// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64. #if defined(TARGET_ARCH_ARM64) #include "vm/instructions.h" #include "vm/instructions_arm64.h" #include "vm/compiler/assembler/assembler.h" #include "vm/constants.h" #include "vm/cpu.h" #include "vm/object.h" #include "vm/reverse_pc_lookup_cache.h" namespace dart { CallPattern::CallPattern(uword pc, const Code& code) : object_pool_(ObjectPool::Handle(code.GetObjectPool())), end_(pc), ic_data_load_end_(0), target_code_pool_index_(-1), ic_data_(ICData::Handle()) { ASSERT(code.ContainsInstructionAt(pc)); // Last instruction: blr ip0. ASSERT(*(reinterpret_cast(end_) - 1) == 0xd63f0200); Register reg; ic_data_load_end_ = InstructionPattern::DecodeLoadWordFromPool( end_ - 2 * Instr::kInstrSize, ®, &target_code_pool_index_); ASSERT(reg == CODE_REG); } NativeCallPattern::NativeCallPattern(uword pc, const Code& code) : object_pool_(ObjectPool::Handle(code.GetObjectPool())), end_(pc), native_function_pool_index_(-1), target_code_pool_index_(-1) { ASSERT(code.ContainsInstructionAt(pc)); // Last instruction: blr ip0. ASSERT(*(reinterpret_cast(end_) - 1) == 0xd63f0200); Register reg; uword native_function_load_end = InstructionPattern::DecodeLoadWordFromPool( end_ - 2 * Instr::kInstrSize, ®, &target_code_pool_index_); ASSERT(reg == CODE_REG); InstructionPattern::DecodeLoadWordFromPool(native_function_load_end, ®, &native_function_pool_index_); ASSERT(reg == R5); } RawCode* NativeCallPattern::target() const { return reinterpret_cast( object_pool_.ObjectAt(target_code_pool_index_)); } void NativeCallPattern::set_target(const Code& target) const { object_pool_.SetObjectAt(target_code_pool_index_, target); // No need to flush the instruction cache, since the code is not modified. } NativeFunction NativeCallPattern::native_function() const { return reinterpret_cast( object_pool_.RawValueAt(native_function_pool_index_)); } void NativeCallPattern::set_native_function(NativeFunction func) const { object_pool_.SetRawValueAt(native_function_pool_index_, reinterpret_cast(func)); } // Decodes a load sequence ending at 'end' (the last instruction of the load // sequence is the instruction before the one at end). Returns a pointer to // the first instruction in the sequence. Returns the register being loaded // and the loaded object in the output parameters 'reg' and 'obj' // respectively. uword InstructionPattern::DecodeLoadObject(uword end, const ObjectPool& object_pool, Register* reg, Object* obj) { // 1. LoadWordFromPool // or // 2. LoadDecodableImmediate uword start = 0; Instr* instr = Instr::At(end - Instr::kInstrSize); if (instr->IsLoadStoreRegOp()) { // Case 1. intptr_t index = 0; start = DecodeLoadWordFromPool(end, reg, &index); *obj = object_pool.ObjectAt(index); } else { // Case 2. intptr_t value = 0; start = DecodeLoadWordImmediate(end, reg, &value); *obj = reinterpret_cast(value); } return start; } // Decodes a load sequence ending at 'end' (the last instruction of the load // sequence is the instruction before the one at end). Returns a pointer to // the first instruction in the sequence. Returns the register being loaded // and the loaded immediate value in the output parameters 'reg' and 'value' // respectively. uword InstructionPattern::DecodeLoadWordImmediate(uword end, Register* reg, intptr_t* value) { // 1. LoadWordFromPool // or // 2. LoadWordFromPool // orri // or // 3. LoadPatchableImmediate uword start = end - Instr::kInstrSize; Instr* instr = Instr::At(start); bool odd = false; // Case 2. if (instr->IsLogicalImmOp()) { ASSERT(instr->Bit(29) == 1); odd = true; // end points at orri so that we can pass it to DecodeLoadWordFromPool. end = start; start -= Instr::kInstrSize; instr = Instr::At(start); // Case 2 falls through to case 1. } // Case 1. if (instr->IsLoadStoreRegOp()) { start = DecodeLoadWordFromPool(end, reg, value); if (odd) { *value |= 1; } return start; } // Case 3. // movk dst, imm3, 3; movk dst, imm2, 2; movk dst, imm1, 1; movz dst, imm0, 0 ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 3); ASSERT(instr->HWField() == 3); // movk dst, imm3, 3 *reg = instr->RdField(); *value = static_cast(instr->Imm16Field()) << 48; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 3); ASSERT(instr->HWField() == 2); // movk dst, imm2, 2 ASSERT(instr->RdField() == *reg); *value |= static_cast(instr->Imm16Field()) << 32; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 3); ASSERT(instr->HWField() == 1); // movk dst, imm1, 1 ASSERT(instr->RdField() == *reg); *value |= static_cast(instr->Imm16Field()) << 16; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->Bits(29, 2) == 2); ASSERT(instr->HWField() == 0); // movz dst, imm0, 0 ASSERT(instr->RdField() == *reg); *value |= static_cast(instr->Imm16Field()); return start; } // See comment in instructions_arm64.h uword InstructionPattern::DecodeLoadWordFromPool(uword end, Register* reg, intptr_t* index) { // 1. ldr dst, [pp, offset] // or // 2. add dst, pp, #offset_hi12 // ldr dst [dst, #offset_lo12] // or // 3. movz dst, low_offset, 0 // movk dst, hi_offset, 1 (optional) // ldr dst, [pp, dst] uword start = end - Instr::kInstrSize; Instr* instr = Instr::At(start); intptr_t offset = 0; // Last instruction is always an ldr into a 64-bit X register. ASSERT(instr->IsLoadStoreRegOp() && (instr->Bit(22) == 1) && (instr->Bits(30, 2) == 3)); // Grab the destination register from the ldr instruction. *reg = instr->RtField(); if (instr->Bit(24) == 1) { // base + scaled unsigned 12-bit immediate offset. // Case 1. offset |= (instr->Imm12Field() << 3); if (instr->RnField() == *reg) { start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsAddSubImmOp()); ASSERT(instr->RnField() == PP); ASSERT(instr->RdField() == *reg); offset |= (instr->Imm12Field() << 12); } } else { ASSERT(instr->Bits(10, 2) == 2); // We have to look at the preceding one or two instructions to find the // offset. start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->RdField() == *reg); if (instr->Bits(29, 2) == 2) { // movz dst, low_offset, 0 ASSERT(instr->HWField() == 0); offset = instr->Imm16Field(); // no high offset. } else { ASSERT(instr->Bits(29, 2) == 3); // movk dst, high_offset, 1 ASSERT(instr->HWField() == 1); offset = instr->Imm16Field() << 16; start -= Instr::kInstrSize; instr = Instr::At(start); ASSERT(instr->IsMoveWideOp()); ASSERT(instr->RdField() == *reg); ASSERT(instr->Bits(29, 2) == 2); // movz dst, low_offset, 0 ASSERT(instr->HWField() == 0); offset |= instr->Imm16Field(); } } // PP is untagged on ARM64. ASSERT(Utils::IsAligned(offset, 8)); *index = ObjectPool::IndexFromOffset(offset - kHeapObjectTag); return start; } // See comment in instructions_arm64.h uword InstructionPattern::DecodeLoadDoubleWordFromPool(uword end, Register* reg1, Register* reg2, intptr_t* index) { // Cases: // // 1. ldp reg1, reg2, [pp, offset] // // 2. add tmp, pp, #upper12 // ldp reg1, reg2, [tmp, #lower12] // // 3. add tmp, pp, #upper12 // add tmp, tmp, #lower12 // ldp reg1, reg2, [tmp, 0] // // Note that the pp register is untagged! // uword start = end - Instr::kInstrSize; Instr* ldr_instr = Instr::At(start); // Last instruction is always an ldp into two 64-bit X registers. ASSERT(ldr_instr->IsLoadStoreRegPairOp() && (ldr_instr->Bit(22) == 1)); // Grab the destination register from the ldp instruction. *reg1 = ldr_instr->RtField(); *reg2 = ldr_instr->Rt2Field(); Register base_reg = ldr_instr->RnField(); const int base_offset = 8 * ldr_instr->Imm7Field(); intptr_t pool_offset = 0; if (base_reg == PP) { // Case 1. pool_offset = base_offset; } else { // Case 2 & 3. ASSERT(base_reg == TMP); pool_offset = base_offset; start -= Instr::kInstrSize; Instr* add_instr = Instr::At(start); ASSERT(add_instr->IsAddSubImmOp()); ASSERT(add_instr->RdField() == TMP); const auto shift = add_instr->Imm12ShiftField(); ASSERT(shift == 0 || shift == 1); pool_offset += (add_instr->Imm12Field() << (shift == 1 ? 12 : 0)); if (add_instr->RnField() == TMP) { start -= Instr::kInstrSize; Instr* prev_add_instr = Instr::At(start); ASSERT(prev_add_instr->IsAddSubImmOp()); ASSERT(prev_add_instr->RnField() == PP); const auto shift = prev_add_instr->Imm12ShiftField(); ASSERT(shift == 0 || shift == 1); pool_offset += (prev_add_instr->Imm12Field() << (shift == 1 ? 12 : 0)); } else { ASSERT(add_instr->RnField() == PP); } } *index = ObjectPool::IndexFromOffset(pool_offset - kHeapObjectTag); return start; } bool DecodeLoadObjectFromPoolOrThread(uword pc, const Code& code, Object* obj) { ASSERT(code.ContainsInstructionAt(pc)); Instr* instr = Instr::At(pc); if (instr->IsLoadStoreRegOp() && (instr->Bit(22) == 1) && (instr->Bits(30, 2) == 3) && instr->Bit(24) == 1) { intptr_t offset = (instr->Imm12Field() << 3); if (instr->RnField() == PP) { // PP is untagged on ARM64. ASSERT(Utils::IsAligned(offset, 8)); intptr_t index = ObjectPool::IndexFromOffset(offset - kHeapObjectTag); const ObjectPool& pool = ObjectPool::Handle(code.object_pool()); if (!pool.IsNull()) { if (pool.TypeAt(index) == ObjectPool::EntryType::kTaggedObject) { *obj = pool.ObjectAt(index); return true; } } } else if (instr->RnField() == THR) { return Thread::ObjectAtOffset(offset, obj); } } // TODO(rmacnak): Loads with offsets beyond 12 bits. return false; } // Encodes a load sequence ending at 'end'. Encodes a fixed length two // instruction load from the pool pointer in PP using the destination // register reg as a temporary for the base address. // Assumes that the location has already been validated for patching. void InstructionPattern::EncodeLoadWordFromPoolFixed(uword end, int32_t offset) { uword start = end - Instr::kInstrSize; Instr* instr = Instr::At(start); const int32_t upper12 = offset & 0x00fff000; const int32_t lower12 = offset & 0x00000fff; ASSERT((offset & 0xff000000) == 0); // Can't encode > 24 bits. ASSERT(((lower12 >> 3) << 3) == lower12); // 8-byte aligned. instr->SetImm12Bits(instr->InstructionBits(), lower12 >> 3); start -= Instr::kInstrSize; instr = Instr::At(start); instr->SetImm12Bits(instr->InstructionBits(), upper12 >> 12); instr->SetInstructionBits(instr->InstructionBits() | B22); } RawICData* CallPattern::IcData() { if (ic_data_.IsNull()) { Register reg; InstructionPattern::DecodeLoadObject(ic_data_load_end_, object_pool_, ®, &ic_data_); ASSERT(reg == R5); } return ic_data_.raw(); } RawCode* CallPattern::TargetCode() const { return reinterpret_cast( object_pool_.ObjectAt(target_code_pool_index_)); } void CallPattern::SetTargetCode(const Code& target) const { object_pool_.SetObjectAt(target_code_pool_index_, target); // No need to flush the instruction cache, since the code is not modified. } SwitchableCallPatternBase::SwitchableCallPatternBase(const Code& code) : object_pool_(ObjectPool::Handle(code.GetObjectPool())), data_pool_index_(-1), target_pool_index_(-1) {} RawObject* SwitchableCallPatternBase::data() const { return object_pool_.ObjectAt(data_pool_index_); } void SwitchableCallPatternBase::SetData(const Object& data) const { ASSERT(!Object::Handle(object_pool_.ObjectAt(data_pool_index_)).IsCode()); object_pool_.SetObjectAt(data_pool_index_, data); } SwitchableCallPattern::SwitchableCallPattern(uword pc, const Code& code) : SwitchableCallPatternBase(code) { ASSERT(code.ContainsInstructionAt(pc)); // Last instruction: blr ip0. ASSERT(*(reinterpret_cast(pc) - 1) == 0xd63f0200); Register ic_data_reg, code_reg; intptr_t pool_index; InstructionPattern::DecodeLoadDoubleWordFromPool( pc - 2 * Instr::kInstrSize, &ic_data_reg, &code_reg, &pool_index); ASSERT(ic_data_reg == R5); ASSERT(code_reg == CODE_REG); data_pool_index_ = pool_index; target_pool_index_ = pool_index + 1; } RawCode* SwitchableCallPattern::target() const { return reinterpret_cast(object_pool_.ObjectAt(target_pool_index_)); } void SwitchableCallPattern::SetTarget(const Code& target) const { ASSERT(Object::Handle(object_pool_.ObjectAt(target_pool_index_)).IsCode()); object_pool_.SetObjectAt(target_pool_index_, target); } BareSwitchableCallPattern::BareSwitchableCallPattern(uword pc, const Code& code) : SwitchableCallPatternBase(code) { ASSERT(code.ContainsInstructionAt(pc)); // Last instruction: blr ip0. ASSERT(*(reinterpret_cast(pc) - 1) == 0xd63f0200); Register ic_data_reg, code_reg; intptr_t pool_index; InstructionPattern::DecodeLoadDoubleWordFromPool( pc - Instr::kInstrSize, &ic_data_reg, &code_reg, &pool_index); ASSERT(ic_data_reg == R5); ASSERT(code_reg == TMP); data_pool_index_ = pool_index; target_pool_index_ = pool_index + 1; } RawCode* BareSwitchableCallPattern::target() const { const uword pc = object_pool_.RawValueAt(target_pool_index_); auto rct = Isolate::Current()->reverse_pc_lookup_cache(); if (rct->Contains(pc)) { return rct->Lookup(pc); } rct = Dart::vm_isolate()->reverse_pc_lookup_cache(); if (rct->Contains(pc)) { return rct->Lookup(pc); } UNREACHABLE(); } void BareSwitchableCallPattern::SetTarget(const Code& target) const { ASSERT(object_pool_.TypeAt(target_pool_index_) == ObjectPool::EntryType::kImmediate); object_pool_.SetRawValueAt(target_pool_index_, target.MonomorphicEntryPoint()); } ReturnPattern::ReturnPattern(uword pc) : pc_(pc) {} bool ReturnPattern::IsValid() const { Instr* bx_lr = Instr::At(pc_); const Register crn = ConcreteRegister(LR); const int32_t instruction = RET | (static_cast(crn) << kRnShift); return bx_lr->InstructionBits() == instruction; } bool PcRelativeCallPattern::IsValid() const { // bl const uint32_t word = *reinterpret_cast(pc_); const uint32_t branch_link = 0x25; return (word >> 26) == branch_link; } void PcRelativeTrampolineJumpPattern::Initialize() { #if !defined(DART_PRECOMPILED_RUNTIME) uint32_t* pattern = reinterpret_cast(pattern_start_); pattern[0] = kAdrEncoding; pattern[1] = kMovzEncoding; pattern[2] = kAddTmpTmp2; pattern[3] = kJumpEncoding; set_distance(0); #else UNREACHABLE(); #endif } int32_t PcRelativeTrampolineJumpPattern::distance() { #if !defined(DART_PRECOMPILED_RUNTIME) uint32_t* pattern = reinterpret_cast(pattern_start_); const uint32_t adr = pattern[0]; const uint32_t movz = pattern[1]; const uint32_t lower16 = (((adr >> 5) & ((1 << 19) - 1)) << 2) | ((adr >> 29) & 0x3); const uint32_t higher16 = (movz >> kImm16Shift) & 0xffff; return (higher16 << 16) | lower16; #else UNREACHABLE(); return 0; #endif } void PcRelativeTrampolineJumpPattern::set_distance(int32_t distance) { #if !defined(DART_PRECOMPILED_RUNTIME) uint32_t* pattern = reinterpret_cast(pattern_start_); uint32_t low16 = distance & 0xffff; uint32_t high16 = (distance >> 16) & 0xffff; pattern[0] = kAdrEncoding | ((low16 & 0x3) << 29) | ((low16 >> 2) << 5); pattern[1] = kMovzEncoding | (high16 << kImm16Shift); ASSERT(IsValid()); #else UNREACHABLE(); #endif } bool PcRelativeTrampolineJumpPattern::IsValid() const { #if !defined(DART_PRECOMPILED_RUNTIME) const uint32_t adr_mask = (3 << 29) | (((1 << 19) - 1) << 5); const uint32_t movz_mask = 0xffff << 5; uint32_t* pattern = reinterpret_cast(pattern_start_); return (pattern[0] & ~adr_mask) == kAdrEncoding & (pattern[1] & ~movz_mask) == kMovzEncoding & pattern[2] == kAddTmpTmp2 && pattern[3] == kJumpEncoding; #else UNREACHABLE(); return false; #endif } intptr_t TypeTestingStubCallPattern::GetSubtypeTestCachePoolIndex() { // Calls to the type testing stubs look like: // ldr R3, [PP+idx] // blr R9 // Ensure the caller of the type testing stub (whose return address is [pc_]) // branched via the `blr R9` instruction. ASSERT(*reinterpret_cast(pc_ - Instr::kInstrSize) == 0xd63f0120); const uword load_instr_end = pc_ - Instr::kInstrSize; Register reg; intptr_t pool_index = -1; InstructionPattern::DecodeLoadWordFromPool(load_instr_end, ®, &pool_index); ASSERT(reg == R3); return pool_index; } } // namespace dart #endif // defined TARGET_ARCH_ARM64