Supports FrameLookup vm test on MIPS

As with the similar CL for ARM, also:
- Supports inline allocation of objects.
- Supports checking of inline cache and instance calls.
- Supports subtype test cache.
- Supports (some) equality checks.
- Supports for (some) conditional branches.
- Supports for pool pointer setup in stubs.
Review URL: https://codereview.chromium.org//14076005

git-svn-id: https://dart.googlecode.com/svn/branches/bleeding_edge/dart@21233 260f80e4-7a28-3924-810f-c04153c831b5
This commit is contained in:
zra@google.com 2013-04-10 21:59:57 +00:00
parent 02f305a0f1
commit 2c5cea8d4e
11 changed files with 1228 additions and 100 deletions

View file

@ -69,7 +69,6 @@ dart/*: Skip
[ $arch == simmips ]
# Tests needing an assembler.
cc/Dart2JSCompileAll: Skip
cc/FrameLookup: Skip
cc/UseDartApi: Skip
# Tests needing Dart execution.
dart/*: Skip

View file

@ -204,20 +204,47 @@ void Assembler::LoadClass(Register result, Register object) {
}
void Assembler::EnterStubFrame() {
addiu(SP, SP, Immediate(-3 * kWordSize));
sw(ZR, Address(SP, 2 * kWordSize)); // PC marker is 0 in stubs.
sw(RA, Address(SP, 1 * kWordSize));
sw(FP, Address(SP, 0 * kWordSize));
mov(FP, SP);
void Assembler::EnterStubFrame(bool uses_pp) {
if (uses_pp) {
addiu(SP, SP, Immediate(-4 * kWordSize));
sw(ZR, Address(SP, 3 * kWordSize)); // PC marker is 0 in stubs.
sw(RA, Address(SP, 2 * kWordSize));
sw(PP, Address(SP, 1 * kWordSize));
sw(FP, Address(SP, 0 * kWordSize));
mov(FP, SP);
// Setup pool pointer for this stub.
Label next;
bal(&next);
delay_slot()->mov(T0, RA);
const intptr_t object_pool_pc_dist =
Instructions::HeaderSize() - Instructions::object_pool_offset() +
CodeSize();
Bind(&next);
lw(PP, Address(T0, -object_pool_pc_dist));
} else {
addiu(SP, SP, Immediate(-3 * kWordSize));
sw(ZR, Address(SP, 2 * kWordSize)); // PC marker is 0 in stubs.
sw(RA, Address(SP, 1 * kWordSize));
sw(FP, Address(SP, 0 * kWordSize));
mov(FP, SP);
}
}
void Assembler::LeaveStubFrame() {
void Assembler::LeaveStubFrame(bool uses_pp) {
mov(SP, FP);
lw(RA, Address(SP, 1 * kWordSize));
lw(FP, Address(SP, 0 * kWordSize));
addiu(SP, SP, Immediate(3 * kWordSize));
if (uses_pp) {
lw(RA, Address(SP, 2 * kWordSize));
lw(PP, Address(SP, 1 * kWordSize));
lw(FP, Address(SP, 0 * kWordSize));
addiu(SP, SP, Immediate(4 * kWordSize));
} else {
lw(RA, Address(SP, 1 * kWordSize));
lw(FP, Address(SP, 0 * kWordSize));
addiu(SP, SP, Immediate(3 * kWordSize));
}
}
@ -250,14 +277,15 @@ void Assembler::EnterDartFrame(intptr_t frame_size) {
// the PC at this sw instruction.
Bind(&next);
if (offset != 0) {
// Adjust PC for any intrinsic code that could have been generated
// before a frame is created.
addiu(T0, T0, Immediate(-offset));
}
// Save PC in frame for fast identification of corresponding code.
sw(T0, Address(SP, 3 * kWordSize));
if (offset == 0) {
sw(T0, Address(SP, 3 * kWordSize));
} else {
// Adjust saved PC for any intrinsic code that could have been generated
// before a frame is created.
AddImmediate(T1, T0, -offset);
sw(T1, Address(SP, 3 * kWordSize));
}
// Set FP to the saved previous FP.
addiu(FP, SP, Immediate(kWordSize));
@ -266,7 +294,7 @@ void Assembler::EnterDartFrame(intptr_t frame_size) {
lw(PP, Address(T0, -object_pool_pc_dist));
// Reserve space for locals.
addiu(SP, SP, Immediate(-frame_size));
AddImmediate(SP, -frame_size);
}
@ -285,7 +313,7 @@ void Assembler::LeaveDartFrame() {
void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) {
// Reserve space for arguments and align frame before entering
// the C++ world.
addiu(SP, SP, Immediate(-frame_space));
AddImmediate(SP, -frame_space);
if (OS::ActivationFrameAlignment() > 0) {
LoadImmediate(TMP1, ~(OS::ActivationFrameAlignment() - 1));
and_(SP, SP, TMP1);

View file

@ -169,8 +169,8 @@ class Assembler : public ValueObject {
// Set up a stub frame so that the stack traversal code can easily identify
// a stub frame.
void EnterStubFrame();
void LeaveStubFrame();
void EnterStubFrame(bool uses_pp = false);
void LeaveStubFrame(bool uses_pp = false);
// Instruction pattern from entrypoint is used in dart frame prologs
// to set up the frame and save a PC which can be used to figure out the
@ -565,6 +565,19 @@ class Assembler : public ValueObject {
}
}
void AddImmediate(Register rd, Register rs, int32_t value) {
if (Utils::IsInt(kImmBits, value)) {
addiu(rd, rs, Immediate(value));
} else {
LoadImmediate(TMP1, value);
addu(rd, rs, TMP1);
}
}
void AddImmediate(Register rd, int32_t value) {
AddImmediate(rd, rd, value);
}
void BranchEqual(Register rd, int32_t value, Label* l) {
LoadImmediate(TMP1, value);
beq(rd, TMP1, l);
@ -678,7 +691,7 @@ class Assembler : public ValueObject {
void PushObject(const Object& object);
// Sets register rd to zero if the object is equal to register rn,
// set to non-zero otherwise.
// sets it to non-zero otherwise.
void CompareObject(Register rd, Register rn, const Object& object);
void LoadClassId(Register result, Register object);

View file

@ -31,11 +31,11 @@ enum Register {
R19 = 19,
R20 = 20,
R21 = 21,
kLastFreeCpuRegister = 21,
R22 = 22,
R23 = 23,
R24 = 24,
R25 = 25,
kLastFreeCpuRegister = 25,
R26 = 26,
R27 = 27,
R28 = 28,
@ -144,6 +144,10 @@ const Register PP = S7; // Caches object pool pointer in generated code.
const Register SPREG = SP; // Stack pointer register.
const Register FPREG = FP; // Frame pointer register.
// The code that generates a comparison can be far away from the code that
// generates the branch that uses the result of that comparison. In this case,
// CMPRES is used for the result of the comparison.
const Register CMPRES = T8;
typedef uint32_t RegList;
const RegList kAllCpuRegistersList = 0xFFFFFFFF;
@ -162,10 +166,12 @@ static const int kLastParamSlotIndex = 3;
static const int kFirstLocalSlotIndex = -2;
// Values for the condition field. // UNIMPLEMENTED.
// Values for the condition field.
// There is no condition field on MIPS, but Conditions are used and passed
// around by the intermediate language, so we need them here, too.
enum Condition {
kNoCondition = -1,
kMaxCondition = 16,
EQ, // equal
NE, // not equal
};

View file

@ -49,13 +49,21 @@ void CompilerDeoptInfoWithStub::GenerateCode(FlowGraphCompiler* compiler,
#define __ assembler()->
// Fall through if bool_register contains null.
void FlowGraphCompiler::GenerateBoolToJump(Register bool_register,
Label* is_true,
Label* is_false) {
UNIMPLEMENTED();
Label fall_through;
__ BranchEqual(bool_register, reinterpret_cast<intptr_t>(Object::null()),
&fall_through);
__ BranchEqual(bool_register, Bool::True(), is_true);
__ b(is_false);
__ Bind(&fall_through);
}
// A0: instance (must be preserved).
// A1: instantiator type arguments (if used).
RawSubtypeTestCache* FlowGraphCompiler::GenerateCallSubtypeTestStub(
TypeTestStubKind test_kind,
Register instance_reg,
@ -63,8 +71,28 @@ RawSubtypeTestCache* FlowGraphCompiler::GenerateCallSubtypeTestStub(
Register temp_reg,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
UNIMPLEMENTED();
return NULL;
ASSERT(instance_reg == A0);
ASSERT(temp_reg == kNoRegister); // Unused on MIPS.
const SubtypeTestCache& type_test_cache =
SubtypeTestCache::ZoneHandle(SubtypeTestCache::New());
__ LoadObject(A2, type_test_cache);
if (test_kind == kTestTypeOneArg) {
ASSERT(type_arguments_reg == kNoRegister);
__ LoadImmediate(A1, reinterpret_cast<intptr_t>(Object::null()));
__ BranchLink(&StubCode::Subtype1TestCacheLabel());
} else if (test_kind == kTestTypeTwoArgs) {
ASSERT(type_arguments_reg == kNoRegister);
__ LoadImmediate(A1, reinterpret_cast<intptr_t>(Object::null()));
__ BranchLink(&StubCode::Subtype2TestCacheLabel());
} else if (test_kind == kTestTypeThreeArgs) {
ASSERT(type_arguments_reg == A1);
__ BranchLink(&StubCode::Subtype3TestCacheLabel());
} else {
UNREACHABLE();
}
// Result is in V0: null -> not found, otherwise Bool::True or Bool::False.
GenerateBoolToJump(V0, is_instance_lbl, is_not_instance_lbl);
return type_test_cache.raw();
}
@ -153,13 +181,35 @@ bool FlowGraphCompiler::GenerateInstantiatedTypeNoArgumentsTest(
}
// Uses SubtypeTestCache to store instance class and result.
// A0: instance to test.
// Clobbers A1, A2, T0-T3.
// Immediate class test already done.
// TODO(srdjan): Implement a quicker subtype check, as type test
// arrays can grow too high, but they may be useful when optimizing
// code (type-feedback).
RawSubtypeTestCache* FlowGraphCompiler::GenerateSubtype1TestCacheLookup(
intptr_t token_pos,
const Class& type_class,
Label* is_instance_lbl,
Label* is_not_instance_lbl) {
UNIMPLEMENTED();
return NULL;
__ Comment("Subtype1TestCacheLookup");
const Register kInstanceReg = A0;
__ LoadClass(T0, kInstanceReg);
// T0: instance class.
// Check immediate superclass equality.
__ lw(T0, FieldAddress(T0, Class::super_type_offset()));
__ lw(T0, FieldAddress(T0, Type::type_class_offset()));
__ BranchEqual(T0, type_class, is_instance_lbl);
const Register kTypeArgumentsReg = kNoRegister;
const Register kTempReg = kNoRegister;
return GenerateCallSubtypeTestStub(kTestTypeOneArg,
kInstanceReg,
kTypeArgumentsReg,
kTempReg,
is_instance_lbl,
is_not_instance_lbl);
}
@ -329,8 +379,8 @@ void FlowGraphCompiler::GenerateAssertAssignable(intptr_t token_pos,
__ sw(A2, Address(SP, 1 * kWordSize));
__ sw(A1, Address(SP, 0 * kWordSize));
__ PushObject(dst_name); // Push the name of the destination.
__ LoadObject(A0, test_cache);
__ Push(A0);
__ LoadObject(T0, test_cache);
__ Push(T0);
GenerateCallRuntime(token_pos, deopt_id, kTypeCheckRuntimeEntry, locs);
// Pop the parameters supplied to the runtime entry. The result of the
// type check runtime call is the checked value.
@ -405,11 +455,11 @@ void FlowGraphCompiler::CopyParameters() {
__ subu(T1, T1, T2);
__ sll(T1, T1, 1);
__ addu(T1, FP, T1);
__ addiu(T1, T1, Immediate(kLastParamSlotIndex * kWordSize));
__ AddImmediate(T1, kLastParamSlotIndex * kWordSize);
// Let T0 point to the last copied positional argument, i.e. to
// fp[kFirstLocalSlotIndex - (num_pos_args - 1)].
__ addiu(T0, FP, Immediate((kFirstLocalSlotIndex + 1) * kWordSize));
__ AddImmediate(T0, FP, (kFirstLocalSlotIndex + 1) * kWordSize);
__ sll(T3, T2, 1); // T2 is a Smi.
__ subu(T0, T0, T3);
@ -457,10 +507,10 @@ void FlowGraphCompiler::CopyParameters() {
// fp[kLastParamSlotIndex + num_args - 1 - 0]; num_args (T1) is Smi.
__ sll(T3, T1, 1);
__ addu(T1, FP, T3);
__ addiu(T1, T1, Immediate((kLastParamSlotIndex - 1) * kWordSize));
__ AddImmediate(T1, (kLastParamSlotIndex - 1) * kWordSize);
// Let T0 point to the entry of the first named argument.
__ addiu(T0, S4, Immediate(
ArgumentsDescriptor::first_named_entry_offset() - kHeapObjectTag));
__ AddImmediate(T0, S4,
ArgumentsDescriptor::first_named_entry_offset() - kHeapObjectTag);
for (int i = 0; i < num_opt_named_params; i++) {
Label load_default_value, assign_optional_parameter;
const int param_pos = opt_param_position[i];
@ -475,7 +525,7 @@ void FlowGraphCompiler::CopyParameters() {
__ lw(T3, Address(T0, ArgumentsDescriptor::position_offset()));
// T3 is arg_pos as Smi.
// Point to next named entry.
__ addiu(T0, T0, Immediate(ArgumentsDescriptor::named_entry_size()));
__ AddImmediate(T0, ArgumentsDescriptor::named_entry_size());
__ subu(T3, ZR, T3);
__ sll(T3, T3, 1);
__ addu(T3, T1, T3);
@ -537,7 +587,7 @@ void FlowGraphCompiler::CopyParameters() {
// We need to unwind the space we reserved for locals and copied parameters.
// The NoSuchMethodFunction stub does not expect to see that area on the
// stack.
__ addiu(SP, SP, Immediate(StackSize() * kWordSize));
__ AddImmediate(SP, StackSize() * kWordSize);
}
// The call below has an empty stackmap because we have just
// dropped the spill slots.
@ -730,7 +780,7 @@ void FlowGraphCompiler::CompileGraph() {
// We need to unwind the space we reserved for locals and copied
// parameters. The NoSuchMethodFunction stub does not expect to see
// that area on the stack.
__ addiu(SP, SP, Immediate(StackSize() * kWordSize));
__ AddImmediate(SP, StackSize() * kWordSize);
}
// The call below has an empty stackmap because we have just
// dropped the spill slots.
@ -858,7 +908,22 @@ void FlowGraphCompiler::GenerateCallRuntime(intptr_t token_pos,
intptr_t deopt_id,
const RuntimeEntry& entry,
LocationSummary* locs) {
__ Unimplemented("call runtime");
__ CallRuntime(entry);
AddCurrentDescriptor(PcDescriptors::kOther, deopt_id, token_pos);
RecordSafepoint(locs);
if (deopt_id != Isolate::kNoDeoptId) {
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
if (is_optimizing()) {
AddDeoptIndexAtCall(deopt_id, token_pos);
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(PcDescriptors::kDeoptAfter,
deopt_id,
token_pos);
}
}
}
@ -932,7 +997,16 @@ void FlowGraphCompiler::EmitEqualityRegConstCompare(Register reg,
void FlowGraphCompiler::EmitEqualityRegRegCompare(Register left,
Register right,
bool needs_number_check) {
UNIMPLEMENTED();
if (needs_number_check) {
__ Push(left);
__ Push(right);
__ BranchLink(&StubCode::IdenticalWithNumberCheckLabel());
// Stub returns result in CMPRES. If it is 0, then left and right are equal.
__ Pop(right);
__ Pop(left);
} else {
__ subu(CMPRES, left, right);
}
}

View file

@ -13,6 +13,7 @@
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/simulator.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
@ -194,13 +195,45 @@ LocationSummary* AssertAssignableInstr::MakeLocationSummary() const {
LocationSummary* AssertBooleanInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(A0));
locs->set_out(Location::RegisterLocation(A0));
return locs;
}
static void EmitAssertBoolean(Register reg,
intptr_t token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
__ BranchEqual(reg, Bool::True(), &done);
__ BranchEqual(reg, Bool::False(), &done);
__ Push(reg); // Push the source object.
compiler->GenerateCallRuntime(token_pos,
deopt_id,
kConditionTypeErrorRuntimeEntry,
locs);
// We should never return here.
__ break_(0);
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
Register obj = locs()->in(0).reg();
Register result = locs()->out().reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
@ -216,19 +249,296 @@ void ArgumentDefinitionTestInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
LocationSummary* EqualityCompareInstr::MakeLocationSummary() const {
const intptr_t kNumInputs = 2;
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (receiver_class_id() == kMintCid) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (receiver_class_id() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (receiver_class_id() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
if (is_checked_strict_equal) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (IsPolymorphic()) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
UNIMPLEMENTED(); // TODO(regis): Verify register allocation.
return locs;
}
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(A1));
locs->set_in(1, Location::RegisterLocation(A0));
locs->set_temp(0, Location::RegisterLocation(T0));
locs->set_out(Location::RegisterLocation(V0));
return locs;
}
// A1: left.
// A0: right.
// Uses T0 to load ic_call_data.
// Result in V0.
static void EmitEqualityAsInstanceCall(FlowGraphCompiler* compiler,
intptr_t deopt_id,
intptr_t token_pos,
Token::Kind kind,
LocationSummary* locs,
const ICData& original_ic_data) {
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeoptBefore,
deopt_id,
token_pos);
}
const int kNumberOfArguments = 2;
const Array& kNoArgumentNames = Array::Handle();
const int kNumArgumentsChecked = 2;
Label check_identity;
__ LoadImmediate(TMP1, reinterpret_cast<intptr_t>(Object::null()));
__ beq(A1, TMP1, &check_identity);
__ beq(A0, TMP1, &check_identity);
ICData& equality_ic_data = ICData::ZoneHandle();
if (compiler->is_optimizing() && FLAG_propagate_ic_data) {
ASSERT(!original_ic_data.IsNull());
if (original_ic_data.NumberOfChecks() == 0) {
// IC call for reoptimization populates original ICData.
equality_ic_data = original_ic_data.raw();
} else {
// Megamorphic call.
equality_ic_data = original_ic_data.AsUnaryClassChecks();
}
} else {
equality_ic_data = ICData::New(compiler->parsed_function().function(),
Symbols::EqualOperator(),
deopt_id,
kNumArgumentsChecked);
}
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(A1, Address(SP, 1 * kWordSize));
__ sw(A0, Address(SP, 0 * kWordSize));
compiler->GenerateInstanceCall(deopt_id,
token_pos,
kNumberOfArguments,
kNoArgumentNames,
locs,
equality_ic_data);
Label check_ne;
__ b(&check_ne);
__ Bind(&check_identity);
Label equality_done;
if (compiler->is_optimizing()) {
// No need to update IC data.
Label is_true;
__ beq(A1, A0, &is_true);
__ LoadObject(V0, (kind == Token::kEQ) ? Bool::False() : Bool::True());
__ b(&equality_done);
__ Bind(&is_true);
__ LoadObject(V0, (kind == Token::kEQ) ? Bool::True() : Bool::False());
if (kind == Token::kNE) {
// Skip not-equal result conversion.
__ b(&equality_done);
}
} else {
// Call stub, load IC data in register. The stub will update ICData if
// necessary.
Register ic_data_reg = locs->temp(0).reg();
ASSERT(ic_data_reg == T0); // Stub depends on it.
__ LoadObject(ic_data_reg, equality_ic_data);
// Pass left in A1 and right in A0.
compiler->GenerateCall(token_pos,
&StubCode::EqualityWithNullArgLabel(),
PcDescriptors::kOther,
locs);
}
__ Bind(&check_ne);
if (kind == Token::kNE) {
Label true_label, done;
// Negate the condition: true label returns false and vice versa.
__ BranchEqual(V0, Bool::True(), &true_label);
__ LoadObject(V0, Bool::True());
__ b(&done);
__ Bind(&true_label);
__ LoadObject(V0, Bool::False());
__ Bind(&done);
}
__ Bind(&equality_done);
}
// Emit code when ICData's targets are all Object == (which is ===).
static void EmitCheckedStrictEqual(FlowGraphCompiler* compiler,
const ICData& ic_data,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch,
intptr_t deopt_id) {
UNIMPLEMENTED();
}
// First test if receiver is NULL, in which case === is applied.
// If type feedback was provided (lists of <class-id, target>), do a
// type by type check (either === or static call to the operator.
static void EmitGenericEqualityCompare(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchInstr* branch,
const ICData& ic_data,
intptr_t deopt_id,
intptr_t token_pos) {
UNIMPLEMENTED();
}
static void EmitSmiComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
UNIMPLEMENTED();
}
static void EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
UNIMPLEMENTED();
}
static void EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchInstr* branch) {
UNIMPLEMENTED();
return NULL;
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
BranchInstr* kNoBranch = NULL;
if (receiver_class_id() == kSmiCid) {
EmitSmiComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (receiver_class_id() == kMintCid) {
EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), kNoBranch);
return;
}
if (receiver_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), kNoBranch);
return;
}
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (is_checked_strict_equal) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), kNoBranch,
deopt_id());
return;
}
if (IsPolymorphic()) {
EmitGenericEqualityCompare(compiler, locs(), kind(), kNoBranch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
ASSERT(left == A1);
ASSERT(right == A0);
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
kind(),
locs(),
*ic_data());
ASSERT(locs()->out().reg() == V0);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
UNIMPLEMENTED();
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
if (receiver_class_id() == kSmiCid) {
// Deoptimizes if both arguments not Smi.
EmitSmiComparisonOp(compiler, *locs(), kind(), branch);
return;
}
if (receiver_class_id() == kMintCid) {
EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), branch);
return;
}
if (receiver_class_id() == kDoubleCid) {
EmitDoubleComparisonOp(compiler, *locs(), kind(), branch);
return;
}
const bool is_checked_strict_equal =
HasICData() && ic_data()->AllTargetsHaveSameOwner(kInstanceCid);
if (is_checked_strict_equal) {
EmitCheckedStrictEqual(compiler, *ic_data(), *locs(), kind(), branch,
deopt_id());
return;
}
if (IsPolymorphic()) {
EmitGenericEqualityCompare(compiler, locs(), kind(), branch, *ic_data(),
deopt_id(), token_pos());
return;
}
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
ASSERT(left == A1);
ASSERT(right == A0);
EmitEqualityAsInstanceCall(compiler,
deopt_id(),
token_pos(),
Token::kEQ, // kNE reverse occurs at branch.
locs(),
*ic_data());
if (branch->is_checked()) {
EmitAssertBoolean(V0, token_pos(), deopt_id(), locs(), compiler);
}
Condition branch_condition = (kind() == Token::kNE) ? NE : EQ;
__ CompareObject(CMPRES, V0, Bool::True());
branch->EmitBranchOnCondition(compiler, branch_condition);
}
@ -272,10 +582,10 @@ void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ PushObject(Object::ZoneHandle());
// Pass a pointer to the first argument in A2.
if (!function().HasOptionalParameters()) {
__ addiu(A2, FP, Immediate((kLastParamSlotIndex +
function().NumParameters() - 1) * kWordSize));
__ AddImmediate(A2, FP, (kLastParamSlotIndex +
function().NumParameters() - 1) * kWordSize);
} else {
__ addiu(A2, FP, Immediate(kFirstLocalSlotIndex * kWordSize));
__ AddImmediate(A2, FP, kFirstLocalSlotIndex * kWordSize);
}
// Compute the effective address. When running under the simulator,
// this is a redirection address that forces the simulator to call
@ -719,7 +1029,7 @@ LocationSummary* BranchInstr::MakeLocationSummary() const {
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
comparison()->EmitBranchCode(compiler, this);
}
@ -835,25 +1145,79 @@ void ReThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
LocationSummary* GotoInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
return new LocationSummary(0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
// Add deoptimization descriptor for deoptimizing instructions
// that may be inserted before this instruction.
if (!compiler->is_optimizing()) {
compiler->AddCurrentDescriptor(PcDescriptors::kDeoptBefore,
GetDeoptId(),
0); // No token position.
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ b(compiler->GetJumpLabel(successor()));
}
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQ: return NE;
case NE: return EQ;
default:
OS::Print("Error: Condition not recognized: %d\n", condition);
UNIMPLEMENTED();
return EQ;
}
}
void ControlInstruction::EmitBranchOnValue(FlowGraphCompiler* compiler,
bool value) {
UNIMPLEMENTED();
if (value && !compiler->CanFallThroughTo(true_successor())) {
__ b(compiler->GetJumpLabel(true_successor()));
} else if (!value && !compiler->CanFallThroughTo(false_successor())) {
__ b(compiler->GetJumpLabel(false_successor()));
}
}
// The comparison result is in CMPRES.
void ControlInstruction::EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition) {
UNIMPLEMENTED();
if (compiler->CanFallThroughTo(false_successor())) {
// If the next block is the false successor we will fall through to it.
if (true_condition == EQ) {
__ beq(CMPRES, ZR, compiler->GetJumpLabel(true_successor()));
} else {
ASSERT(true_condition == NE);
__ bne(CMPRES, ZR, compiler->GetJumpLabel(true_successor()));
}
} else {
// If the next block is the true successor we negate comparison and fall
// through to it.
Condition false_condition = NegateCondition(true_condition);
if (false_condition == EQ) {
__ beq(CMPRES, ZR, compiler->GetJumpLabel(false_successor()));
} else {
ASSERT(false_condition == NE);
__ bne(CMPRES, ZR, compiler->GetJumpLabel(false_successor()));
}
// Fall through or jump to the true successor.
if (!compiler->CanFallThroughTo(true_successor())) {
__ b(compiler->GetJumpLabel(true_successor()));
}
}
}
@ -869,19 +1233,89 @@ void CurrentContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
LocationSummary* StrictCompareInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
locs->set_in(1, Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
// Special code for numbers (compare values instead of references.)
void StrictCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
Location left = locs()->in(0);
Location right = locs()->in(1);
if (left.IsConstant() && right.IsConstant()) {
// TODO(vegorov): should be eliminated earlier by constant propagation.
const bool result = (kind() == Token::kEQ_STRICT) ?
left.constant().raw() == right.constant().raw() :
left.constant().raw() != right.constant().raw();
__ LoadObject(locs()->out().reg(), result ? Bool::True() : Bool::False());
return;
}
if (left.IsConstant()) {
compiler->EmitEqualityRegConstCompare(right.reg(),
left.constant(),
needs_number_check());
} else if (right.IsConstant()) {
compiler->EmitEqualityRegConstCompare(left.reg(),
right.constant(),
needs_number_check());
} else {
compiler->EmitEqualityRegRegCompare(left.reg(),
right.reg(),
needs_number_check());
}
Register result = locs()->out().reg();
Label load_true, done;
if (kind() == Token::kEQ_STRICT) {
__ beq(CMPRES, ZR, &load_true);
} else {
ASSERT(kind() == Token::kNE_STRICT);
__ bne(CMPRES, ZR, &load_true);
}
__ LoadObject(result, Bool::False());
__ b(&done);
__ Bind(&load_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void StrictCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
UNIMPLEMENTED();
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
Location left = locs()->in(0);
Location right = locs()->in(1);
if (left.IsConstant() && right.IsConstant()) {
// TODO(vegorov): should be eliminated earlier by constant propagation.
const bool result = (kind() == Token::kEQ_STRICT) ?
left.constant().raw() == right.constant().raw() :
left.constant().raw() != right.constant().raw();
branch->EmitBranchOnValue(compiler, result);
return;
}
if (left.IsConstant()) {
compiler->EmitEqualityRegConstCompare(right.reg(),
left.constant(),
needs_number_check());
} else if (right.IsConstant()) {
compiler->EmitEqualityRegConstCompare(left.reg(),
right.constant(),
needs_number_check());
} else {
compiler->EmitEqualityRegRegCompare(left.reg(),
right.reg(),
needs_number_check());
}
Condition true_condition = (kind() == Token::kEQ_STRICT) ? EQ : NE;
branch->EmitBranchOnCondition(compiler, true_condition);
}
@ -924,13 +1358,19 @@ void StoreVMFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
LocationSummary* AllocateObjectInstr::MakeLocationSummary() const {
UNIMPLEMENTED();
return NULL;
return MakeCallSummary();
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
const Class& cls = Class::ZoneHandle(constructor().Owner());
const Code& stub = Code::Handle(StubCode::GetAllocationStubForClass(cls));
const ExternalLabel label(cls.ToCString(), stub.EntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
__ Drop(ArgumentCount()); // Discard arguments.
}

View file

@ -14,11 +14,6 @@
namespace dart {
// Compiler only implemented on IA32, X64, and ARM.
#if defined(TARGET_ARCH_IA32) || \
defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM)
// Setup function for invocation.
static void SetupFunction(const char* test_library_name,
const char* test_class_name,
@ -221,6 +216,4 @@ TEST_CASE(DartDynamicResolve) {
}
}
#endif // TARGET_ARCH_IA32 || TARGET_ARCH_X64 || TARGET_ARCH_ARM
} // namespace dart

View file

@ -832,6 +832,8 @@ void Simulator::DoBreak(Instr *instr) {
reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize);
set_pc(get_pc() + Instr::kInstrSize);
dbg.Stop(instr, message);
// Adjust for extra pc increment.
set_pc(get_pc() - Instr::kInstrSize);
} else if (instr->BreakCodeField() == Instr::kRedirectCode) {
SimulatorSetjmpBuffer buffer(this);
@ -914,6 +916,8 @@ void Simulator::DoBreak(Instr *instr) {
} else {
SimulatorDebugger dbg(this);
dbg.Stop(instr, "breakpoint");
// Adjust for extra pc increment.
set_pc(get_pc() - Instr::kInstrSize);
}
}

View file

@ -9,6 +9,9 @@
namespace dart {
// The constant kExitLinkOffsetInEntryFrame must be kept in sync with the
// code in the InvokeDartCode stub.
static const int kExitLinkOffsetInEntryFrame = -10 * kWordSize;
static const int kPcAddressOffsetFromSp = -2 * kWordSize;
static const int kEntrypointMarkerOffsetFromFp = 2 * kWordSize;
static const int kSpOffsetFromPreviousFp = 3 * kWordSize;
@ -54,7 +57,10 @@ void StackFrameIterator::SetupLastExitFrameData() {
void StackFrameIterator::SetupNextExitFrameData() {
UNIMPLEMENTED();
uword exit_address = entry_.fp() + kExitLinkOffsetInEntryFrame;
uword exit_marker = *reinterpret_cast<uword*>(exit_address);
frames_.fp_ = exit_marker;
frames_.sp_ = 0;
}
} // namespace dart

View file

@ -764,7 +764,7 @@ void StubCode::GenerateNArgsCheckInlineCacheStub(Assembler* assembler,
// Instance in R0, return its class-id in R0 as Smi.
__ Bind(&get_class_id_as_smi);
Label not_smi;
// Test if Smi -> load Smi class for comparison.
__ tst(R0, ShifterOperand(kSmiTagMask));
__ mov(R0, ShifterOperand(Smi::RawValue(kSmiCid)), EQ);

View file

@ -8,6 +8,7 @@
#include "vm/assembler.h"
#include "vm/code_generator.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/instructions.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
@ -16,6 +17,13 @@
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool, use_slow_path, false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, trace_optimized_ic_calls);
// Input parameters:
// RA : return address.
// SP : address of last argument in argument array.
@ -90,8 +98,8 @@ void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) {
__ mov(SP, FP);
__ lw(RA, Address(SP, 1 * kWordSize));
__ lw(FP, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ Ret();
__ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize));
}
@ -182,8 +190,8 @@ void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) {
__ mov(SP, FP);
__ lw(RA, Address(SP, 1 * kWordSize));
__ lw(FP, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ Ret();
__ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize));
}
@ -209,7 +217,7 @@ void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) {
__ LeaveStubFrame();
__ lw(T0, FieldAddress(T0, Code::instructions_offset()));
__ addiu(T0, T0, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag);
__ jr(T0);
}
@ -311,25 +319,21 @@ void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(T1);
// Compute address of 'arguments array' data area into A2.
__ lw(A2, Address(A2, VMHandles::kOffsetOfRawPtrInHandle));
__ AddImmediate(A2, Array::data_offset() - kHeapObjectTag);
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
// Compute address of 'arguments array' data area into A2.
// See also the addiu in the delay slot of the upcoming beq.
__ lw(A2, Address(A2, VMHandles::kOffsetOfRawPtrInHandle));
__ beq(T1, ZR, &done_push_arguments); // check if there are arguments.
__ delay_slot()->addiu(A2, A2,
Immediate(Array::data_offset() - kHeapObjectTag));
__ mov(A1, ZR);
__ Bind(&push_arguments);
__ lw(A3, Address(A2));
__ Push(A3);
__ addiu(A2, A2, Immediate(kWordSize));
__ addiu(A1, A1, Immediate(1));
__ BranchLess(A1, T1, &push_arguments);
__ delay_slot()->addiu(A2, A2, Immediate(kWordSize));
__ Bind(&done_push_arguments);
@ -341,7 +345,7 @@ void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
__ lw(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle));
// Get rid of arguments pushed on the stack.
__ addiu(SP, FP, Immediate(kSavedContextOffsetInEntryFrame));
__ AddImmediate(SP, FP, kSavedContextOffsetInEntryFrame);
// Load Isolate pointer from Context structure into CTX. Drop Context.
__ lw(CTX, FieldAddress(CTX, Context::isolate_offset()));
@ -379,9 +383,174 @@ void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) {
}
// Called for inline allocation of objects.
// Input parameters:
// RA : return address.
// SP + 4 : type arguments object (only if class is parameterized).
// SP + 0 : type arguments of instantiator (only if class is parameterized).
void StubCode::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
__ Unimplemented("AllocateObject stub");
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized =
cls.type_arguments_field_offset() != Class::kNoTypeArguments;
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12;
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size > 0);
const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize();
if (FLAG_inline_alloc &&
PageSpace::IsPageAllocatableSize(instance_size + type_args_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ LoadImmediate(T5, heap->TopAddress());
__ lw(T2, Address(T5));
__ LoadImmediate(T4, instance_size);
__ addu(T3, T2, T4);
if (is_cls_parameterized) {
Label no_instantiator;
__ lw(T1, Address(SP, 1 * kWordSize));
__ lw(T0, Address(SP, 0 * kWordSize));
// A new InstantiatedTypeArguments object only needs to be allocated if
// the instantiator is provided (not kNoInstantiator, but may be null).
__ BranchEqual(T0, Smi::RawValue(StubCode::kNoInstantiator),
&no_instantiator);
__ delay_slot()->mov(T4, T3);
__ AddImmediate(T3, type_args_size);
__ Bind(&no_instantiator);
// T4: potential new object end and, if T4 != T3, potential new
// InstantiatedTypeArguments object start.
}
// Check if the allocation fits into the remaining space.
// T2: potential new object start.
// T3: potential next object start.
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ BranchGreaterEqual(T3, heap->EndAddress(), &slow_case);
}
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ sw(T3, Address(T5));
if (is_cls_parameterized) {
// Initialize the type arguments field in the object.
// T2: new object start.
// T4: potential new object end and, if T4 != T3, potential new
// InstantiatedTypeArguments object start.
// T3: next object start.
Label type_arguments_ready;
__ beq(T4, T3, &type_arguments_ready);
// Initialize InstantiatedTypeArguments object at T4.
__ sw(T1, Address(T4,
InstantiatedTypeArguments::uninstantiated_type_arguments_offset()));
__ sw(T0, Address(T4,
InstantiatedTypeArguments::instantiator_type_arguments_offset()));
const Class& ita_cls =
Class::ZoneHandle(Object::instantiated_type_arguments_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(type_args_size, tags);
tags = RawObject::ClassIdTag::update(ita_cls.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T4, Instance::tags_offset()));
// Set the new InstantiatedTypeArguments object (T4) as the type
// arguments (T1) of the new object (T2).
__ addiu(T1, T4, Immediate(kHeapObjectTag));
// Set T3 to new object end.
__ mov(T3, T4);
__ Bind(&type_arguments_ready);
// T2: new object.
// T1: new object type arguments.
}
// T2: new object start.
// T3: next object start.
// T1: new object type arguments (if is_cls_parameterized).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T2, Instance::tags_offset()));
// Initialize the remaining words of the object.
__ LoadImmediate(T0, reinterpret_cast<intptr_t>(Object::null()));
// T0: raw null.
// T2: new object start.
// T3: next object start.
// T1: new object type arguments (if is_cls_parameterized).
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = sizeof(RawObject);
current_offset < instance_size;
current_offset += kWordSize) {
__ sw(T0, Address(T2, current_offset));
}
} else {
__ addiu(T4, T2, Immediate(sizeof(RawObject)));
// Loop until the whole object is initialized.
// T0: raw null.
// T2: new object.
// T3: next object start.
// T4: next word to be initialized.
// T1: new object type arguments (if is_cls_parameterized).
Label init_loop;
Label done;
__ Bind(&init_loop);
__ BranchGreaterEqual(T4, T3, &done); // Done if T4 >= T3.
__ sw(T0, Address(T4));
__ AddImmediate(T4, kWordSize);
__ b(&init_loop);
__ Bind(&done);
}
if (is_cls_parameterized) {
// R1: new object type arguments.
// Set the type arguments in the new object.
__ sw(T1, Address(T2, cls.type_arguments_field_offset()));
}
// Done allocating and initializing the instance.
// R2: new object still missing its heap tag.
__ Ret();
__ delay_slot()->addiu(V0, T2, Immediate(kHeapObjectTag));
__ Bind(&slow_case);
}
if (is_cls_parameterized) {
__ lw(T1, Address(SP, 1 * kWordSize));
__ lw(T0, Address(SP, 0 * kWordSize));
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame(true); // Uses pool pointer to pass cls to runtime.
__ LoadImmediate(T2, reinterpret_cast<intptr_t>(Object::null()));
__ Push(T2); // Setup space on stack for return value.
__ PushObject(cls); // Push class of object to be allocated.
if (is_cls_parameterized) {
// Push type arguments of object to be allocated and of instantiator.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(T1, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize));
} else {
// Push null type arguments and kNoInstantiator.
__ LoadImmediate(T1, Smi::RawValue(StubCode::kNoInstantiator));
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(T2, Address(SP, 1 * kWordSize));
__ sw(T1, Address(SP, 0 * kWordSize));
}
__ CallRuntime(kAllocateObjectRuntimeEntry); // Allocate object.
__ Drop(3); // Pop arguments.
__ Pop(V0); // Pop result (newly allocated object).
// V0: new object
// Restore the frame pointer.
__ LeaveStubFrame(true);
__ Ret();
}
@ -401,30 +570,242 @@ void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) {
}
// Loads function into 'temp_reg'.
void StubCode::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
__ Unimplemented("UsageCounterIncrement stub");
Register ic_reg = S5;
Register func_reg = temp_reg;
ASSERT(temp_reg == T0);
__ lw(func_reg, FieldAddress(ic_reg, ICData::function_offset()));
__ lw(T1, FieldAddress(func_reg, Function::usage_counter_offset()));
Label is_hot;
if (FlowGraphCompiler::CanOptimize()) {
ASSERT(FLAG_optimization_counter_threshold > 1);
// The usage_counter is always less than FLAG_optimization_counter_threshold
// except when the function gets optimized.
__ BranchEqual(T1, FLAG_optimization_counter_threshold, &is_hot);
// As long as VM has no OSR do not optimize in the middle of the function
// but only at exit so that we have collected all type feedback before
// optimizing.
}
__ addiu(T1, T1, Immediate(1));
__ sw(T1, FieldAddress(func_reg, Function::usage_counter_offset()));
__ Bind(&is_hot);
}
// Generate inline cache check for 'num_args'.
// AR: return address
// S5: Inline cache data object.
// S4: Arguments descriptor array.
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCode::GenerateNArgsCheckInlineCacheStub(Assembler* assembler,
intptr_t num_args) {
__ Unimplemented("NArgsCheckInlineCache stub");
ASSERT(num_args > 0);
#if defined(DEBUG)
{ Label ok;
// Check that the IC data array has NumberOfArgumentsChecked() == num_args.
// 'num_args_tested' is stored as an untagged int.
__ lw(T0, FieldAddress(S5, ICData::num_args_tested_offset()));
__ BranchEqual(T0, num_args, &ok);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
// Preserve return address, since LR is needed for subroutine call.
__ mov(T2, RA);
// Loop that checks if there is an IC data match.
Label loop, update, test, found, get_class_id_as_smi;
// S5: IC data object (preserved).
__ lw(T0, FieldAddress(S5, ICData::ic_data_offset()));
// T0: ic_data_array with check entries: classes and target functions.
__ AddImmediate(T0, Array::data_offset() - kHeapObjectTag);
// T0: points directly to the first ic data array element.
// Get the receiver's class ID (first read number of arguments from
// arguments descriptor array and then access the receiver from the stack).
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ AddImmediate(T1, -Smi::RawValue(1));
__ sll(T3, T1, 1); // T1 (argument_count - 1) is smi.
__ addu(T3, T3, SP);
__ bal(&get_class_id_as_smi);
__ delay_slot()->lw(T3, Address(T3));
// T1: argument_count - 1 (smi).
// T3: receiver's class ID (smi).
__ b(&test);
__ delay_slot()->lw(T4, Address(T0)); // First class id (smi) to check.
__ Bind(&loop);
for (int i = 0; i < num_args; i++) {
if (i > 0) {
// If not the first, load the next argument's class ID.
__ LoadImmediate(T3, Smi::RawValue(-i));
__ addu(T3, T1, T3);
__ sll(T3, T3, 1);
__ addu(T3, SP, T3);
__ bal(&get_class_id_as_smi);
__ delay_slot()->lw(T3, Address(T3));
// T3: next argument class ID (smi).
__ lw(T4, Address(T0, i * kWordSize));
// T4: next class ID to check (smi).
}
if (i < (num_args - 1)) {
__ bne(T3, T4, &update); // Continue.
} else {
// Last check, all checks before matched.
Label skip;
__ bne(T3, T4, &skip);
__ b(&found); // Break.
__ delay_slot()->mov(RA, T2); // Restore return address if found.
__ Bind(&skip);
}
}
__ Bind(&update);
// Reload receiver class ID. It has not been destroyed when num_args == 1.
if (num_args > 1) {
__ sll(T3, T1, 1);
__ addu(T3, SP, T3);
__ bal(&get_class_id_as_smi);
__ delay_slot()->lw(T3, Address(T3));
}
const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize;
__ AddImmediate(T0, entry_size); // Next entry.
__ lw(T4, Address(T0)); // Next class ID.
__ Bind(&test);
__ BranchNotEqual(T4, Smi::RawValue(kIllegalCid), &loop); // Done?
// IC miss.
// Restore return address.
__ mov(RA, T2);
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
// T1: argument_count - 1 (smi).
__ sll(T1, T1, 1);
__ addu(T1, SP, T1); // T1 is Smi.
// T1: address of receiver.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ LoadImmediate(T3, reinterpret_cast<intptr_t>(Object::null()));
// Preserve IC data object and arguments descriptor array and
// setup space on stack for result (target code object).
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(S5, Address(SP, 2 * kWordSize));
__ sw(S4, Address(SP, 1 * kWordSize));
__ sw(T3, Address(SP, 0 * kWordSize));
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ lw(TMP, Address(T1, -i * kWordSize));
__ Push(TMP);
}
// Pass IC data object and arguments descriptor array.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
if (num_args == 1) {
__ CallRuntime(kInlineCacheMissHandlerOneArgRuntimeEntry);
} else if (num_args == 2) {
__ CallRuntime(kInlineCacheMissHandlerTwoArgsRuntimeEntry);
} else if (num_args == 3) {
__ CallRuntime(kInlineCacheMissHandlerThreeArgsRuntimeEntry);
} else {
UNIMPLEMENTED();
}
// Remove the call arguments pushed earlier, including the IC data object
// and the arguments descriptor array.
__ Drop(num_args + 2);
// Pop returned code object into T3 (null if not found).
// Restore arguments descriptor array and IC data array.
__ lw(T3, Address(SP, 0 * kWordSize));
__ lw(S4, Address(SP, 1 * kWordSize));
__ lw(S5, Address(SP, 2 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ LeaveStubFrame();
Label call_target_function;
__ BranchNotEqual(T3, reinterpret_cast<intptr_t>(Object::null()),
&call_target_function);
// NoSuchMethod or closure.
// Mark IC call that it may be a closure call that does not collect
// type feedback.
__ LoadImmediate(TMP2, 1);
__ Branch(&StubCode::InstanceFunctionLookupLabel());
__ delay_slot()->sb(TMP2, FieldAddress(S5, ICData::is_closure_call_offset()));
__ Bind(&found);
// T0: Pointer to an IC data check group.
const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ lw(T3, Address(T0, target_offset));
__ lw(T4, Address(T0, count_offset));
__ AddImmediateDetectOverflow(T4, T4, Smi::RawValue(1), T5);
__ bgez(T5, &call_target_function); // No overflow.
__ delay_slot()->sw(T4, Address(T0, count_offset));
__ LoadImmediate(T1, Smi::RawValue(Smi::kMaxValue));
__ sw(T1, Address(T0, count_offset));
__ Bind(&call_target_function);
// T0: Target function.
__ lw(T3, FieldAddress(T3, Function::code_offset()));
__ lw(T3, FieldAddress(T3, Code::instructions_offset()));
__ AddImmediate(T3, Instructions::HeaderSize() - kHeapObjectTag);
__ jr(T3);
// Instance in T3, return its class-id in T3 as Smi.
__ Bind(&get_class_id_as_smi);
Label not_smi;
// Test if Smi -> load Smi class for comparison.
__ andi(TMP1, T3, Immediate(kSmiTagMask));
__ bne(TMP1, ZR, &not_smi);
__ LoadImmediate(T3, Smi::RawValue(kSmiCid));
__ jr(RA);
__ Bind(&not_smi);
__ LoadClassId(T3, T3);
__ SmiTag(T3);
__ jr(RA);
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RA: Return address.
// S5: Inline cache data object.
// S4: Arguments descriptor array.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) {
__ Unimplemented("GenerateOneArgCheckInlineCacheStub stub");
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(assembler, 1);
}
void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) {
__ Unimplemented("GenerateTwoArgsCheckInlineCacheStub stub");
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(assembler, 2);
}
void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) {
__ Unimplemented("GenerateThreeArgsCheckInlineCacheStub stub");
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(assembler, 3);
}
@ -474,18 +855,106 @@ void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) {
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
ASSERT((1 <= n) && (n <= 3));
if (n > 1) {
// Get instance type arguments.
__ LoadClass(T0, A0);
// Compute instance type arguments into R4.
Label has_no_type_arguments;
__ LoadImmediate(T1, reinterpret_cast<intptr_t>(Object::null()));
__ lw(T2, FieldAddress(T0,
Class::type_arguments_field_offset_in_words_offset()));
__ BranchEqual(T2, Class::kNoTypeArguments, &has_no_type_arguments);
__ sll(T2, T2, 2);
__ addu(T2, A0, T2); // T2 <- A0 + T2 * 4
__ lw(T1, FieldAddress(T2, 0));
__ Bind(&has_no_type_arguments);
}
__ LoadClassId(T0, A0);
// A0: instance.
// A1: instantiator type arguments or NULL.
// A2: SubtypeTestCache.
// T0: instance class id.
// T1: instance type arguments (null if none), used only if n > 1.
__ lw(T2, FieldAddress(A2, SubtypeTestCache::cache_offset()));
__ AddImmediate(T2, Array::data_offset() - kHeapObjectTag);
Label loop, found, not_found, next_iteration;
// T0: instance class id.
// T1: instance type arguments.
// T2: Entry start.
__ SmiTag(T0);
__ Bind(&loop);
__ lw(T3, Address(T2, kWordSize * SubtypeTestCache::kInstanceClassId));
__ BranchEqual(T3, reinterpret_cast<intptr_t>(Object::null()), &not_found);
if (n == 1) {
__ BranchEqual(T3, T0, &found);
} else {
__ BranchNotEqual(T3, T0, &next_iteration);
__ lw(T3,
Address(T2, kWordSize * SubtypeTestCache::kInstanceTypeArguments));
if (n == 2) {
__ BranchEqual(T3, T1, &found);
} else {
__ BranchNotEqual(T3, T1, &next_iteration);
__ lw(T3, Address(T2, kWordSize *
SubtypeTestCache::kInstantiatorTypeArguments));
__ BranchEqual(T3, A1, &found);
}
}
__ Bind(&next_iteration);
__ AddImmediate(T2, kWordSize * SubtypeTestCache::kTestEntryLength);
__ b(&loop);
// Fall through to not found.
__ Bind(&not_found);
__ LoadImmediate(V0, reinterpret_cast<intptr_t>(Object::null()));
__ Ret();
__ Bind(&found);
__ Ret();
__ delay_slot()->lw(V0,
Address(T2, kWordSize * SubtypeTestCache::kTestResult));
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) {
__ Unimplemented("Subtype1TestCache Stub");
GenerateSubtypeNTestCacheStub(assembler, 1);
}
// Used to check class and type arguments. Arguments passed in registers:
// LR: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) {
__ Unimplemented("Subtype2TestCache Stub");
GenerateSubtypeNTestCacheStub(assembler, 2);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) {
__ Unimplemented("Subtype3TestCache Stub");
GenerateSubtypeNTestCacheStub(assembler, 3);
}
@ -511,17 +980,113 @@ void StubCode::GenerateJumpToErrorHandlerStub(Assembler* assembler) {
void StubCode::GenerateEqualityWithNullArgStub(Assembler* assembler) {
__ Unimplemented("EqualityWithNullArg stub");
__ Unimplemented("EqualityWithNullArg Stub");
}
void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) {
__ Unimplemented("OptimizeFunction stub");
__ Unimplemented("OptimizeFunction Stub");
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t,
BigintCompare,
RawBigint* left,
RawBigint* right);
// Does identical check (object references are equal or not equal) with special
// checks for boxed numbers.
// LR: return address.
// SP + 4: left operand.
// SP + 0: right operand.
// Return: CMPRES is zero if equal, non-zero otherwise.
// Note: A Mint cannot contain a value that would fit in Smi, a Bigint
// cannot contain a value that fits in Mint or Smi.
void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler) {
__ Unimplemented("IdenticalWithNumberCheck stub");
const Register ret = CMPRES;
const Register temp1 = TMP1;
const Register temp2 = TMP2;
const Register left = T1;
const Register right = T0;
// Preserve left, right and temp.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(T1, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize));
// TOS + 4: left argument.
// TOS + 3: right argument.
// TOS + 1: saved left
// TOS + 0: saved right
__ lw(left, Address(SP, 3 * kWordSize));
__ lw(right, Address(SP, 2 * kWordSize));
Label reference_compare, done, check_mint, check_bigint;
// If any of the arguments is Smi do reference compare.
__ andi(temp1, left, Immediate(kSmiTagMask));
__ beq(temp1, ZR, &reference_compare);
__ andi(temp1, right, Immediate(kSmiTagMask));
__ beq(temp1, ZR, &reference_compare);
// Value compare for two doubles.
__ LoadImmediate(temp1, kDoubleCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &check_mint);
__ LoadClassId(temp2, right);
__ subu(ret, temp1, temp2);
__ bne(ret, ZR, &done);
// Double values bitwise compare.
__ lw(temp1, FieldAddress(left, Double::value_offset() + 0 * kWordSize));
__ lw(temp1, FieldAddress(right, Double::value_offset() + 0 * kWordSize));
__ subu(ret, temp1, temp2);
__ bne(ret, ZR, &done);
__ lw(temp1, FieldAddress(left, Double::value_offset() + 1 * kWordSize));
__ lw(temp2, FieldAddress(right, Double::value_offset() + 1 * kWordSize));
__ b(&done);
__ delay_slot()->subu(ret, temp1, temp2);
__ Bind(&check_mint);
__ LoadImmediate(temp1, kMintCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &check_bigint);
__ LoadClassId(temp2, right);
__ subu(ret, temp1, temp2);
__ bne(ret, ZR, &done);
__ lw(temp1, FieldAddress(left, Mint::value_offset() + 0 * kWordSize));
__ lw(temp2, FieldAddress(right, Mint::value_offset() + 0 * kWordSize));
__ subu(ret, temp1, temp2);
__ bne(ret, ZR, &done);
__ lw(temp1, FieldAddress(left, Mint::value_offset() + 1 * kWordSize));
__ lw(temp2, FieldAddress(right, Mint::value_offset() + 1 * kWordSize));
__ b(&done);
__ delay_slot()->subu(ret, temp1, temp2);
__ Bind(&check_bigint);
__ LoadImmediate(temp1, kBigintCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &reference_compare);
__ LoadClassId(temp2, right);
__ subu(ret, temp1, temp2);
__ bne(ret, ZR, &done);
__ EnterStubFrame(0);
__ ReserveAlignedFrameSpace(2 * kWordSize);
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(T1, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize));
__ CallRuntime(kBigintCompareRuntimeEntry);
// Result in V0, 0 means equal.
__ LeaveStubFrame();
__ b(&done);
__ delay_slot()->mov(CMPRES, V0);
__ Bind(&reference_compare);
__ subu(ret, left, right);
__ Bind(&done);
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(T1, Address(SP, 1 * kWordSize));
__ Ret();
__ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize));
}
} // namespace dart