bool IsInstantiated(Genericity genericity = kAny, intptr_t num_free_fun_type_params = kAllFree, TrailPtr trail = NULL) const; virtual bool IsEquivalent(const Instance& other, TrailPtr trail = NULL) const; virtual bool IsRecursive() const { return false; } virtual RawAbstractType* InstantiateFrom( const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, intptr_t num_free_fun_type_params, TrailPtr instantiation_trail, Heap::Space space) const; virtual RawAbstractType* Canonicalize(TrailPtr trail = NULL) const { return raw(); } #if defined(DEBUG) // Check if type parameter is canonical. virtual bool CheckIsCanonical(Thread* thread) const { return true; } #endif // DEBUG virtual void EnumerateURIs(URIs* uris) const; virtual intptr_t Hash() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawTypeParameter)); } // Only one of parameterized_class and parameterized_function is non-null. static RawTypeParameter* New(const Class& parameterized_class, const Function& parameterized_function, intptr_t index, const String& name, const AbstractType& bound, bool is_generic_covariant_impl, TokenPosition token_pos); private: intptr_t ComputeHash() const; void SetHash(intptr_t value) const; void set_parameterized_class(const Class& value) const; void set_parameterized_function(const Function& value) const; void set_name(const String& value) const; void set_token_pos(TokenPosition token_pos) const; void set_flags(uint8_t flags) const; static RawTypeParameter* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(TypeParameter, AbstractType); friend class Class; friend class ClearTypeHashVisitor; }; class Number : public Instance { public: // TODO(iposva): Add more useful Number methods. RawString* ToString(Heap::Space space) const; // Numbers are canonicalized differently from other instances/strings. virtual RawInstance* CheckAndCanonicalize(Thread* thread, const char** error_str) const; #if defined(DEBUG) // Check if number is canonical. virtual bool CheckIsCanonical(Thread* thread) const; #endif // DEBUG private: OBJECT_IMPLEMENTATION(Number, Instance); friend class Class; }; class Integer : public Number { public: static RawInteger* New(const String& str, Heap::Space space = Heap::kNew); // Creates a new Integer by given uint64_t value. // Silently casts value to int64_t with wrap-around if it is greater // than kMaxInt64. static RawInteger* NewFromUint64(uint64_t value, Heap::Space space = Heap::kNew); // Returns a canonical Integer object allocated in the old gen space. // Returns null if integer is out of range. static RawInteger* NewCanonical(const String& str); static RawInteger* New(int64_t value, Heap::Space space = Heap::kNew); // Returns true iff the given uint64_t value is representable as Dart integer. static bool IsValueInRange(uint64_t value); virtual bool OperatorEquals(const Instance& other) const { return Equals(other); } virtual bool CanonicalizeEquals(const Instance& other) const { return Equals(other); } virtual uint32_t CanonicalizeHash() const { return AsTruncatedUint32Value(); } virtual bool Equals(const Instance& other) const; virtual RawObject* HashCode() const { return raw(); } virtual bool IsZero() const; virtual bool IsNegative() const; virtual double AsDoubleValue() const; virtual int64_t AsInt64Value() const; virtual int64_t AsTruncatedInt64Value() const { return AsInt64Value(); } virtual uint32_t AsTruncatedUint32Value() const; virtual bool FitsIntoSmi() const; // Returns 0, -1 or 1. virtual int CompareWith(const Integer& other) const; // Converts integer to hex string. const char* ToHexCString(Zone* zone) const; // Return the most compact presentation of an integer. RawInteger* AsValidInteger() const; // Returns null to indicate that a bigint operation is required. RawInteger* ArithmeticOp(Token::Kind operation, const Integer& other, Heap::Space space = Heap::kNew) const; RawInteger* BitOp(Token::Kind operation, const Integer& other, Heap::Space space = Heap::kNew) const; RawInteger* ShiftOp(Token::Kind operation, const Integer& other, Heap::Space space = Heap::kNew) const; static int64_t GetInt64Value(const RawInteger* obj) { intptr_t raw_value = reinterpret_cast(obj); if ((raw_value & kSmiTagMask) == kSmiTag) { return (raw_value >> kSmiTagShift); } else { ASSERT(obj->IsMint()); return reinterpret_cast(obj)->ptr()->value_; } } private: OBJECT_IMPLEMENTATION(Integer, Number); friend class Class; }; class Smi : public Integer { public: static const intptr_t kBits = kSmiBits; static const intptr_t kMaxValue = kSmiMax; static const intptr_t kMinValue = kSmiMin; intptr_t Value() const { return ValueFromRawSmi(raw()); } virtual bool Equals(const Instance& other) const; virtual bool IsZero() const { return Value() == 0; } virtual bool IsNegative() const { return Value() < 0; } virtual double AsDoubleValue() const; virtual int64_t AsInt64Value() const; virtual uint32_t AsTruncatedUint32Value() const; virtual bool FitsIntoSmi() const { return true; } virtual int CompareWith(const Integer& other) const; static intptr_t InstanceSize() { return 0; } static RawSmi* New(intptr_t value) { RawSmi* raw_smi = reinterpret_cast( (static_cast(value) << kSmiTagShift) | kSmiTag); ASSERT(ValueFromRawSmi(raw_smi) == value); return raw_smi; } static RawSmi* FromAlignedAddress(uword address) { ASSERT((address & kSmiTagMask) == kSmiTag); return reinterpret_cast(address); } static RawClass* Class(); static intptr_t Value(const RawSmi* raw_smi) { return ValueFromRawSmi(raw_smi); } static intptr_t RawValue(intptr_t value) { return reinterpret_cast(New(value)); } static bool IsValid(int64_t value) { return compiler::target::IsSmi(value); } void operator=(RawSmi* value) { raw_ = value; CHECK_HANDLE(); } void operator^=(RawObject* value) { raw_ = value; CHECK_HANDLE(); } private: static intptr_t NextFieldOffset() { // Indicates this class cannot be extended by dart code. return -kWordSize; } static cpp_vtable handle_vtable_; Smi() : Integer() {} BASE_OBJECT_IMPLEMENTATION(Smi, Integer); OBJECT_SERVICE_SUPPORT(Smi); friend class Api; // For ValueFromRaw friend class Class; friend class Object; friend class ReusableSmiHandleScope; friend class Thread; }; class SmiTraits : AllStatic { public: static const char* Name() { return "SmiTraits"; } static bool ReportStats() { return false; } static bool IsMatch(const Object& a, const Object& b) { return Smi::Cast(a).Value() == Smi::Cast(b).Value(); } static uword Hash(const Object& obj) { return Smi::Cast(obj).Value(); } }; class Mint : public Integer { public: static const intptr_t kBits = 63; // 64-th bit is sign. static const int64_t kMaxValue = static_cast(DART_2PART_UINT64_C(0x7FFFFFFF, FFFFFFFF)); static const int64_t kMinValue = static_cast(DART_2PART_UINT64_C(0x80000000, 00000000)); int64_t value() const { return raw_ptr()->value_; } static intptr_t value_offset() { return OFFSET_OF(RawMint, value_); } virtual bool IsZero() const { return value() == 0; } virtual bool IsNegative() const { return value() < 0; } virtual bool Equals(const Instance& other) const; virtual double AsDoubleValue() const; virtual int64_t AsInt64Value() const; virtual uint32_t AsTruncatedUint32Value() const; virtual bool FitsIntoSmi() const; virtual int CompareWith(const Integer& other) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawMint)); } protected: // Only Integer::NewXXX is allowed to call Mint::NewXXX directly. friend class Integer; static RawMint* New(int64_t value, Heap::Space space = Heap::kNew); static RawMint* NewCanonical(int64_t value); private: void set_value(int64_t value) const; MINT_OBJECT_IMPLEMENTATION(Mint, Integer, Integer); friend class Class; friend class Number; }; // Class Double represents class Double in corelib_impl, which implements // abstract class double in corelib. class Double : public Number { public: double value() const { return raw_ptr()->value_; } bool BitwiseEqualsToDouble(double value) const; virtual bool OperatorEquals(const Instance& other) const; virtual bool CanonicalizeEquals(const Instance& other) const; virtual uint32_t CanonicalizeHash() const; static RawDouble* New(double d, Heap::Space space = Heap::kNew); static RawDouble* New(const String& str, Heap::Space space = Heap::kNew); // Returns a canonical double object allocated in the old gen space. static RawDouble* NewCanonical(double d); // Returns a canonical double object (allocated in the old gen space) or // Double::null() if str points to a string that does not convert to a // double value. static RawDouble* NewCanonical(const String& str); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawDouble)); } static intptr_t value_offset() { return OFFSET_OF(RawDouble, value_); } private: void set_value(double value) const; FINAL_HEAP_OBJECT_IMPLEMENTATION(Double, Number); friend class Class; friend class Number; }; // String may not be '\0' terminated. class String : public Instance { public: // We use 30 bits for the hash code so hashes in a snapshot taken on a // 64-bit architecture stay in Smi range when loaded on a 32-bit // architecture. static const intptr_t kHashBits = 30; static const intptr_t kOneByteChar = 1; static const intptr_t kTwoByteChar = 2; // All strings share the same maximum element count to keep things // simple. We choose a value that will prevent integer overflow for // 2 byte strings, since it is the worst case. #if defined(HASH_IN_OBJECT_HEADER) static const intptr_t kSizeofRawString = sizeof(RawInstance) + kWordSize; #else static const intptr_t kSizeofRawString = sizeof(RawInstance) + 2 * kWordSize; #endif static const intptr_t kMaxElements = kSmiMax / kTwoByteChar; class CodePointIterator : public ValueObject { public: explicit CodePointIterator(const String& str) : str_(str), ch_(0), index_(-1), end_(str.Length()) { ASSERT(!str_.IsNull()); } CodePointIterator(const String& str, intptr_t start, intptr_t length) : str_(str), ch_(0), index_(start - 1), end_(start + length) { ASSERT(start >= 0); ASSERT(end_ <= str.Length()); } int32_t Current() const { ASSERT(index_ >= 0); ASSERT(index_ < end_); return ch_; } bool Next(); private: const String& str_; int32_t ch_; intptr_t index_; intptr_t end_; DISALLOW_IMPLICIT_CONSTRUCTORS(CodePointIterator); }; intptr_t Length() const { return Smi::Value(raw_ptr()->length_); } static intptr_t length_offset() { return OFFSET_OF(RawString, length_); } intptr_t Hash() const { intptr_t result = GetCachedHash(raw()); if (result != 0) { return result; } result = String::Hash(*this, 0, this->Length()); SetCachedHash(raw(), result); return result; } static intptr_t Hash(RawString* raw); bool HasHash() const { ASSERT(Smi::New(0) == NULL); return GetCachedHash(raw()) != 0; } static intptr_t hash_offset() { return OFFSET_OF(RawString, hash_); } static intptr_t Hash(const String& str, intptr_t begin_index, intptr_t len); static intptr_t Hash(const char* characters, intptr_t len); static intptr_t Hash(const uint16_t* characters, intptr_t len); static intptr_t Hash(const int32_t* characters, intptr_t len); static intptr_t HashRawSymbol(const RawString* symbol) { ASSERT(symbol->IsCanonical()); intptr_t result = GetCachedHash(symbol); ASSERT(result != 0); return result; } // Returns the hash of str1 + str2. static intptr_t HashConcat(const String& str1, const String& str2); virtual RawObject* HashCode() const { return Integer::New(Hash()); } uint16_t CharAt(intptr_t index) const; intptr_t CharSize() const; inline bool Equals(const String& str) const; bool Equals(const String& str, intptr_t begin_index, // begin index on 'str'. intptr_t len) const; // len on 'str'. // Compares to a '\0' terminated array of UTF-8 encoded characters. bool Equals(const char* cstr) const; // Compares to an array of Latin-1 encoded characters. bool EqualsLatin1(const uint8_t* characters, intptr_t len) const { return Equals(characters, len); } // Compares to an array of UTF-16 encoded characters. bool Equals(const uint16_t* characters, intptr_t len) const; // Compares to an array of UTF-32 encoded characters. bool Equals(const int32_t* characters, intptr_t len) const; // True iff this string equals str1 + str2. bool EqualsConcat(const String& str1, const String& str2) const; virtual bool OperatorEquals(const Instance& other) const { return Equals(other); } virtual bool CanonicalizeEquals(const Instance& other) const { return Equals(other); } virtual uint32_t CanonicalizeHash() const { return Hash(); } virtual bool Equals(const Instance& other) const; intptr_t CompareTo(const String& other) const; bool StartsWith(const String& other) const; bool EndsWith(const String& other) const; // Strings are canonicalized using the symbol table. virtual RawInstance* CheckAndCanonicalize(Thread* thread, const char** error_str) const; #if defined(DEBUG) // Check if string is canonical. virtual bool CheckIsCanonical(Thread* thread) const; #endif // DEBUG bool IsSymbol() const { return raw()->IsCanonical(); } bool IsOneByteString() const { return raw()->GetClassId() == kOneByteStringCid; } bool IsTwoByteString() const { return raw()->GetClassId() == kTwoByteStringCid; } bool IsExternalOneByteString() const { return raw()->GetClassId() == kExternalOneByteStringCid; } bool IsExternalTwoByteString() const { return raw()->GetClassId() == kExternalTwoByteStringCid; } bool IsExternal() const { return RawObject::IsExternalStringClassId(raw()->GetClassId()); } void* GetPeer() const; char* ToMallocCString() const; void ToUTF8(uint8_t* utf8_array, intptr_t array_len) const; // Creates a new String object from a C string that is assumed to contain // UTF-8 encoded characters and '\0' is considered a termination character. // TODO(7123) - Rename this to FromCString(....). static RawString* New(const char* cstr, Heap::Space space = Heap::kNew); // Creates a new String object from an array of UTF-8 encoded characters. static RawString* FromUTF8(const uint8_t* utf8_array, intptr_t array_len, Heap::Space space = Heap::kNew); // Creates a new String object from an array of Latin-1 encoded characters. static RawString* FromLatin1(const uint8_t* latin1_array, intptr_t array_len, Heap::Space space = Heap::kNew); // Creates a new String object from an array of UTF-16 encoded characters. static RawString* FromUTF16(const uint16_t* utf16_array, intptr_t array_len, Heap::Space space = Heap::kNew); // Creates a new String object from an array of UTF-32 encoded characters. static RawString* FromUTF32(const int32_t* utf32_array, intptr_t array_len, Heap::Space space = Heap::kNew); // Create a new String object from another Dart String instance. static RawString* New(const String& str, Heap::Space space = Heap::kNew); // Creates a new External String object using the specified array of // UTF-8 encoded characters as the external reference. static RawString* NewExternal(const uint8_t* utf8_array, intptr_t array_len, void* peer, intptr_t external_allocation_size, Dart_WeakPersistentHandleFinalizer callback, Heap::Space = Heap::kNew); // Creates a new External String object using the specified array of // UTF-16 encoded characters as the external reference. static RawString* NewExternal(const uint16_t* utf16_array, intptr_t array_len, void* peer, intptr_t external_allocation_size, Dart_WeakPersistentHandleFinalizer callback, Heap::Space = Heap::kNew); static void Copy(const String& dst, intptr_t dst_offset, const uint8_t* characters, intptr_t len); static void Copy(const String& dst, intptr_t dst_offset, const uint16_t* characters, intptr_t len); static void Copy(const String& dst, intptr_t dst_offset, const String& src, intptr_t src_offset, intptr_t len); static RawString* EscapeSpecialCharacters(const String& str); // Encodes 'str' for use in an Internationalized Resource Identifier (IRI), // a generalization of URI (percent-encoding). See RFC 3987. static const char* EncodeIRI(const String& str); // Returns null if 'str' is not a valid encoding. static RawString* DecodeIRI(const String& str); static RawString* Concat(const String& str1, const String& str2, Heap::Space space = Heap::kNew); static RawString* ConcatAll(const Array& strings, Heap::Space space = Heap::kNew); // Concat all strings in 'strings' from 'start' to 'end' (excluding). static RawString* ConcatAllRange(const Array& strings, intptr_t start, intptr_t end, Heap::Space space = Heap::kNew); static RawString* SubString(const String& str, intptr_t begin_index, Heap::Space space = Heap::kNew); static RawString* SubString(const String& str, intptr_t begin_index, intptr_t length, Heap::Space space = Heap::kNew) { return SubString(Thread::Current(), str, begin_index, length, space); } static RawString* SubString(Thread* thread, const String& str, intptr_t begin_index, intptr_t length, Heap::Space space = Heap::kNew); static RawString* Transform(int32_t (*mapping)(int32_t ch), const String& str, Heap::Space space = Heap::kNew); static RawString* ToUpperCase(const String& str, Heap::Space space = Heap::kNew); static RawString* ToLowerCase(const String& str, Heap::Space space = Heap::kNew); static RawString* RemovePrivateKey(const String& name); static RawString* ScrubName(const String& name); static RawString* ScrubNameRetainPrivate(const String& name); static bool EqualsIgnoringPrivateKey(const String& str1, const String& str2); static RawString* NewFormatted(const char* format, ...) PRINTF_ATTRIBUTE(1, 2); static RawString* NewFormatted(Heap::Space space, const char* format, ...) PRINTF_ATTRIBUTE(2, 3); static RawString* NewFormattedV(const char* format, va_list args, Heap::Space space = Heap::kNew); static bool ParseDouble(const String& str, intptr_t start, intptr_t end, double* result); #if !defined(HASH_IN_OBJECT_HEADER) static uint32_t GetCachedHash(const RawString* obj) { return Smi::Value(obj->ptr()->hash_); } static void SetCachedHash(RawString* obj, uintptr_t hash) { obj->ptr()->hash_ = Smi::New(hash); } #endif protected: // These two operate on an array of Latin-1 encoded characters. // They are protected to avoid mistaking Latin-1 for UTF-8, but used // by friendly templated code (e.g., Symbols). bool Equals(const uint8_t* characters, intptr_t len) const; static intptr_t Hash(const uint8_t* characters, intptr_t len); void SetLength(intptr_t value) const { // This is only safe because we create a new Smi, which does not cause // heap allocation. StoreSmi(&raw_ptr()->length_, Smi::New(value)); } void SetHash(intptr_t value) const { SetCachedHash(raw(), value); } template static void ReadFromImpl(SnapshotReader* reader, String* str_obj, intptr_t len, intptr_t tags, CallbackType new_symbol, Snapshot::Kind kind); FINAL_HEAP_OBJECT_IMPLEMENTATION(String, Instance); friend class Class; friend class Symbols; friend class StringSlice; // SetHash template friend class CharArray; // SetHash friend class ConcatString; // SetHash friend class OneByteString; friend class TwoByteString; friend class ExternalOneByteString; friend class ExternalTwoByteString; friend class RawOneByteString; friend class RODataSerializationCluster; // SetHash friend class Pass2Visitor; // Stack "handle" }; class OneByteString : public AllStatic { public: static uint16_t CharAt(const String& str, intptr_t index) { ASSERT((index >= 0) && (index < str.Length())); ASSERT(str.IsOneByteString()); return raw_ptr(str)->data()[index]; } static void SetCharAt(const String& str, intptr_t index, uint8_t code_unit) { NoSafepointScope no_safepoint; *CharAddr(str, index) = code_unit; } static RawOneByteString* EscapeSpecialCharacters(const String& str); // We use the same maximum elements for all strings. static const intptr_t kBytesPerElement = 1; static const intptr_t kMaxElements = String::kMaxElements; static intptr_t data_offset() { return OFFSET_OF_RETURNED_VALUE(RawOneByteString, data); } static intptr_t UnroundedSize(RawOneByteString* str) { return UnroundedSize(Smi::Value(str->ptr()->length_)); } static intptr_t UnroundedSize(intptr_t len) { return sizeof(RawOneByteString) + (len * kBytesPerElement); } static intptr_t InstanceSize() { ASSERT(sizeof(RawOneByteString) == OFFSET_OF_RETURNED_VALUE(RawOneByteString, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(sizeof(RawOneByteString) == String::kSizeofRawString); ASSERT(0 <= len && len <= kMaxElements); #if defined(HASH_IN_OBJECT_HEADER) // We have to pad zero-length raw strings so that they can be externalized. // If we don't pad, then the external string object does not fit in the // memory allocated for the raw string. if (len == 0) return InstanceSize(1); #endif return String::RoundedAllocationSize(UnroundedSize(len)); } static RawOneByteString* New(intptr_t len, Heap::Space space); static RawOneByteString* New(const char* c_string, Heap::Space space = Heap::kNew) { return New(reinterpret_cast(c_string), strlen(c_string), space); } static RawOneByteString* New(const uint8_t* characters, intptr_t len, Heap::Space space); static RawOneByteString* New(const uint16_t* characters, intptr_t len, Heap::Space space); static RawOneByteString* New(const int32_t* characters, intptr_t len, Heap::Space space); static RawOneByteString* New(const String& str, Heap::Space space); // 'other' must be OneByteString. static RawOneByteString* New(const String& other_one_byte_string, intptr_t other_start_index, intptr_t other_len, Heap::Space space); static RawOneByteString* New(const TypedData& other_typed_data, intptr_t other_start_index, intptr_t other_len, Heap::Space space = Heap::kNew); static RawOneByteString* New(const ExternalTypedData& other_typed_data, intptr_t other_start_index, intptr_t other_len, Heap::Space space = Heap::kNew); static RawOneByteString* Concat(const String& str1, const String& str2, Heap::Space space); static RawOneByteString* ConcatAll(const Array& strings, intptr_t start, intptr_t end, intptr_t len, Heap::Space space); static RawOneByteString* Transform(int32_t (*mapping)(int32_t ch), const String& str, Heap::Space space); // High performance version of substring for one-byte strings. // "str" must be OneByteString. static RawOneByteString* SubStringUnchecked(const String& str, intptr_t begin_index, intptr_t length, Heap::Space space); static void SetPeer(const String& str, void* peer, intptr_t external_allocation_size, Dart_WeakPersistentHandleFinalizer callback); static const ClassId kClassId = kOneByteStringCid; static RawOneByteString* null() { return reinterpret_cast(Object::null()); } private: static RawOneByteString* raw(const String& str) { return reinterpret_cast(str.raw()); } static const RawOneByteString* raw_ptr(const String& str) { return reinterpret_cast(str.raw_ptr()); } static uint8_t* CharAddr(const String& str, intptr_t index) { ASSERT((index >= 0) && (index < str.Length())); ASSERT(str.IsOneByteString()); return &str.UnsafeMutableNonPointer(raw_ptr(str)->data())[index]; } static uint8_t* DataStart(const String& str) { ASSERT(str.IsOneByteString()); return &str.UnsafeMutableNonPointer(raw_ptr(str)->data())[0]; } static RawOneByteString* ReadFrom(SnapshotReader* reader, intptr_t object_id, intptr_t tags, Snapshot::Kind kind, bool as_reference); friend class Class; friend class String; friend class Symbols; friend class ExternalOneByteString; friend class SnapshotReader; friend class StringHasher; friend class Utf8; }; class TwoByteString : public AllStatic { public: static uint16_t CharAt(const String& str, intptr_t index) { ASSERT((index >= 0) && (index < str.Length())); ASSERT(str.IsTwoByteString()); return raw_ptr(str)->data()[index]; } static void SetCharAt(const String& str, intptr_t index, uint16_t ch) { NoSafepointScope no_safepoint; *CharAddr(str, index) = ch; } static RawTwoByteString* EscapeSpecialCharacters(const String& str); // We use the same maximum elements for all strings. static const intptr_t kBytesPerElement = 2; static const intptr_t kMaxElements = String::kMaxElements; static intptr_t data_offset() { return OFFSET_OF_RETURNED_VALUE(RawTwoByteString, data); } static intptr_t UnroundedSize(RawTwoByteString* str) { return UnroundedSize(Smi::Value(str->ptr()->length_)); } static intptr_t UnroundedSize(intptr_t len) { return sizeof(RawTwoByteString) + (len * kBytesPerElement); } static intptr_t InstanceSize() { ASSERT(sizeof(RawTwoByteString) == OFFSET_OF_RETURNED_VALUE(RawTwoByteString, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { ASSERT(sizeof(RawTwoByteString) == String::kSizeofRawString); ASSERT(0 <= len && len <= kMaxElements); // We have to pad zero-length raw strings so that they can be externalized. // If we don't pad, then the external string object does not fit in the // memory allocated for the raw string. if (len == 0) return InstanceSize(1); return String::RoundedAllocationSize(UnroundedSize(len)); } static RawTwoByteString* New(intptr_t len, Heap::Space space); static RawTwoByteString* New(const uint16_t* characters, intptr_t len, Heap::Space space); static RawTwoByteString* New(intptr_t utf16_len, const int32_t* characters, intptr_t len, Heap::Space space); static RawTwoByteString* New(const String& str, Heap::Space space); static RawTwoByteString* New(const TypedData& other_typed_data, intptr_t other_start_index, intptr_t other_len, Heap::Space space = Heap::kNew); static RawTwoByteString* New(const ExternalTypedData& other_typed_data, intptr_t other_start_index, intptr_t other_len, Heap::Space space = Heap::kNew); static RawTwoByteString* Concat(const String& str1, const String& str2, Heap::Space space); static RawTwoByteString* ConcatAll(const Array& strings, intptr_t start, intptr_t end, intptr_t len, Heap::Space space); static RawTwoByteString* Transform(int32_t (*mapping)(int32_t ch), const String& str, Heap::Space space); static void SetPeer(const String& str, void* peer, intptr_t external_allocation_size, Dart_WeakPersistentHandleFinalizer callback); static RawTwoByteString* null() { return reinterpret_cast(Object::null()); } static const ClassId kClassId = kTwoByteStringCid; private: static RawTwoByteString* raw(const String& str) { return reinterpret_cast(str.raw()); } static const RawTwoByteString* raw_ptr(const String& str) { return reinterpret_cast(str.raw_ptr()); } static uint16_t* CharAddr(const String& str, intptr_t index) { ASSERT((index >= 0) && (index < str.Length())); ASSERT(str.IsTwoByteString()); return &str.UnsafeMutableNonPointer(raw_ptr(str)->data())[index]; } // Use this instead of CharAddr(0). It will not assert that the index is < // length. static uint16_t* DataStart(const String& str) { ASSERT(str.IsTwoByteString()); return &str.UnsafeMutableNonPointer(raw_ptr(str)->data())[0]; } static RawTwoByteString* ReadFrom(SnapshotReader* reader, intptr_t object_id, intptr_t tags, Snapshot::Kind kind, bool as_reference); friend class Class; friend class String; friend class SnapshotReader; friend class Symbols; }; class ExternalOneByteString : public AllStatic { public: static uint16_t CharAt(const String& str, intptr_t index) { NoSafepointScope no_safepoint; return *CharAddr(str, index); } static void* GetPeer(const String& str) { return raw_ptr(str)->peer_; } static intptr_t external_data_offset() { return OFFSET_OF(RawExternalOneByteString, external_data_); } // We use the same maximum elements for all strings. static const intptr_t kBytesPerElement = 1; static const intptr_t kMaxElements = String::kMaxElements; static intptr_t InstanceSize() { return String::RoundedAllocationSize(sizeof(RawExternalOneByteString)); } static RawExternalOneByteString* New( const uint8_t* characters, intptr_t len, void* peer, intptr_t external_allocation_size, Dart_WeakPersistentHandleFinalizer callback, Heap::Space space); static RawExternalOneByteString* null() { return reinterpret_cast(Object::null()); } static RawOneByteString* EscapeSpecialCharacters(const String& str); static RawOneByteString* EncodeIRI(const String& str); static RawOneByteString* DecodeIRI(const String& str); static const ClassId kClassId = kExternalOneByteStringCid; private: static RawExternalOneByteString* raw(const String& str) { return reinterpret_cast(str.raw()); } static const RawExternalOneByteString* raw_ptr(const String& str) { return reinterpret_cast(str.raw_ptr()); } static const uint8_t* CharAddr(const String& str, intptr_t index) { ASSERT((index >= 0) && (index < str.Length())); ASSERT(str.IsExternalOneByteString()); return &(raw_ptr(str)->external_data_[index]); } static const uint8_t* DataStart(const String& str) { ASSERT(str.IsExternalOneByteString()); return raw_ptr(str)->external_data_; } static void SetExternalData(const String& str, const uint8_t* data, void* peer) { ASSERT(str.IsExternalOneByteString()); ASSERT( !Isolate::Current()->heap()->Contains(reinterpret_cast(data))); str.StoreNonPointer(&raw_ptr(str)->external_data_, data); str.StoreNonPointer(&raw_ptr(str)->peer_, peer); } static void Finalize(void* isolate_callback_data, Dart_WeakPersistentHandle handle, void* peer); static RawExternalOneByteString* ReadFrom(SnapshotReader* reader, intptr_t object_id, intptr_t tags, Snapshot::Kind kind, bool as_reference); static intptr_t NextFieldOffset() { // Indicates this class cannot be extended by dart code. return -kWordSize; } friend class Class; friend class String; friend class SnapshotReader; friend class Symbols; friend class Utf8; }; class ExternalTwoByteString : public AllStatic { public: static uint16_t CharAt(const String& str, intptr_t index) { NoSafepointScope no_safepoint; return *CharAddr(str, index); } static void* GetPeer(const String& str) { return raw_ptr(str)->peer_; } static intptr_t external_data_offset() { return OFFSET_OF(RawExternalTwoByteString, external_data_); } // We use the same maximum elements for all strings. static const intptr_t kBytesPerElement = 2; static const intptr_t kMaxElements = String::kMaxElements; static intptr_t InstanceSize() { return String::RoundedAllocationSize(sizeof(RawExternalTwoByteString)); } static RawExternalTwoByteString* New( const uint16_t* characters, intptr_t len, void* peer, intptr_t external_allocation_size, Dart_WeakPersistentHandleFinalizer callback, Heap::Space space = Heap::kNew); static RawExternalTwoByteString* null() { return reinterpret_cast(Object::null()); } static const ClassId kClassId = kExternalTwoByteStringCid; private: static RawExternalTwoByteString* raw(const String& str) { return reinterpret_cast(str.raw()); } static const RawExternalTwoByteString* raw_ptr(const String& str) { return reinterpret_cast(str.raw_ptr()); } static const uint16_t* CharAddr(const String& str, intptr_t index) { ASSERT((index >= 0) && (index < str.Length())); ASSERT(str.IsExternalTwoByteString()); return &(raw_ptr(str)->external_data_[index]); } static const uint16_t* DataStart(const String& str) { ASSERT(str.IsExternalTwoByteString()); return raw_ptr(str)->external_data_; } static void SetExternalData(const String& str, const uint16_t* data, void* peer) { ASSERT(str.IsExternalTwoByteString()); ASSERT( !Isolate::Current()->heap()->Contains(reinterpret_cast(data))); str.StoreNonPointer(&raw_ptr(str)->external_data_, data); str.StoreNonPointer(&raw_ptr(str)->peer_, peer); } static void Finalize(void* isolate_callback_data, Dart_WeakPersistentHandle handle, void* peer); static RawExternalTwoByteString* ReadFrom(SnapshotReader* reader, intptr_t object_id, intptr_t tags, Snapshot::Kind kind, bool as_reference); static intptr_t NextFieldOffset() { // Indicates this class cannot be extended by dart code. return -kWordSize; } friend class Class; friend class String; friend class SnapshotReader; friend class Symbols; }; // Class Bool implements Dart core class bool. class Bool : public Instance { public: bool value() const { return raw_ptr()->value_; } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawBool)); } static const Bool& True() { return Object::bool_true(); } static const Bool& False() { return Object::bool_false(); } static const Bool& Get(bool value) { return value ? Bool::True() : Bool::False(); } virtual uint32_t CanonicalizeHash() const { return raw() == True().raw() ? 1231 : 1237; } private: void set_value(bool value) const { StoreNonPointer(&raw_ptr()->value_, value); } // New should only be called to initialize the two legal bool values. static RawBool* New(bool value); FINAL_HEAP_OBJECT_IMPLEMENTATION(Bool, Instance); friend class Class; friend class Object; // To initialize the true and false values. }; class Array : public Instance { public: // We use 30 bits for the hash code so hashes in a snapshot taken on a // 64-bit architecture stay in Smi range when loaded on a 32-bit // architecture. static const intptr_t kHashBits = 30; // Returns `true` if we use card marking for arrays of length [array_length]. static bool UseCardMarkingForAllocation(const intptr_t array_length) { return Array::InstanceSize(array_length) > Heap::kNewAllocatableSize; } intptr_t Length() const { return LengthOf(raw()); } static intptr_t LengthOf(const RawArray* array) { return Smi::Value(array->ptr()->length_); } static intptr_t length_offset() { return OFFSET_OF(RawArray, length_); } static intptr_t data_offset() { return OFFSET_OF_RETURNED_VALUE(RawArray, data); } static intptr_t element_offset(intptr_t index) { return OFFSET_OF_RETURNED_VALUE(RawArray, data) + kWordSize * index; } struct ArrayLayout { static intptr_t elements_start_offset() { return Array::data_offset(); } static constexpr intptr_t kElementSize = kWordSize; }; static bool Equals(RawArray* a, RawArray* b) { if (a == b) return true; if (a->IsRawNull() || b->IsRawNull()) return false; if (a->ptr()->length_ != b->ptr()->length_) return false; if (a->ptr()->type_arguments_ != b->ptr()->type_arguments_) return false; const intptr_t length = LengthOf(a); return memcmp(a->ptr()->data(), b->ptr()->data(), kWordSize * length) == 0; } static RawObject** DataOf(RawArray* array) { return array->ptr()->data(); } RawObject* At(intptr_t index) const { return *ObjectAddr(index); } void SetAt(intptr_t index, const Object& value) const { // TODO(iposva): Add storing NoSafepointScope. StoreArrayPointer(ObjectAddr(index), value.raw()); } // Access to the array with acquire release semantics. RawObject* AtAcquire(intptr_t index) const { return AtomicOperations::LoadAcquire(ObjectAddr(index)); } void SetAtRelease(intptr_t index, const Object& value) const { // TODO(iposva): Add storing NoSafepointScope. StoreArrayPointer(ObjectAddr(index), value.raw()); } bool IsImmutable() const { return raw()->GetClassId() == kImmutableArrayCid; } virtual RawTypeArguments* GetTypeArguments() const { return raw_ptr()->type_arguments_; } virtual void SetTypeArguments(const TypeArguments& value) const { // An Array is raw or takes one type argument. However, its type argument // vector may be longer than 1 due to a type optimization reusing the type // argument vector of the instantiator. ASSERT(value.IsNull() || ((value.Length() >= 1) && value.IsInstantiated() /*&& value.IsCanonical()*/)); // TODO(asiva): Values read from a message snapshot are not properly marked // as canonical. See for example tests/isolate/mandel_isolate_test.dart. StoreArrayPointer(&raw_ptr()->type_arguments_, value.raw()); } virtual bool CanonicalizeEquals(const Instance& other) const; virtual uint32_t CanonicalizeHash() const; static const intptr_t kBytesPerElement = kWordSize; static const intptr_t kMaxElements = kSmiMax / kBytesPerElement; static const intptr_t kMaxNewSpaceElements = (Heap::kNewAllocatableSize - sizeof(RawArray)) / kBytesPerElement; static intptr_t type_arguments_offset() { return OFFSET_OF(RawArray, type_arguments_); } static bool IsValidLength(intptr_t len) { return 0 <= len && len <= kMaxElements; } static intptr_t InstanceSize() { ASSERT(sizeof(RawArray) == OFFSET_OF_RETURNED_VALUE(RawArray, data)); return 0; } static intptr_t InstanceSize(intptr_t len) { // Ensure that variable length data is not adding to the object length. ASSERT(sizeof(RawArray) == (sizeof(RawInstance) + (2 * kWordSize))); ASSERT(IsValidLength(len)); return RoundedAllocationSize(sizeof(RawArray) + (len * kBytesPerElement)); } // Returns true if all elements are OK for canonicalization. virtual bool CheckAndCanonicalizeFields(Thread* thread, const char** error_str) const; // Make the array immutable to Dart code by switching the class pointer // to ImmutableArray. void MakeImmutable() const; static RawArray* New(intptr_t len, Heap::Space space = Heap::kNew); static RawArray* New(intptr_t len, const AbstractType& element_type, Heap::Space space = Heap::kNew); // Creates and returns a new array with 'new_length'. Copies all elements from // 'source' to the new array. 'new_length' must be greater than or equal to // 'source.Length()'. 'source' can be null. static RawArray* Grow(const Array& source, intptr_t new_length, Heap::Space space = Heap::kNew); // Truncates the array to a given length. 'new_length' must be less than // or equal to 'source.Length()'. The remaining unused part of the array is // marked as an Array object or a regular Object so that it can be traversed // during garbage collection. void Truncate(intptr_t new_length) const; // Return an Array object that contains all the elements currently present // in the specified Growable Object Array. This is done by first truncating // the Growable Object Array's backing array to the currently used size and // returning the truncated backing array. // The backing array of the original Growable Object Array is // set to an empty array. // If the unique parameter is false, the function is allowed to return // a shared Array instance. static RawArray* MakeFixedLength(const GrowableObjectArray& growable_array, bool unique = false); RawArray* Slice(intptr_t start, intptr_t count, bool with_type_argument) const; protected: static RawArray* New(intptr_t class_id, intptr_t len, Heap::Space space = Heap::kNew); private: RawObject* const* ObjectAddr(intptr_t index) const { // TODO(iposva): Determine if we should throw an exception here. ASSERT((index >= 0) && (index < Length())); return &raw_ptr()->data()[index]; } void SetLength(intptr_t value) const { // This is only safe because we create a new Smi, which does not cause // heap allocation. StoreSmi(&raw_ptr()->length_, Smi::New(value)); } template void StoreArrayPointer(type const* addr, type value) const { raw()->StoreArrayPointer(addr, value); } // Store a range of pointers [from, from + count) into [to, to + count). // TODO(koda): Use this to fix Object::Clone's broken store buffer logic. void StoreArrayPointers(RawObject* const* to, RawObject* const* from, intptr_t count) { ASSERT(Contains(reinterpret_cast(to))); if (raw()->IsNewObject()) { memmove(const_cast(to), from, count * kWordSize); } else { for (intptr_t i = 0; i < count; ++i) { StoreArrayPointer(&to[i], from[i]); } } } FINAL_HEAP_OBJECT_IMPLEMENTATION(Array, Instance); friend class Class; friend class ImmutableArray; friend class Interpreter; friend class Object; friend class String; }; class ImmutableArray : public AllStatic { public: static RawImmutableArray* New(intptr_t len, Heap::Space space = Heap::kNew); static RawImmutableArray* ReadFrom(SnapshotReader* reader, intptr_t object_id, intptr_t tags, Snapshot::Kind kind, bool as_reference); static const ClassId kClassId = kImmutableArrayCid; static intptr_t InstanceSize() { return Array::InstanceSize(); } static intptr_t InstanceSize(intptr_t len) { return Array::InstanceSize(len); } private: static intptr_t NextFieldOffset() { // Indicates this class cannot be extended by dart code. return -kWordSize; } static RawImmutableArray* raw(const Array& array) { return reinterpret_cast(array.raw()); } friend class Class; }; class GrowableObjectArray : public Instance { public: intptr_t Capacity() const { NoSafepointScope no_safepoint; ASSERT(!IsNull()); return Smi::Value(DataArray()->length_); } intptr_t Length() const { ASSERT(!IsNull()); return Smi::Value(raw_ptr()->length_); } void SetLength(intptr_t value) const { // This is only safe because we create a new Smi, which does not cause // heap allocation. StoreSmi(&raw_ptr()->length_, Smi::New(value)); } RawArray* data() const { return raw_ptr()->data_; } void SetData(const Array& value) const { StorePointer(&raw_ptr()->data_, value.raw()); } RawObject* At(intptr_t index) const { NoSafepointScope no_safepoint; ASSERT(!IsNull()); ASSERT(index < Length()); return *ObjectAddr(index); } void SetAt(intptr_t index, const Object& value) const { ASSERT(!IsNull()); ASSERT(index < Length()); // TODO(iposva): Add storing NoSafepointScope. data()->StoreArrayPointer(ObjectAddr(index), value.raw()); } void Add(const Object& value, Heap::Space space = Heap::kNew) const; void Grow(intptr_t new_capacity, Heap::Space space = Heap::kNew) const; RawObject* RemoveLast() const; virtual RawTypeArguments* GetTypeArguments() const { return raw_ptr()->type_arguments_; } virtual void SetTypeArguments(const TypeArguments& value) const { // A GrowableObjectArray is raw or takes one type argument. However, its // type argument vector may be longer than 1 due to a type optimization // reusing the type argument vector of the instantiator. ASSERT(value.IsNull() || ((value.Length() >= 1) && value.IsInstantiated() && value.IsCanonical())); StorePointer(&raw_ptr()->type_arguments_, value.raw()); } // We don't expect a growable object array to be canonicalized. virtual bool CanonicalizeEquals(const Instance& other) const { UNREACHABLE(); return false; } // We don't expect a growable object array to be canonicalized. virtual RawInstance* CheckAndCanonicalize(Thread* thread, const char** error_str) const { UNREACHABLE(); return Instance::null(); } static intptr_t type_arguments_offset() { return OFFSET_OF(RawGrowableObjectArray, type_arguments_); } static intptr_t length_offset() { return OFFSET_OF(RawGrowableObjectArray, length_); } static intptr_t data_offset() { return OFFSET_OF(RawGrowableObjectArray, data_); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawGrowableObjectArray)); } static RawGrowableObjectArray* New(Heap::Space space = Heap::kNew) { return New(kDefaultInitialCapacity, space); } static RawGrowableObjectArray* New(intptr_t capacity, Heap::Space space = Heap::kNew); static RawGrowableObjectArray* New(const Array& array, Heap::Space space = Heap::kNew); static RawSmi* NoSafepointLength(const RawGrowableObjectArray* array) { return array->ptr()->length_; } static RawArray* NoSafepointData(const RawGrowableObjectArray* array) { return array->ptr()->data_; } private: RawArray* DataArray() const { return data()->ptr(); } RawObject** ObjectAddr(intptr_t index) const { ASSERT((index >= 0) && (index < Length())); return &(DataArray()->data()[index]); } static const int kDefaultInitialCapacity = 0; FINAL_HEAP_OBJECT_IMPLEMENTATION(GrowableObjectArray, Instance); friend class Array; friend class Class; }; class Float32x4 : public Instance { public: static RawFloat32x4* New(float value0, float value1, float value2, float value3, Heap::Space space = Heap::kNew); static RawFloat32x4* New(simd128_value_t value, Heap::Space space = Heap::kNew); float x() const; float y() const; float z() const; float w() const; void set_x(float x) const; void set_y(float y) const; void set_z(float z) const; void set_w(float w) const; simd128_value_t value() const; void set_value(simd128_value_t value) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawFloat32x4)); } static intptr_t value_offset() { return OFFSET_OF(RawFloat32x4, value_); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(Float32x4, Instance); friend class Class; }; class Int32x4 : public Instance { public: static RawInt32x4* New(int32_t value0, int32_t value1, int32_t value2, int32_t value3, Heap::Space space = Heap::kNew); static RawInt32x4* New(simd128_value_t value, Heap::Space space = Heap::kNew); int32_t x() const; int32_t y() const; int32_t z() const; int32_t w() const; void set_x(int32_t x) const; void set_y(int32_t y) const; void set_z(int32_t z) const; void set_w(int32_t w) const; simd128_value_t value() const; void set_value(simd128_value_t value) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawInt32x4)); } static intptr_t value_offset() { return OFFSET_OF(RawInt32x4, value_); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(Int32x4, Instance); friend class Class; }; class Float64x2 : public Instance { public: static RawFloat64x2* New(double value0, double value1, Heap::Space space = Heap::kNew); static RawFloat64x2* New(simd128_value_t value, Heap::Space space = Heap::kNew); double x() const; double y() const; void set_x(double x) const; void set_y(double y) const; simd128_value_t value() const; void set_value(simd128_value_t value) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawFloat64x2)); } static intptr_t value_offset() { return OFFSET_OF(RawFloat64x2, value_); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(Float64x2, Instance); friend class Class; }; class TypedDataBase : public Instance { public: static intptr_t length_offset() { return OFFSET_OF(RawTypedDataBase, length_); } static intptr_t data_field_offset() { return OFFSET_OF(RawTypedDataBase, data_); } RawSmi* length() const { return raw_ptr()->length_; } intptr_t Length() const { ASSERT(!IsNull()); return Smi::Value(raw_ptr()->length_); } intptr_t LengthInBytes() const { return ElementSizeInBytes(raw()->GetClassId()) * Length(); } TypedDataElementType ElementType() const { return ElementType(raw()->GetClassId()); } intptr_t ElementSizeInBytes() const { return element_size(ElementType(raw()->GetClassId())); } static intptr_t ElementSizeInBytes(classid_t cid) { return element_size(ElementType(cid)); } static TypedDataElementType ElementType(classid_t cid) { if (cid == kByteDataViewCid) { return kUint8ArrayElement; } else if (RawObject::IsTypedDataClassId(cid)) { const intptr_t index = (cid - kTypedDataInt8ArrayCid - kTypedDataCidRemainderInternal) / 3; return static_cast(index); } else if (RawObject::IsTypedDataViewClassId(cid)) { const intptr_t index = (cid - kTypedDataInt8ArrayCid - kTypedDataCidRemainderView) / 3; return static_cast(index); } else { ASSERT(RawObject::IsExternalTypedDataClassId(cid)); const intptr_t index = (cid - kTypedDataInt8ArrayCid - kTypedDataCidRemainderExternal) / 3; return static_cast(index); } } void* DataAddr(intptr_t byte_offset) const { ASSERT((byte_offset == 0) || ((byte_offset > 0) && (byte_offset < LengthInBytes()))); return reinterpret_cast(Validate(raw_ptr()->data_) + byte_offset); } protected: void SetLength(intptr_t value) const { ASSERT(value <= Smi::kMaxValue); StoreSmi(&raw_ptr()->length_, Smi::New(value)); } virtual uint8_t* Validate(uint8_t* data) const { return UnsafeMutableNonPointer(data); } private: friend class Class; static intptr_t element_size(intptr_t index) { ASSERT(0 <= index && index < kNumElementSizes); intptr_t size = element_size_table[index]; ASSERT(size != 0); return size; } static const intptr_t kNumElementSizes = (kTypedDataFloat64x2ArrayCid - kTypedDataInt8ArrayCid) / 3 + 1; static const intptr_t element_size_table[kNumElementSizes]; HEAP_OBJECT_IMPLEMENTATION(TypedDataBase, Instance); }; class TypedData : public TypedDataBase { public: // We use 30 bits for the hash code so hashes in a snapshot taken on a // 64-bit architecture stay in Smi range when loaded on a 32-bit // architecture. static const intptr_t kHashBits = 30; virtual bool CanonicalizeEquals(const Instance& other) const; virtual uint32_t CanonicalizeHash() const; #define TYPED_GETTER_SETTER(name, type) \ type Get##name(intptr_t byte_offset) const { \ ASSERT((byte_offset >= 0) && \ (byte_offset + static_cast(sizeof(type)) - 1) < \ LengthInBytes()); \ return ReadUnaligned(ReadOnlyDataAddr(byte_offset)); \ } \ void Set##name(intptr_t byte_offset, type value) const { \ NoSafepointScope no_safepoint; \ StoreUnaligned(reinterpret_cast(DataAddr(byte_offset)), value); \ } TYPED_GETTER_SETTER(Int8, int8_t) TYPED_GETTER_SETTER(Uint8, uint8_t) TYPED_GETTER_SETTER(Int16, int16_t) TYPED_GETTER_SETTER(Uint16, uint16_t) TYPED_GETTER_SETTER(Int32, int32_t) TYPED_GETTER_SETTER(Uint32, uint32_t) TYPED_GETTER_SETTER(Int64, int64_t) TYPED_GETTER_SETTER(Uint64, uint64_t) TYPED_GETTER_SETTER(Float32, float) TYPED_GETTER_SETTER(Float64, double) TYPED_GETTER_SETTER(Float32x4, simd128_value_t) TYPED_GETTER_SETTER(Int32x4, simd128_value_t) TYPED_GETTER_SETTER(Float64x2, simd128_value_t) #undef TYPED_GETTER_SETTER static intptr_t data_offset() { return RawTypedData::payload_offset(); } static intptr_t InstanceSize() { ASSERT(sizeof(RawTypedData) == OFFSET_OF_RETURNED_VALUE(RawTypedData, internal_data)); return 0; } static intptr_t InstanceSize(intptr_t lengthInBytes) { ASSERT(0 <= lengthInBytes && lengthInBytes <= kSmiMax); return RoundedAllocationSize(sizeof(RawTypedData) + lengthInBytes); } static intptr_t MaxElements(intptr_t class_id) { ASSERT(RawObject::IsTypedDataClassId(class_id)); return (kSmiMax / ElementSizeInBytes(class_id)); } static intptr_t MaxNewSpaceElements(intptr_t class_id) { ASSERT(RawObject::IsTypedDataClassId(class_id)); return (Heap::kNewAllocatableSize - sizeof(RawTypedData)) / ElementSizeInBytes(class_id); } static RawTypedData* New(intptr_t class_id, intptr_t len, Heap::Space space = Heap::kNew); template static void Copy(const DstType& dst, intptr_t dst_offset_in_bytes, const SrcType& src, intptr_t src_offset_in_bytes, intptr_t length_in_bytes) { ASSERT(Utils::RangeCheck(src_offset_in_bytes, length_in_bytes, src.LengthInBytes())); ASSERT(Utils::RangeCheck(dst_offset_in_bytes, length_in_bytes, dst.LengthInBytes())); { NoSafepointScope no_safepoint; if (length_in_bytes > 0) { memmove(dst.DataAddr(dst_offset_in_bytes), src.DataAddr(src_offset_in_bytes), length_in_bytes); } } } template static void ClampedCopy(const DstType& dst, intptr_t dst_offset_in_bytes, const SrcType& src, intptr_t src_offset_in_bytes, intptr_t length_in_bytes) { ASSERT(Utils::RangeCheck(src_offset_in_bytes, length_in_bytes, src.LengthInBytes())); ASSERT(Utils::RangeCheck(dst_offset_in_bytes, length_in_bytes, dst.LengthInBytes())); { NoSafepointScope no_safepoint; if (length_in_bytes > 0) { uint8_t* dst_data = reinterpret_cast(dst.DataAddr(dst_offset_in_bytes)); int8_t* src_data = reinterpret_cast(src.DataAddr(src_offset_in_bytes)); for (intptr_t ix = 0; ix < length_in_bytes; ix++) { int8_t v = *src_data; if (v < 0) v = 0; *dst_data = v; src_data++; dst_data++; } } } } static bool IsTypedData(const Instance& obj) { ASSERT(!obj.IsNull()); intptr_t cid = obj.raw()->GetClassId(); return RawObject::IsTypedDataClassId(cid); } protected: void RecomputeDataField() { raw()->RecomputeDataField(); } private: // Provides const access to non-pointer, non-aligned data within the object. // Such access does not need a write barrier, but it is *not* GC-safe, since // the object might move. // // Therefore this method is private and the call-sites in this class need to // ensure the returned pointer does not escape. template const FieldType* ReadOnlyDataAddr(intptr_t byte_offset) const { return reinterpret_cast((raw_ptr()->data()) + byte_offset); } FINAL_HEAP_OBJECT_IMPLEMENTATION(TypedData, TypedDataBase); friend class Class; friend class ExternalTypedData; friend class TypedDataView; }; class ExternalTypedData : public TypedDataBase { public: // Alignment of data when serializing ExternalTypedData in a clustered // snapshot. Should be independent of word size. static const int kDataSerializationAlignment = 8; #define TYPED_GETTER_SETTER(name, type) \ type Get##name(intptr_t byte_offset) const { \ return ReadUnaligned(reinterpret_cast(DataAddr(byte_offset))); \ } \ void Set##name(intptr_t byte_offset, type value) const { \ StoreUnaligned(reinterpret_cast(DataAddr(byte_offset)), value); \ } TYPED_GETTER_SETTER(Int8, int8_t) TYPED_GETTER_SETTER(Uint8, uint8_t) TYPED_GETTER_SETTER(Int16, int16_t) TYPED_GETTER_SETTER(Uint16, uint16_t) TYPED_GETTER_SETTER(Int32, int32_t) TYPED_GETTER_SETTER(Uint32, uint32_t) TYPED_GETTER_SETTER(Int64, int64_t) TYPED_GETTER_SETTER(Uint64, uint64_t) TYPED_GETTER_SETTER(Float32, float) TYPED_GETTER_SETTER(Float64, double) TYPED_GETTER_SETTER(Float32x4, simd128_value_t) TYPED_GETTER_SETTER(Int32x4, simd128_value_t) TYPED_GETTER_SETTER(Float64x2, simd128_value_t) #undef TYPED_GETTER_SETTER FinalizablePersistentHandle* AddFinalizer( void* peer, Dart_WeakPersistentHandleFinalizer callback, intptr_t external_size) const; static intptr_t data_offset() { return OFFSET_OF(RawExternalTypedData, data_); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawExternalTypedData)); } static intptr_t MaxElements(intptr_t class_id) { ASSERT(RawObject::IsExternalTypedDataClassId(class_id)); return (kSmiMax / ElementSizeInBytes(class_id)); } static RawExternalTypedData* New(intptr_t class_id, uint8_t* data, intptr_t len, Heap::Space space = Heap::kNew); static bool IsExternalTypedData(const Instance& obj) { ASSERT(!obj.IsNull()); intptr_t cid = obj.raw()->GetClassId(); return RawObject::IsExternalTypedDataClassId(cid); } protected: virtual uint8_t* Validate(uint8_t* data) const { return data; } void SetLength(intptr_t value) const { ASSERT(value <= Smi::kMaxValue); StoreSmi(&raw_ptr()->length_, Smi::New(value)); } void SetData(uint8_t* data) const { ASSERT( !Isolate::Current()->heap()->Contains(reinterpret_cast(data))); StoreNonPointer(&raw_ptr()->data_, data); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(ExternalTypedData, TypedDataBase); friend class Class; }; class TypedDataView : public TypedDataBase { public: static RawTypedDataView* New(intptr_t class_id, Heap::Space space = Heap::kNew); static RawTypedDataView* New(intptr_t class_id, const TypedDataBase& typed_data, intptr_t offset_in_bytes, intptr_t length, Heap::Space space = Heap::kNew); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawTypedDataView)); } static RawInstance* Data(const TypedDataView& view) { return view.typed_data(); } static RawSmi* OffsetInBytes(const TypedDataView& view) { return view.offset_in_bytes(); } static bool IsExternalTypedDataView(const TypedDataView& view_obj) { const auto& data = Instance::Handle(Data(view_obj)); intptr_t cid = data.raw()->GetClassId(); ASSERT(RawObject::IsTypedDataClassId(cid) || RawObject::IsExternalTypedDataClassId(cid)); return RawObject::IsExternalTypedDataClassId(cid); } static intptr_t data_offset() { return OFFSET_OF(RawTypedDataView, typed_data_); } static intptr_t offset_in_bytes_offset() { return OFFSET_OF(RawTypedDataView, offset_in_bytes_); } RawInstance* typed_data() const { return raw_ptr()->typed_data_; } void InitializeWith(const TypedDataBase& typed_data, intptr_t offset_in_bytes, intptr_t length) { const classid_t cid = typed_data.GetClassId(); ASSERT(RawObject::IsTypedDataClassId(cid) || RawObject::IsExternalTypedDataClassId(cid)); StorePointer(&raw_ptr()->typed_data_, typed_data.raw()); StoreSmi(&raw_ptr()->length_, Smi::New(length)); StoreSmi(&raw_ptr()->offset_in_bytes_, Smi::New(offset_in_bytes)); // Update the inner pointer. RecomputeDataField(); } RawSmi* offset_in_bytes() const { return raw_ptr()->offset_in_bytes_; } protected: virtual uint8_t* Validate(uint8_t* data) const { return data; } private: void RecomputeDataField() { raw()->RecomputeDataField(); } void Clear() { StoreSmi(&raw_ptr()->length_, Smi::New(0)); StoreSmi(&raw_ptr()->offset_in_bytes_, Smi::New(0)); StoreNonPointer(&raw_ptr()->data_, nullptr); StorePointer(&raw_ptr()->typed_data_, TypedDataBase::RawCast(Object::null())); } FINAL_HEAP_OBJECT_IMPLEMENTATION(TypedDataView, TypedDataBase); friend class Class; friend class TypedDataViewDeserializationCluster; }; class ByteBuffer : public AllStatic { public: static RawInstance* Data(const Instance& view_obj) { ASSERT(!view_obj.IsNull()); return *reinterpret_cast(view_obj.raw_ptr() + kDataOffset); } static intptr_t NumberOfFields() { return kDataOffset; } static intptr_t data_offset() { return kWordSize * kDataOffset; } private: enum { kDataOffset = 1, }; }; class Pointer : public Instance { public: static RawPointer* New(const AbstractType& type_arg, uword native_address, Heap::Space space = Heap::kNew); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawPointer)); } static bool IsPointer(const Instance& obj); size_t NativeAddress() const { return Integer::Handle(raw_ptr()->c_memory_address_).AsInt64Value(); } void SetNativeAddress(size_t address) const { const auto& address_boxed = Integer::Handle(Integer::New(address)); NoSafepointScope no_safepoint_scope; StorePointer(&raw_ptr()->c_memory_address_, address_boxed.raw()); } static intptr_t type_arguments_offset() { return OFFSET_OF(RawPointer, type_arguments_); } static intptr_t c_memory_address_offset() { return OFFSET_OF(RawPointer, c_memory_address_); } static intptr_t NextFieldOffset() { return sizeof(RawPointer); } static const intptr_t kNativeTypeArgPos = 0; // Fetches the NativeType type argument. RawAbstractType* type_argument() const { TypeArguments& type_args = TypeArguments::Handle(GetTypeArguments()); return type_args.TypeAtNullSafe(Pointer::kNativeTypeArgPos); } private: HEAP_OBJECT_IMPLEMENTATION(Pointer, Instance); friend class Class; }; class DynamicLibrary : public Instance { public: static RawDynamicLibrary* New(void* handle, Heap::Space space = Heap::kNew); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawDynamicLibrary)); } static bool IsDynamicLibrary(const Instance& obj) { ASSERT(!obj.IsNull()); intptr_t cid = obj.raw()->GetClassId(); return RawObject::IsFfiDynamicLibraryClassId(cid); } void* GetHandle() const { ASSERT(!IsNull()); return raw_ptr()->handle_; } void SetHandle(void* value) const { StoreNonPointer(&raw_ptr()->handle_, value); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(DynamicLibrary, Instance); friend class Class; }; // Corresponds to // - "new Map()", // - non-const map literals, and // - the default constructor of LinkedHashMap in dart:collection. class LinkedHashMap : public Instance { public: static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawLinkedHashMap)); } // Allocates a map with some default capacity, just like "new Map()". static RawLinkedHashMap* NewDefault(Heap::Space space = Heap::kNew); static RawLinkedHashMap* New(const Array& data, const TypedData& index, intptr_t hash_mask, intptr_t used_data, intptr_t deleted_keys, Heap::Space space = Heap::kNew); virtual RawTypeArguments* GetTypeArguments() const { return raw_ptr()->type_arguments_; } virtual void SetTypeArguments(const TypeArguments& value) const { ASSERT(value.IsNull() || ((value.Length() >= 2) && value.IsInstantiated() /*&& value.IsCanonical()*/)); // TODO(asiva): Values read from a message snapshot are not properly marked // as canonical. See for example tests/isolate/message3_test.dart. StorePointer(&raw_ptr()->type_arguments_, value.raw()); } static intptr_t type_arguments_offset() { return OFFSET_OF(RawLinkedHashMap, type_arguments_); } RawTypedData* index() const { return raw_ptr()->index_; } void SetIndex(const TypedData& value) const { ASSERT(!value.IsNull()); StorePointer(&raw_ptr()->index_, value.raw()); } static intptr_t index_offset() { return OFFSET_OF(RawLinkedHashMap, index_); } RawArray* data() const { return raw_ptr()->data_; } void SetData(const Array& value) const { StorePointer(&raw_ptr()->data_, value.raw()); } static intptr_t data_offset() { return OFFSET_OF(RawLinkedHashMap, data_); } RawSmi* hash_mask() const { return raw_ptr()->hash_mask_; } void SetHashMask(intptr_t value) const { StoreSmi(&raw_ptr()->hash_mask_, Smi::New(value)); } static intptr_t hash_mask_offset() { return OFFSET_OF(RawLinkedHashMap, hash_mask_); } RawSmi* used_data() const { return raw_ptr()->used_data_; } void SetUsedData(intptr_t value) const { StoreSmi(&raw_ptr()->used_data_, Smi::New(value)); } static intptr_t used_data_offset() { return OFFSET_OF(RawLinkedHashMap, used_data_); } RawSmi* deleted_keys() const { return raw_ptr()->deleted_keys_; } void SetDeletedKeys(intptr_t value) const { StoreSmi(&raw_ptr()->deleted_keys_, Smi::New(value)); } static intptr_t deleted_keys_offset() { return OFFSET_OF(RawLinkedHashMap, deleted_keys_); } intptr_t Length() const { // The map may be uninitialized. if (raw_ptr()->used_data_ == Object::null()) return 0; if (raw_ptr()->deleted_keys_ == Object::null()) return 0; intptr_t used = Smi::Value(raw_ptr()->used_data_); intptr_t deleted = Smi::Value(raw_ptr()->deleted_keys_); return (used >> 1) - deleted; } // This iterator differs somewhat from its Dart counterpart (_CompactIterator // in runtime/lib/compact_hash.dart): // - There are no checks for concurrent modifications. // - Accessing a key or value before the first call to MoveNext and after // MoveNext returns false will result in crashes. class Iterator : ValueObject { public: explicit Iterator(const LinkedHashMap& map) : data_(Array::Handle(map.data())), scratch_(Object::Handle()), offset_(-2), length_(Smi::Value(map.used_data())) {} bool MoveNext() { while (true) { offset_ += 2; if (offset_ >= length_) { return false; } scratch_ = data_.At(offset_); if (scratch_.raw() != data_.raw()) { // Slot is not deleted (self-reference indicates deletion). return true; } } } RawObject* CurrentKey() const { return data_.At(offset_); } RawObject* CurrentValue() const { return data_.At(offset_ + 1); } private: const Array& data_; Object& scratch_; intptr_t offset_; const intptr_t length_; }; private: FINAL_HEAP_OBJECT_IMPLEMENTATION(LinkedHashMap, Instance); // Keep this in sync with Dart implementation (lib/compact_hash.dart). static const intptr_t kInitialIndexBits = 3; static const intptr_t kInitialIndexSize = 1 << (kInitialIndexBits + 1); // Allocate a map, but leave all fields set to null. // Used during deserialization (since map might contain itself as key/value). static RawLinkedHashMap* NewUninitialized(Heap::Space space = Heap::kNew); friend class Class; friend class LinkedHashMapDeserializationCluster; }; class Closure : public Instance { public: RawTypeArguments* instantiator_type_arguments() const { return raw_ptr()->instantiator_type_arguments_; } static intptr_t instantiator_type_arguments_offset() { return OFFSET_OF(RawClosure, instantiator_type_arguments_); } RawTypeArguments* function_type_arguments() const { return raw_ptr()->function_type_arguments_; } static intptr_t function_type_arguments_offset() { return OFFSET_OF(RawClosure, function_type_arguments_); } RawTypeArguments* delayed_type_arguments() const { return raw_ptr()->delayed_type_arguments_; } static intptr_t delayed_type_arguments_offset() { return OFFSET_OF(RawClosure, delayed_type_arguments_); } RawFunction* function() const { return raw_ptr()->function_; } static intptr_t function_offset() { return OFFSET_OF(RawClosure, function_); } RawContext* context() const { return raw_ptr()->context_; } static intptr_t context_offset() { return OFFSET_OF(RawClosure, context_); } RawSmi* hash() const { return raw_ptr()->hash_; } static intptr_t hash_offset() { return OFFSET_OF(RawClosure, hash_); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawClosure)); } // Returns true if all elements are OK for canonicalization. virtual bool CheckAndCanonicalizeFields(Thread* thread, const char** error_str) const { // None of the fields of a closure are instances. return true; } virtual uint32_t CanonicalizeHash() const { return Function::Handle(function()).Hash(); } int64_t ComputeHash() const; static RawClosure* New(const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, const Function& function, const Context& context, Heap::Space space = Heap::kNew); static RawClosure* New(const TypeArguments& instantiator_type_arguments, const TypeArguments& function_type_arguments, const TypeArguments& delayed_type_arguments, const Function& function, const Context& context, Heap::Space space = Heap::kNew); RawFunction* GetInstantiatedSignature(Zone* zone) const; private: static RawClosure* New(); FINAL_HEAP_OBJECT_IMPLEMENTATION(Closure, Instance); friend class Class; }; class Capability : public Instance { public: uint64_t Id() const { return raw_ptr()->id_; } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawCapability)); } static RawCapability* New(uint64_t id, Heap::Space space = Heap::kNew); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(Capability, Instance); friend class Class; }; class ReceivePort : public Instance { public: RawSendPort* send_port() const { return raw_ptr()->send_port_; } Dart_Port Id() const { return send_port()->ptr()->id_; } RawInstance* handler() const { return raw_ptr()->handler_; } void set_handler(const Instance& value) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawReceivePort)); } static RawReceivePort* New(Dart_Port id, bool is_control_port, Heap::Space space = Heap::kNew); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(ReceivePort, Instance); friend class Class; }; class SendPort : public Instance { public: Dart_Port Id() const { return raw_ptr()->id_; } Dart_Port origin_id() const { return raw_ptr()->origin_id_; } void set_origin_id(Dart_Port id) const { ASSERT(origin_id() == 0); StoreNonPointer(&(raw_ptr()->origin_id_), id); } static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawSendPort)); } static RawSendPort* New(Dart_Port id, Heap::Space space = Heap::kNew); static RawSendPort* New(Dart_Port id, Dart_Port origin_id, Heap::Space space = Heap::kNew); private: FINAL_HEAP_OBJECT_IMPLEMENTATION(SendPort, Instance); friend class Class; }; // This is allocated when new instance of TransferableTypedData is created in // [TransferableTypedData::New]. class TransferableTypedDataPeer { public: // [data] backing store should be malloc'ed, not new'ed. TransferableTypedDataPeer(uint8_t* data, intptr_t length) : data_(data), length_(length), handle_(nullptr) {} ~TransferableTypedDataPeer() { free(data_); } uint8_t* data() const { return data_; } intptr_t length() const { return length_; } FinalizablePersistentHandle* handle() const { return handle_; } void set_handle(FinalizablePersistentHandle* handle) { handle_ = handle; } void ClearData() { data_ = nullptr; length_ = 0; handle_ = nullptr; } private: uint8_t* data_; intptr_t length_; FinalizablePersistentHandle* handle_; DISALLOW_COPY_AND_ASSIGN(TransferableTypedDataPeer); }; class TransferableTypedData : public Instance { public: static RawTransferableTypedData* New(uint8_t* data, intptr_t len, Heap::Space space = Heap::kNew); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawTransferableTypedData)); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(TransferableTypedData, Instance); friend class Class; }; // Internal stacktrace object used in exceptions for printing stack traces. class StackTrace : public Instance { public: static const int kPreallocatedStackdepth = 90; intptr_t Length() const; RawStackTrace* async_link() const { return raw_ptr()->async_link_; } void set_async_link(const StackTrace& async_link) const; void set_expand_inlined(bool value) const; RawArray* code_array() const { return raw_ptr()->code_array_; } RawObject* CodeAtFrame(intptr_t frame_index) const; void SetCodeAtFrame(intptr_t frame_index, const Object& code) const; RawArray* pc_offset_array() const { return raw_ptr()->pc_offset_array_; } RawSmi* PcOffsetAtFrame(intptr_t frame_index) const; void SetPcOffsetAtFrame(intptr_t frame_index, const Smi& pc_offset) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawStackTrace)); } static RawStackTrace* New(const Array& code_array, const Array& pc_offset_array, Heap::Space space = Heap::kNew); static RawStackTrace* New(const Array& code_array, const Array& pc_offset_array, const StackTrace& async_link, Heap::Space space = Heap::kNew); private: static const char* ToDartCString(const StackTrace& stack_trace_in); static const char* ToDwarfCString(const StackTrace& stack_trace_in); void set_code_array(const Array& code_array) const; void set_pc_offset_array(const Array& pc_offset_array) const; bool expand_inlined() const; FINAL_HEAP_OBJECT_IMPLEMENTATION(StackTrace, Instance); friend class Class; friend class Debugger; }; class RegExpFlags { public: // Flags are passed to a regex object as follows: // 'i': ignore case, 'g': do global matches, 'm': pattern is multi line, // 'u': pattern is full Unicode, not just BMP, 's': '.' in pattern matches // all characters including line terminators. enum Flags { kNone = 0, kGlobal = 1, kIgnoreCase = 2, kMultiLine = 4, kUnicode = 8, kDotAll = 16, }; static const int kDefaultFlags = 0; RegExpFlags() : value_(kDefaultFlags) {} explicit RegExpFlags(int value) : value_(value) {} inline bool IsGlobal() const { return (value_ & kGlobal) != 0; } inline bool IgnoreCase() const { return (value_ & kIgnoreCase) != 0; } inline bool IsMultiLine() const { return (value_ & kMultiLine) != 0; } inline bool IsUnicode() const { return (value_ & kUnicode) != 0; } inline bool IsDotAll() const { return (value_ & kDotAll) != 0; } inline bool NeedsUnicodeCaseEquivalents() { // Both unicode and ignore_case flags are set. We need to use ICU to find // the closure over case equivalents. return IsUnicode() && IgnoreCase(); } void SetGlobal() { value_ |= kGlobal; } void SetIgnoreCase() { value_ |= kIgnoreCase; } void SetMultiLine() { value_ |= kMultiLine; } void SetUnicode() { value_ |= kUnicode; } void SetDotAll() { value_ |= kDotAll; } const char* ToCString() const; int value() const { return value_; } bool operator==(const RegExpFlags& other) { return value_ == other.value_; } bool operator!=(const RegExpFlags& other) { return value_ != other.value_; } private: int value_; }; // Internal JavaScript regular expression object. class RegExp : public Instance { public: // Meaning of RegExType: // kUninitialized: the type of th regexp has not been initialized yet. // kSimple: A simple pattern to match against, using string indexOf operation. // kComplex: A complex pattern to match. enum RegExType { kUninitialized = 0, kSimple = 1, kComplex = 2, }; enum { kTypePos = 0, kTypeSize = 2, kFlagsPos = 2, kFlagsSize = 5, }; class TypeBits : public BitField {}; class FlagsBits : public BitField {}; bool is_initialized() const { return (type() != kUninitialized); } bool is_simple() const { return (type() == kSimple); } bool is_complex() const { return (type() == kComplex); } intptr_t num_registers(bool is_one_byte) const { return is_one_byte ? raw_ptr()->num_one_byte_registers_ : raw_ptr()->num_two_byte_registers_; } RawString* pattern() const { return raw_ptr()->pattern_; } RawSmi* num_bracket_expressions() const { return raw_ptr()->num_bracket_expressions_; } RawArray* capture_name_map() const { return raw_ptr()->capture_name_map_; } RawTypedData* bytecode(bool is_one_byte, bool sticky) const { if (sticky) { return is_one_byte ? raw_ptr()->one_byte_sticky_.bytecode_ : raw_ptr()->two_byte_sticky_.bytecode_; } else { return is_one_byte ? raw_ptr()->one_byte_.bytecode_ : raw_ptr()->two_byte_.bytecode_; } } static intptr_t function_offset(intptr_t cid, bool sticky) { if (sticky) { switch (cid) { case kOneByteStringCid: return OFFSET_OF(RawRegExp, one_byte_sticky_.function_); case kTwoByteStringCid: return OFFSET_OF(RawRegExp, two_byte_sticky_.function_); case kExternalOneByteStringCid: return OFFSET_OF(RawRegExp, external_one_byte_sticky_function_); case kExternalTwoByteStringCid: return OFFSET_OF(RawRegExp, external_two_byte_sticky_function_); } } else { switch (cid) { case kOneByteStringCid: return OFFSET_OF(RawRegExp, one_byte_.function_); case kTwoByteStringCid: return OFFSET_OF(RawRegExp, two_byte_.function_); case kExternalOneByteStringCid: return OFFSET_OF(RawRegExp, external_one_byte_function_); case kExternalTwoByteStringCid: return OFFSET_OF(RawRegExp, external_two_byte_function_); } } UNREACHABLE(); return -1; } RawFunction** FunctionAddr(intptr_t cid, bool sticky) const { return reinterpret_cast( FieldAddrAtOffset(function_offset(cid, sticky))); } RawFunction* function(intptr_t cid, bool sticky) const { return *FunctionAddr(cid, sticky); } void set_pattern(const String& pattern) const; void set_function(intptr_t cid, bool sticky, const Function& value) const; void set_bytecode(bool is_one_byte, bool sticky, const TypedData& bytecode) const; void set_num_bracket_expressions(intptr_t value) const; void set_capture_name_map(const Array& array) const; void set_is_global() const { RegExpFlags f = flags(); f.SetGlobal(); set_flags(f); } void set_is_ignore_case() const { RegExpFlags f = flags(); f.SetIgnoreCase(); set_flags(f); } void set_is_multi_line() const { RegExpFlags f = flags(); f.SetMultiLine(); set_flags(f); } void set_is_unicode() const { RegExpFlags f = flags(); f.SetUnicode(); set_flags(f); } void set_is_dot_all() const { RegExpFlags f = flags(); f.SetDotAll(); set_flags(f); } void set_is_simple() const { set_type(kSimple); } void set_is_complex() const { set_type(kComplex); } void set_num_registers(bool is_one_byte, intptr_t value) const { if (is_one_byte) { StoreNonPointer(&raw_ptr()->num_one_byte_registers_, value); } else { StoreNonPointer(&raw_ptr()->num_two_byte_registers_, value); } } RegExpFlags flags() const { return RegExpFlags(FlagsBits::decode(raw_ptr()->type_flags_)); } void set_flags(RegExpFlags flags) const { StoreNonPointer(&raw_ptr()->type_flags_, FlagsBits::update(flags.value(), raw_ptr()->type_flags_)); } const char* Flags() const; virtual bool CanonicalizeEquals(const Instance& other) const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawRegExp)); } static RawRegExp* New(Heap::Space space = Heap::kNew); private: void set_type(RegExType type) const { StoreNonPointer(&raw_ptr()->type_flags_, TypeBits::update(type, raw_ptr()->type_flags_)); } RegExType type() const { return TypeBits::decode(raw_ptr()->type_flags_); } FINAL_HEAP_OBJECT_IMPLEMENTATION(RegExp, Instance); friend class Class; }; class WeakProperty : public Instance { public: RawObject* key() const { return raw_ptr()->key_; } void set_key(const Object& key) const { StorePointer(&raw_ptr()->key_, key.raw()); } RawObject* value() const { return raw_ptr()->value_; } void set_value(const Object& value) const { StorePointer(&raw_ptr()->value_, value.raw()); } static RawWeakProperty* New(Heap::Space space = Heap::kNew); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawWeakProperty)); } static void Clear(RawWeakProperty* raw_weak) { ASSERT(raw_weak->ptr()->next_ == 0); // This action is performed by the GC. No barrier. raw_weak->ptr()->key_ = Object::null(); raw_weak->ptr()->value_ = Object::null(); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(WeakProperty, Instance); friend class Class; }; class MirrorReference : public Instance { public: RawObject* referent() const { return raw_ptr()->referent_; } void set_referent(const Object& referent) const { StorePointer(&raw_ptr()->referent_, referent.raw()); } RawAbstractType* GetAbstractTypeReferent() const; RawClass* GetClassReferent() const; RawField* GetFieldReferent() const; RawFunction* GetFunctionReferent() const; RawLibrary* GetLibraryReferent() const; RawTypeParameter* GetTypeParameterReferent() const; static RawMirrorReference* New(const Object& referent, Heap::Space space = Heap::kNew); static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawMirrorReference)); } private: FINAL_HEAP_OBJECT_IMPLEMENTATION(MirrorReference, Instance); friend class Class; }; class UserTag : public Instance { public: uword tag() const { return raw_ptr()->tag(); } void set_tag(uword t) const { ASSERT(t >= UserTags::kUserTagIdOffset); ASSERT(t < UserTags::kUserTagIdOffset + UserTags::kMaxUserTags); StoreNonPointer(&raw_ptr()->tag_, t); } static intptr_t tag_offset() { return OFFSET_OF(RawUserTag, tag_); } RawString* label() const { return raw_ptr()->label_; } void MakeActive() const; static intptr_t InstanceSize() { return RoundedAllocationSize(sizeof(RawUserTag)); } static RawUserTag* New(const String& label, Heap::Space space = Heap::kOld); static RawUserTag* DefaultTag(); static bool TagTableIsFull(Thread* thread); static RawUserTag* FindTagById(uword tag_id); private: static RawUserTag* FindTagInIsolate(Thread* thread, const String& label); static void AddTagToIsolate(Thread* thread, const UserTag& tag); void set_label(const String& tag_label) const { StorePointer(&raw_ptr()->label_, tag_label.raw()); } FINAL_HEAP_OBJECT_IMPLEMENTATION(UserTag, Instance); friend class Class; }; // Breaking cycles and loops. RawClass* Object::clazz() const { uword raw_value = reinterpret_cast(raw_); if ((raw_value & kSmiTagMask) == kSmiTag) { return Smi::Class(); } ASSERT(!Isolate::Current()->compaction_in_progress()); return Isolate::Current()->class_table()->At(raw()->GetClassId()); } DART_FORCE_INLINE void Object::SetRaw(RawObject* value) { NoSafepointScope no_safepoint_scope; raw_ = value; if ((reinterpret_cast(value) & kSmiTagMask) == kSmiTag) { set_vtable(Smi::handle_vtable_); return; } intptr_t cid = value->GetClassId(); // Free-list elements cannot be wrapped in a handle. ASSERT(cid != kFreeListElement); ASSERT(cid != kForwardingCorpse); if (cid >= kNumPredefinedCids) { cid = kInstanceCid; } set_vtable(builtin_vtables_[cid]); #if defined(DEBUG) if (FLAG_verify_handles) { Isolate* isolate = Isolate::Current(); Heap* isolate_heap = isolate->heap(); Heap* vm_isolate_heap = Dart::vm_isolate()->heap(); uword addr = RawObject::ToAddr(raw_); if (!isolate_heap->Contains(addr) && !vm_isolate_heap->Contains(addr)) { ASSERT(FLAG_write_protect_code); addr = RawObject::ToAddr(HeapPage::ToWritable(raw_)); ASSERT(isolate_heap->Contains(addr) || vm_isolate_heap->Contains(addr)); } } #endif } #if !defined(DART_PRECOMPILED_RUNTIME) bool Function::HasBytecode() const { return raw_ptr()->bytecode_ != Bytecode::null(); } bool Function::HasBytecode(RawFunction* function) { return function->ptr()->bytecode_ != Bytecode::null(); } #endif // !defined(DART_PRECOMPILED_RUNTIME) intptr_t Field::Offset() const { ASSERT(is_instance()); // Valid only for dart instance fields. intptr_t value = Smi::Value(raw_ptr()->value_.offset_); return (value * kWordSize); } void Field::SetOffset(intptr_t offset_in_bytes) const { ASSERT(is_instance()); // Valid only for dart instance fields. ASSERT(kWordSize != 0); StorePointer(&raw_ptr()->value_.offset_, Smi::New(offset_in_bytes / kWordSize)); } RawInstance* Field::StaticValue() const { ASSERT(is_static()); // Valid only for static dart fields. return raw_ptr()->value_.static_value_; } void Field::SetStaticValue(const Instance& value, bool save_initial_value) const { ASSERT(Thread::Current()->IsMutatorThread()); ASSERT(is_static()); // Valid only for static dart fields. StorePointer(&raw_ptr()->value_.static_value_, value.raw()); if (save_initial_value) { #if !defined(DART_PRECOMPILED_RUNTIME) StorePointer(&raw_ptr()->saved_initial_value_, value.raw()); #endif } } #ifndef DART_PRECOMPILED_RUNTIME void Field::set_saved_initial_value(const Instance& value) const { StorePointer(&raw_ptr()->saved_initial_value_, value.raw()); } #endif void Context::SetAt(intptr_t index, const Object& value) const { StorePointer(ObjectAddr(index), value.raw()); } intptr_t Instance::GetNativeField(int index) const { ASSERT(IsValidNativeIndex(index)); NoSafepointScope no_safepoint; RawTypedData* native_fields = reinterpret_cast(*NativeFieldsAddr()); if (native_fields == TypedData::null()) { return 0; } return reinterpret_cast(native_fields->ptr()->data())[index]; } void Instance::GetNativeFields(uint16_t num_fields, intptr_t* field_values) const { NoSafepointScope no_safepoint; ASSERT(num_fields == NumNativeFields()); ASSERT(field_values != NULL); RawTypedData* native_fields = reinterpret_cast(*NativeFieldsAddr()); if (native_fields == TypedData::null()) { for (intptr_t i = 0; i < num_fields; i++) { field_values[i] = 0; } } intptr_t* fields = reinterpret_cast(native_fields->ptr()->data()); for (intptr_t i = 0; i < num_fields; i++) { field_values[i] = fields[i]; } } bool String::Equals(const String& str) const { if (raw() == str.raw()) { return true; // Both handles point to the same raw instance. } if (str.IsNull()) { return false; } if (IsCanonical() && str.IsCanonical()) { return false; // Two symbols that aren't identical aren't equal. } if (HasHash() && str.HasHash() && (Hash() != str.Hash())) { return false; // Both sides have hash codes and they do not match. } return Equals(str, 0, str.Length()); } intptr_t Library::UrlHash() const { intptr_t result = String::GetCachedHash(url()); ASSERT(result != 0); return result; } void MegamorphicCache::SetEntry(const Array& array, intptr_t index, const Smi& class_id, const Object& target) { ASSERT(target.IsFunction() || target.IsSmi()); array.SetAt((index * kEntryLength) + kClassIdIndex, class_id); #if defined(DART_PRECOMPILED_RUNTIME) if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { if (target.IsFunction()) { const auto& function = Function::Cast(target); const auto& entry_point = Smi::Handle( Smi::FromAlignedAddress(Code::EntryPoint(function.CurrentCode()))); array.SetAt((index * kEntryLength) + kTargetFunctionIndex, entry_point); return; } } #endif // defined(DART_PRECOMPILED_RUNTIME) array.SetAt((index * kEntryLength) + kTargetFunctionIndex, target); } RawObject* MegamorphicCache::GetClassId(const Array& array, intptr_t index) { return array.At((index * kEntryLength) + kClassIdIndex); } RawObject* MegamorphicCache::GetTargetFunction(const Array& array, intptr_t index) { return array.At((index * kEntryLength) + kTargetFunctionIndex); } inline intptr_t Type::Hash() const { intptr_t result = Smi::Value(raw_ptr()->hash_); if (result != 0) { return result; } return ComputeHash(); } inline void Type::SetHash(intptr_t value) const { // This is only safe because we create a new Smi, which does not cause // heap allocation. StoreSmi(&raw_ptr()->hash_, Smi::New(value)); } inline intptr_t TypeParameter::Hash() const { ASSERT(IsFinalized()); intptr_t result = Smi::Value(raw_ptr()->hash_); if (result != 0) { return result; } return ComputeHash(); } inline void TypeParameter::SetHash(intptr_t value) const { // This is only safe because we create a new Smi, which does not cause // heap allocation. StoreSmi(&raw_ptr()->hash_, Smi::New(value)); } inline intptr_t TypeArguments::Hash() const { if (IsNull()) return 0; intptr_t result = Smi::Value(raw_ptr()->hash_); if (result != 0) { return result; } return ComputeHash(); } inline void TypeArguments::SetHash(intptr_t value) const { // This is only safe because we create a new Smi, which does not cause // heap allocation. StoreSmi(&raw_ptr()->hash_, Smi::New(value)); } // A view on an [Array] as a list of tuples, optionally starting at an offset. // // Example: We store a list of (kind, function, code) tuples into the // [Code::static_calls_target_table] array of type [Array]. // // This helper class can then be used via // // using CallTableView = ArrayOfTuplesVied< // Code::Kind, std::tuple>; // // auto& array = Array::Handle(code.static_calls_targets_table()); // CallTableView static_calls(array); // // // Using convenient for loop. // auto& function = Function::Handle(); // for (auto& call : static_calls) { // function = call.Get(); // call.Set(function); // } // // // Using manual loop. // auto& function = Function::Handle(); // for (intptr_t i = 0; i < static_calls.Length(); ++i) { // auto call = static_calls[i]; // function = call.Get(); // call.Set(function); // } // // // Template parameters: // // * [EnumType] must be a normal enum which enumerates the entries of the // tuple // // * [kStartOffset] is the offset at which the first tuple in the array // starts (can be 0). // // * [TupleT] must be a std::tuple<...> where "..." are the heap object handle // classes (e.g. 'Code', 'Smi', 'Object') template class ArrayOfTuplesView { public: static constexpr intptr_t EntrySize = std::tuple_size::value; class Iterator; class TupleView { public: TupleView(const Array& array, intptr_t index) : array_(array), index_(index) { } template typename std::tuple_element::type::RawObjectType* Get() const { using object_type = typename std::tuple_element::type; return object_type::RawCast(array_.At(index_ + kElement)); } template void Set(const typename std::tuple_element::type& value) const { array_.SetAt(index_ + kElement, value); } intptr_t index() const { return (index_ - kStartOffset) / EntrySize; } private: const Array& array_; intptr_t index_; friend class Iterator; }; class Iterator { public: Iterator(const Array& array, intptr_t index) : entry_(array, index) {} bool operator==(const Iterator& other) { return entry_.index_ == other.entry_.index_; } bool operator!=(const Iterator& other) { return entry_.index_ != other.entry_.index_; } const TupleView& operator*() const { return entry_; } Iterator& operator++() { entry_.index_ += EntrySize; return *this; } private: TupleView entry_; }; explicit ArrayOfTuplesView(const Array& array) : array_(array), index_(-1) { ASSERT(!array.IsNull()); ASSERT(array.Length() >= kStartOffset); ASSERT((array.Length() - kStartOffset) % EntrySize == kStartOffset); } intptr_t Length() const { return (array_.Length() - kStartOffset) / EntrySize; } TupleView At(intptr_t i) const { return TupleView(array_, kStartOffset + i * EntrySize); } TupleView operator[](intptr_t i) const { return At(i); } Iterator begin() const { return Iterator(array_, kStartOffset); } Iterator end() const { return Iterator(array_, kStartOffset + Length() * EntrySize); } private: const Array& array_; intptr_t index_; }; using InvocationDispatcherTable = ArrayOfTuplesView>; using StaticCallsTable = ArrayOfTuplesView>; using SubtypeTestCacheTable = ArrayOfTuplesView>; using MegamorphicCacheEntries = ArrayOfTuplesView>; void DumpTypeTable(Isolate* isolate); void DumpTypeArgumentsTable(Isolate* isolate); EntryPointPragma FindEntryPointPragma(Isolate* I, const Array& metadata, Field* reusable_field_handle, Object* reusable_object_handle); DART_WARN_UNUSED_RESULT RawError* EntryPointFieldInvocationError(const String& getter_name); } // namespace dart #endif // RUNTIME_VM_OBJECT_H_