[vm/regexp] Ensure regex interpreter checks and yields to safepoints, handles OOB messages periodically.

Fixes https://github.com/flutter/flutter/issues/88063
Fixes https://github.com/dart-lang/sdk/issues/26041

TEST=benchmarks/EventLoopLatencyRegexp,
long_regexp_process_oob_messages_test

Change-Id: I2bb10b332768f794b902b58be18d437cc07a59a7
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/210065
Reviewed-by: Martin Kustermann <kustermann@google.com>
Commit-Queue: Alexander Aprelev <aam@google.com>
This commit is contained in:
Alexander Aprelev 2021-08-20 16:19:16 +00:00 committed by commit-bot@chromium.org
parent 709f87e7f3
commit 064a9a50a0
6 changed files with 544 additions and 452 deletions

View file

@ -0,0 +1,29 @@
// Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:isolate';
import "package:async_helper/async_helper.dart";
import "package:expect/expect.dart";
worker(SendPort sendPort) {
final re = RegExp(r'(x+)*y');
final s = 'x' * 100 + '';
sendPort.send('worker started');
print(re.allMatches(s).iterator.moveNext());
}
main() async {
asyncStart();
ReceivePort onExit = ReceivePort();
ReceivePort workerStarted = ReceivePort();
final isolate = await Isolate.spawn(worker, workerStarted.sendPort,
onExit: onExit.sendPort, errorsAreFatal: true);
await workerStarted.first;
print('worker started, now killing worker');
isolate.kill(priority: Isolate.immediate);
await onExit.first;
print('worker exited');
asyncEnd();
}

View file

@ -0,0 +1,29 @@
// Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:isolate';
import "package:async_helper/async_helper.dart";
import "package:expect/expect.dart";
worker(SendPort sendPort) {
final re = RegExp(r'(x+)*y');
final s = 'x' * 100 + '';
sendPort.send('worker started');
print(re.allMatches(s).iterator.moveNext());
}
main() async {
asyncStart();
ReceivePort onExit = ReceivePort();
ReceivePort workerStarted = ReceivePort();
final isolate = await Isolate.spawn(worker, workerStarted.sendPort,
onExit: onExit.sendPort, errorsAreFatal: true);
await workerStarted.first;
print('worker started, now killing worker');
isolate.kill(priority: Isolate.immediate);
await onExit.first;
print('worker exited');
asyncEnd();
}

View file

@ -468,13 +468,13 @@ static intptr_t Prepare(const RegExp& regexp,
(regexp.num_bracket_expressions() + 1) * 2;
}
static IrregexpInterpreter::IrregexpResult ExecRaw(const RegExp& regexp,
const String& subject,
intptr_t index,
bool sticky,
int32_t* output,
intptr_t output_size,
Zone* zone) {
static ObjectPtr ExecRaw(const RegExp& regexp,
const String& subject,
intptr_t index,
bool sticky,
int32_t* output,
intptr_t output_size,
Zone* zone) {
bool is_one_byte =
subject.IsOneByteString() || subject.IsExternalOneByteString();
@ -493,14 +493,16 @@ static IrregexpInterpreter::IrregexpResult ExecRaw(const RegExp& regexp,
const TypedData& bytecode =
TypedData::Handle(zone, regexp.bytecode(is_one_byte, sticky));
ASSERT(!bytecode.IsNull());
IrregexpInterpreter::IrregexpResult result =
IrregexpInterpreter::Match(bytecode, subject, raw_output, index, zone);
const Object& result = Object::Handle(
zone,
IrregexpInterpreter::Match(bytecode, subject, raw_output, index, zone));
if (result == IrregexpInterpreter::RE_SUCCESS) {
if (result.ptr() == Bool::True().ptr()) {
// Copy capture results to the start of the registers array.
memmove(output, raw_output, number_of_capture_registers * sizeof(int32_t));
}
if (result == IrregexpInterpreter::RE_EXCEPTION) {
if (result.ptr() == Object::null()) {
// Exception during regexp processing
Thread* thread = Thread::Current();
auto isolate_group = thread->isolate_group();
const Instance& exception =
@ -508,14 +510,14 @@ static IrregexpInterpreter::IrregexpResult ExecRaw(const RegExp& regexp,
Exceptions::Throw(thread, exception);
UNREACHABLE();
}
return result;
return result.ptr();
}
InstancePtr BytecodeRegExpMacroAssembler::Interpret(const RegExp& regexp,
const String& subject,
const Smi& start_index,
bool sticky,
Zone* zone) {
ObjectPtr BytecodeRegExpMacroAssembler::Interpret(const RegExp& regexp,
const String& subject,
const Smi& start_index,
bool sticky,
Zone* zone) {
intptr_t required_registers = Prepare(regexp, subject, sticky, zone);
if (required_registers < 0) {
// Compiling failed with an exception.
@ -525,11 +527,10 @@ InstancePtr BytecodeRegExpMacroAssembler::Interpret(const RegExp& regexp,
// V8 uses a shared copy on the isolate when smaller than some threshold.
int32_t* output_registers = zone->Alloc<int32_t>(required_registers);
IrregexpInterpreter::IrregexpResult result =
ExecRaw(regexp, subject, start_index.Value(), sticky, output_registers,
required_registers, zone);
if (result == IrregexpInterpreter::RE_SUCCESS) {
const Object& result =
Object::Handle(zone, ExecRaw(regexp, subject, start_index.Value(), sticky,
output_registers, required_registers, zone));
if (result.ptr() == Bool::True().ptr()) {
intptr_t capture_count = regexp.num_bracket_expressions();
intptr_t capture_register_count = (capture_count + 1) * 2;
ASSERT(required_registers >= capture_register_count);
@ -553,10 +554,15 @@ InstancePtr BytecodeRegExpMacroAssembler::Interpret(const RegExp& regexp,
return result.ptr();
}
if (result == IrregexpInterpreter::RE_EXCEPTION) {
if (result.ptr() == Object::null()) {
// internal exception
UNREACHABLE();
}
ASSERT(result == IrregexpInterpreter::RE_FAILURE);
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
ASSERT(result.ptr() == Bool::False().ptr());
return Instance::null();
}

View file

@ -107,11 +107,11 @@ class BytecodeRegExpMacroAssembler : public RegExpMacroAssembler {
virtual void PrintBlocks() { UNIMPLEMENTED(); }
/////
static InstancePtr Interpret(const RegExp& regexp,
const String& str,
const Smi& start_index,
bool is_sticky,
Zone* zone);
static ObjectPtr Interpret(const RegExp& regexp,
const String& str,
const Smi& start_index,
bool is_sticky,
Zone* zone);
private:
void Expand();

View file

@ -4,11 +4,12 @@
// A simple interpreter for the Irregexp byte code.
#include "vm/regexp_interpreter.h"
#include <memory>
#include <utility>
#include "heap/safepoint.h"
#include "vm/regexp_interpreter.h"
#include "platform/unicode.h"
#include "vm/object.h"
#include "vm/regexp_assembler.h"
@ -169,14 +170,16 @@ class BacktrackStack {
DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
};
// Returns True if success, False if failure, Null if internal exception,
// Error if VM error needs to be propagated up the callchain.
template <typename Char>
static IrregexpInterpreter::IrregexpResult RawMatch(const uint8_t* code_base,
const String& subject,
int32_t* registers,
intptr_t current,
uint32_t current_char,
Zone* zone) {
const uint8_t* pc = code_base;
static ObjectPtr RawMatch(const TypedData& bytecode,
const String& subject,
int32_t* registers,
intptr_t current,
uint32_t current_char,
Zone* zone) {
const auto thread = Thread::Current();
// BacktrackStack ensures that the memory allocated for the backtracking stack
// is returned to the system or cached if there is no stack being cached at
// the moment.
@ -196,482 +199,506 @@ static IrregexpInterpreter::IrregexpResult RawMatch(const uint8_t* code_base,
OS::PrintErr("Start irregexp bytecode interpreter\n");
}
#endif
const uint8_t* code_base;
const uint8_t* pc;
{
NoSafepointScope no_safepoint;
code_base = reinterpret_cast<uint8_t*>(bytecode.DataAddr(0));
pc = code_base;
}
while (true) {
int32_t insn = Load32Aligned(pc);
switch (insn & BYTECODE_MASK) {
BYTECODE(BREAK)
UNREACHABLE();
return IrregexpInterpreter::RE_FAILURE;
BYTECODE(PUSH_CP)
if (--backtrack_stack_space < 0) {
return IrregexpInterpreter::RE_EXCEPTION;
if (UNLIKELY(thread->HasScheduledInterrupts())) {
intptr_t pc_offset = pc - code_base;
ErrorPtr error = thread->HandleInterrupts();
if (error != Object::null()) {
// Needs to be propagated to the Dart native invoking the
// regex matcher.
return error;
}
*backtrack_sp++ = current;
pc += BC_PUSH_CP_LENGTH;
break;
BYTECODE(PUSH_BT)
if (--backtrack_stack_space < 0) {
return IrregexpInterpreter::RE_EXCEPTION;
}
*backtrack_sp++ = Load32Aligned(pc + 4);
pc += BC_PUSH_BT_LENGTH;
break;
BYTECODE(PUSH_REGISTER)
if (--backtrack_stack_space < 0) {
return IrregexpInterpreter::RE_EXCEPTION;
}
*backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
pc += BC_PUSH_REGISTER_LENGTH;
break;
BYTECODE(SET_REGISTER)
registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
pc += BC_SET_REGISTER_LENGTH;
break;
BYTECODE(ADVANCE_REGISTER)
registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
pc += BC_ADVANCE_REGISTER_LENGTH;
break;
BYTECODE(SET_REGISTER_TO_CP)
registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
pc += BC_SET_REGISTER_TO_CP_LENGTH;
break;
BYTECODE(SET_CP_TO_REGISTER)
current = registers[insn >> BYTECODE_SHIFT];
pc += BC_SET_CP_TO_REGISTER_LENGTH;
break;
BYTECODE(SET_REGISTER_TO_SP)
registers[insn >> BYTECODE_SHIFT] =
static_cast<int>(backtrack_sp - backtrack_stack_base);
pc += BC_SET_REGISTER_TO_SP_LENGTH;
break;
BYTECODE(SET_SP_TO_REGISTER)
backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
backtrack_stack_space =
backtrack_stack.max_size() -
static_cast<int>(backtrack_sp - backtrack_stack_base);
pc += BC_SET_SP_TO_REGISTER_LENGTH;
break;
BYTECODE(POP_CP)
backtrack_stack_space++;
--backtrack_sp;
current = *backtrack_sp;
pc += BC_POP_CP_LENGTH;
break;
BYTECODE(POP_BT)
backtrack_stack_space++;
--backtrack_sp;
pc = code_base + *backtrack_sp;
break;
BYTECODE(POP_REGISTER)
backtrack_stack_space++;
--backtrack_sp;
registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
pc += BC_POP_REGISTER_LENGTH;
break;
BYTECODE(FAIL)
return IrregexpInterpreter::RE_FAILURE;
BYTECODE(SUCCEED)
return IrregexpInterpreter::RE_SUCCESS;
BYTECODE(ADVANCE_CP)
current += insn >> BYTECODE_SHIFT;
pc += BC_ADVANCE_CP_LENGTH;
break;
BYTECODE(GOTO)
pc = code_base + Load32Aligned(pc + 4);
break;
BYTECODE(ADVANCE_CP_AND_GOTO)
current += insn >> BYTECODE_SHIFT;
pc = code_base + Load32Aligned(pc + 4);
break;
BYTECODE(CHECK_GREEDY)
if (current == backtrack_sp[-1]) {
backtrack_sp--;
NoSafepointScope no_safepoint;
code_base = reinterpret_cast<uint8_t*>(bytecode.DataAddr(0));
pc = code_base + pc_offset;
}
NoSafepointScope no_safepoint;
bool check_for_safepoint_now = false;
while (!check_for_safepoint_now) {
int32_t insn = Load32Aligned(pc);
switch (insn & BYTECODE_MASK) {
BYTECODE(BREAK)
UNREACHABLE();
return Bool::False().ptr();
BYTECODE(PUSH_CP)
if (--backtrack_stack_space < 0) {
return Object::null();
}
*backtrack_sp++ = current;
pc += BC_PUSH_CP_LENGTH;
break;
BYTECODE(PUSH_BT)
if (--backtrack_stack_space < 0) {
return Object::null();
}
*backtrack_sp++ = Load32Aligned(pc + 4);
pc += BC_PUSH_BT_LENGTH;
break;
BYTECODE(PUSH_REGISTER)
if (--backtrack_stack_space < 0) {
return Object::null();
}
*backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
pc += BC_PUSH_REGISTER_LENGTH;
break;
BYTECODE(SET_REGISTER)
registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
pc += BC_SET_REGISTER_LENGTH;
break;
BYTECODE(ADVANCE_REGISTER)
registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
pc += BC_ADVANCE_REGISTER_LENGTH;
break;
BYTECODE(SET_REGISTER_TO_CP)
registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
pc += BC_SET_REGISTER_TO_CP_LENGTH;
break;
BYTECODE(SET_CP_TO_REGISTER)
current = registers[insn >> BYTECODE_SHIFT];
pc += BC_SET_CP_TO_REGISTER_LENGTH;
break;
BYTECODE(SET_REGISTER_TO_SP)
registers[insn >> BYTECODE_SHIFT] =
static_cast<int>(backtrack_sp - backtrack_stack_base);
pc += BC_SET_REGISTER_TO_SP_LENGTH;
break;
BYTECODE(SET_SP_TO_REGISTER)
backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
backtrack_stack_space =
backtrack_stack.max_size() -
static_cast<int>(backtrack_sp - backtrack_stack_base);
pc += BC_SET_SP_TO_REGISTER_LENGTH;
break;
BYTECODE(POP_CP)
backtrack_stack_space++;
--backtrack_sp;
current = *backtrack_sp;
pc += BC_POP_CP_LENGTH;
break;
BYTECODE(POP_BT)
backtrack_stack_space++;
--backtrack_sp;
pc = code_base + *backtrack_sp;
// This should match check cadence in JIT irregexp implementation.
check_for_safepoint_now = true;
break;
BYTECODE(POP_REGISTER)
backtrack_stack_space++;
--backtrack_sp;
registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
pc += BC_POP_REGISTER_LENGTH;
break;
BYTECODE(FAIL)
return Bool::False().ptr();
BYTECODE(SUCCEED)
return Bool::True().ptr();
BYTECODE(ADVANCE_CP)
current += insn >> BYTECODE_SHIFT;
pc += BC_ADVANCE_CP_LENGTH;
break;
BYTECODE(GOTO)
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_GREEDY_LENGTH;
}
break;
BYTECODE(LOAD_CURRENT_CHAR) {
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos < 0 || pos >= subject_length) {
break;
BYTECODE(ADVANCE_CP_AND_GOTO)
current += insn >> BYTECODE_SHIFT;
pc = code_base + Load32Aligned(pc + 4);
break;
BYTECODE(CHECK_GREEDY)
if (current == backtrack_sp[-1]) {
backtrack_sp--;
backtrack_stack_space++;
pc = code_base + Load32Aligned(pc + 4);
} else {
current_char = subject.CharAt(pos);
pc += BC_LOAD_CURRENT_CHAR_LENGTH;
pc += BC_CHECK_GREEDY_LENGTH;
}
break;
}
BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
int pos = current + (insn >> BYTECODE_SHIFT);
current_char = subject.CharAt(pos);
pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
break;
}
BYTECODE(LOAD_2_CURRENT_CHARS) {
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos + 2 > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
} else {
BYTECODE(LOAD_CURRENT_CHAR) {
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos < 0 || pos >= subject_length) {
pc = code_base + Load32Aligned(pc + 4);
} else {
current_char = subject.CharAt(pos);
pc += BC_LOAD_CURRENT_CHAR_LENGTH;
}
break;
}
BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
int pos = current + (insn >> BYTECODE_SHIFT);
current_char = subject.CharAt(pos);
pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
break;
}
BYTECODE(LOAD_2_CURRENT_CHARS) {
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos + 2 > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
} else {
Char next = subject.CharAt(pos + 1);
current_char =
subject.CharAt(pos) | (next << (kBitsPerByte * sizeof(Char)));
pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
}
break;
}
BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
int pos = current + (insn >> BYTECODE_SHIFT);
Char next = subject.CharAt(pos + 1);
current_char =
subject.CharAt(pos) | (next << (kBitsPerByte * sizeof(Char)));
pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
break;
}
break;
}
BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
int pos = current + (insn >> BYTECODE_SHIFT);
Char next = subject.CharAt(pos + 1);
current_char =
subject.CharAt(pos) | (next << (kBitsPerByte * sizeof(Char)));
pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
break;
}
BYTECODE(LOAD_4_CURRENT_CHARS) {
ASSERT(sizeof(Char) == 1);
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos + 4 > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
} else {
BYTECODE(LOAD_4_CURRENT_CHARS) {
ASSERT(sizeof(Char) == 1);
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos + 4 > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
} else {
Char next1 = subject.CharAt(pos + 1);
Char next2 = subject.CharAt(pos + 2);
Char next3 = subject.CharAt(pos + 3);
current_char = (subject.CharAt(pos) | (next1 << 8) | (next2 << 16) |
(next3 << 24));
pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
}
break;
}
BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
ASSERT(sizeof(Char) == 1);
int pos = current + (insn >> BYTECODE_SHIFT);
Char next1 = subject.CharAt(pos + 1);
Char next2 = subject.CharAt(pos + 2);
Char next3 = subject.CharAt(pos + 3);
current_char = (subject.CharAt(pos) | (next1 << 8) | (next2 << 16) |
(next3 << 24));
pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
break;
}
break;
}
BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
ASSERT(sizeof(Char) == 1);
int pos = current + (insn >> BYTECODE_SHIFT);
Char next1 = subject.CharAt(pos + 1);
Char next2 = subject.CharAt(pos + 2);
Char next3 = subject.CharAt(pos + 3);
current_char = (subject.CharAt(pos) | (next1 << 8) | (next2 << 16) |
(next3 << 24));
pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
break;
}
BYTECODE(CHECK_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c == current_char) {
BYTECODE(CHECK_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c == current_char) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_4_CHARS_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c == current_char) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_CHAR_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c != current_char) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_NOT_4_CHARS_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c != current_char) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c == (current_char & Load32Aligned(pc + 8))) {
pc = code_base + Load32Aligned(pc + 12);
} else {
pc += BC_AND_CHECK_4_CHARS_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c == (current_char & Load32Aligned(pc + 4))) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_AND_CHECK_CHAR_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_NOT_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c != (current_char & Load32Aligned(pc + 8))) {
pc = code_base + Load32Aligned(pc + 12);
} else {
pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c != (current_char & Load32Aligned(pc + 4))) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
uint32_t minus = Load16Aligned(pc + 4);
uint32_t mask = Load16Aligned(pc + 6);
if (c != ((current_char - minus) & mask)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR_IN_RANGE) {
uint32_t from = Load16Aligned(pc + 4);
uint32_t to = Load16Aligned(pc + 6);
if (from <= current_char && current_char <= to) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
uint32_t from = Load16Aligned(pc + 4);
uint32_t to = Load16Aligned(pc + 6);
if (from > current_char || current_char > to) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
}
break;
}
BYTECODE(CHECK_BIT_IN_TABLE) {
int mask = RegExpMacroAssembler::kTableMask;
uint8_t b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
int bit = (current_char & (kBitsPerByte - 1));
if ((b & (1 << bit)) != 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
}
break;
}
BYTECODE(CHECK_LT) {
uint32_t limit = (insn >> BYTECODE_SHIFT);
if (current_char < limit) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_LT_LENGTH;
}
break;
}
BYTECODE(CHECK_GT) {
uint32_t limit = (insn >> BYTECODE_SHIFT);
if (current_char > limit) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_GT_LENGTH;
}
break;
}
BYTECODE(CHECK_REGISTER_LT)
if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_4_CHARS_LENGTH;
pc += BC_CHECK_REGISTER_LT_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c == current_char) {
BYTECODE(CHECK_REGISTER_GE)
if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_REGISTER_GE_LENGTH;
}
break;
BYTECODE(CHECK_REGISTER_EQ_POS)
if (registers[insn >> BYTECODE_SHIFT] == current) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_CHAR_LENGTH;
pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c != current_char) {
BYTECODE(CHECK_NOT_REGS_EQUAL)
if (registers[insn >> BYTECODE_SHIFT] ==
registers[Load32Aligned(pc + 4)]) {
pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_NOT_4_CHARS_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c != current_char) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c == (current_char & Load32Aligned(pc + 8))) {
pc = code_base + Load32Aligned(pc + 12);
} else {
pc += BC_AND_CHECK_4_CHARS_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c == (current_char & Load32Aligned(pc + 4))) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_AND_CHECK_CHAR_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_NOT_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c != (current_char & Load32Aligned(pc + 8))) {
pc = code_base + Load32Aligned(pc + 12);
} else {
pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c != (current_char & Load32Aligned(pc + 4))) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
uint32_t minus = Load16Aligned(pc + 4);
uint32_t mask = Load16Aligned(pc + 6);
if (c != ((current_char - minus) & mask)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR_IN_RANGE) {
uint32_t from = Load16Aligned(pc + 4);
uint32_t to = Load16Aligned(pc + 6);
if (from <= current_char && current_char <= to) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
uint32_t from = Load16Aligned(pc + 4);
uint32_t to = Load16Aligned(pc + 6);
if (from > current_char || current_char > to) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
}
break;
}
BYTECODE(CHECK_BIT_IN_TABLE) {
int mask = RegExpMacroAssembler::kTableMask;
uint8_t b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
int bit = (current_char & (kBitsPerByte - 1));
if ((b & (1 << bit)) != 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
}
break;
}
BYTECODE(CHECK_LT) {
uint32_t limit = (insn >> BYTECODE_SHIFT);
if (current_char < limit) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_LT_LENGTH;
}
break;
}
BYTECODE(CHECK_GT) {
uint32_t limit = (insn >> BYTECODE_SHIFT);
if (current_char > limit) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_GT_LENGTH;
}
break;
}
BYTECODE(CHECK_REGISTER_LT)
if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_REGISTER_LT_LENGTH;
}
break;
BYTECODE(CHECK_REGISTER_GE)
if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_REGISTER_GE_LENGTH;
}
break;
BYTECODE(CHECK_REGISTER_EQ_POS)
if (registers[insn >> BYTECODE_SHIFT] == current) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
}
break;
BYTECODE(CHECK_NOT_REGS_EQUAL)
if (registers[insn >> BYTECODE_SHIFT] ==
registers[Load32Aligned(pc + 4)]) {
pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 8);
}
break;
BYTECODE(CHECK_NOT_BACK_REF) {
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
BYTECODE(CHECK_NOT_BACK_REF) {
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_LENGTH;
break;
}
if (current + len > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
int i;
for (i = 0; i < len; i++) {
if (subject.CharAt(from + i) != subject.CharAt(current + i)) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
}
if (i < len) break;
current += len;
}
pc += BC_CHECK_NOT_BACK_REF_LENGTH;
break;
}
if (current + len > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
int i;
for (i = 0; i < len; i++) {
if (subject.CharAt(from + i) != subject.CharAt(current + i)) {
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE)
FALL_THROUGH;
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
const bool unicode =
(insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE;
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
break;
}
if (current + len > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
if (BackRefMatchesNoCase<Char>(&canonicalize, from, current, len,
subject, unicode)) {
current += len;
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 4);
break;
}
}
if (i < len) break;
current += len;
}
pc += BC_CHECK_NOT_BACK_REF_LENGTH;
break;
}
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE)
FALL_THROUGH;
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
const bool unicode =
(insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE;
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
break;
}
if (current + len > subject_length) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
if (BackRefMatchesNoCase<Char>(&canonicalize, from, current, len,
subject, unicode)) {
current += len;
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 4);
BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
const int from = registers[insn >> BYTECODE_SHIFT];
const int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
break;
}
if ((current - len) < 0) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
// When looking behind, the string to match (if it is there) lies
// before the current position, so we will check the [len]
// characters before the current position, excluding the current
// position itself.
const int start = current - len;
int i;
for (i = 0; i < len; i++) {
if (subject.CharAt(from + i) != subject.CharAt(start + i)) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
}
if (i < len) break;
current -= len;
}
}
break;
}
BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
const int from = registers[insn >> BYTECODE_SHIFT];
const int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
break;
}
if ((current - len) < 0) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
// When looking behind, the string to match (if it is there) lies
// before the current position, so we will check the [len] characters
// before the current position, excluding the current position itself.
const int start = current - len;
int i;
for (i = 0; i < len; i++) {
if (subject.CharAt(from + i) != subject.CharAt(start + i)) {
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD)
FALL_THROUGH;
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
bool unicode = (insn & BYTECODE_MASK) ==
BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD;
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
break;
}
if (current < len) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
if (BackRefMatchesNoCase<Char>(&canonicalize, from, current - len,
len, subject, unicode)) {
current -= len;
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 4);
break;
}
}
if (i < len) break;
current -= len;
}
pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
break;
}
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD)
FALL_THROUGH;
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
bool unicode = (insn & BYTECODE_MASK) ==
BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD;
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from < 0 || len <= 0) {
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
break;
}
if (current < len) {
BYTECODE(CHECK_AT_START)
if (current == 0) {
pc = code_base + Load32Aligned(pc + 4);
break;
} else {
if (BackRefMatchesNoCase<Char>(&canonicalize, from, current - len,
len, subject, unicode)) {
current -= len;
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
pc += BC_CHECK_AT_START_LENGTH;
}
break;
BYTECODE(CHECK_NOT_AT_START) {
const int32_t cp_offset = insn >> BYTECODE_SHIFT;
if (current + cp_offset == 0) {
pc += BC_CHECK_NOT_AT_START_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 4);
}
break;
}
break;
}
BYTECODE(CHECK_AT_START)
if (current == 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_AT_START_LENGTH;
}
break;
BYTECODE(CHECK_NOT_AT_START) {
const int32_t cp_offset = insn >> BYTECODE_SHIFT;
if (current + cp_offset == 0) {
pc += BC_CHECK_NOT_AT_START_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 4);
BYTECODE(SET_CURRENT_POSITION_FROM_END) {
int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
if (subject_length - current > by) {
current = subject_length - by;
current_char = subject.CharAt(current - 1);
}
pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
break;
}
break;
default:
UNREACHABLE();
break;
}
BYTECODE(SET_CURRENT_POSITION_FROM_END) {
int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
if (subject_length - current > by) {
current = subject_length - by;
current_char = subject.CharAt(current - 1);
}
pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
break;
}
default:
UNREACHABLE();
break;
}
}
}
IrregexpInterpreter::IrregexpResult IrregexpInterpreter::Match(
const TypedData& bytecode,
const String& subject,
int32_t* registers,
intptr_t start_position,
Zone* zone) {
NoSafepointScope no_safepoint;
const uint8_t* code_base = reinterpret_cast<uint8_t*>(bytecode.DataAddr(0));
// Returns True if success, False if failure, Null if internal exception,
// Error if VM error needs to be propagated up the callchain.
ObjectPtr IrregexpInterpreter::Match(const TypedData& bytecode,
const String& subject,
int32_t* registers,
intptr_t start_position,
Zone* zone) {
uint16_t previous_char = '\n';
if (start_position != 0) {
previous_char = subject.CharAt(start_position - 1);
}
if (subject.IsOneByteString() || subject.IsExternalOneByteString()) {
return RawMatch<uint8_t>(code_base, subject, registers, start_position,
return RawMatch<uint8_t>(bytecode, subject, registers, start_position,
previous_char, zone);
} else if (subject.IsTwoByteString() || subject.IsExternalTwoByteString()) {
return RawMatch<uint16_t>(code_base, subject, registers, start_position,
return RawMatch<uint16_t>(bytecode, subject, registers, start_position,
previous_char, zone);
} else {
UNREACHABLE();
return IrregexpInterpreter::RE_FAILURE;
return Bool::False().ptr();
}
}

View file

@ -15,13 +15,14 @@ namespace dart {
class IrregexpInterpreter : public AllStatic {
public:
enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
static IrregexpResult Match(const TypedData& bytecode,
const String& subject,
int32_t* captures,
intptr_t start_position,
Zone* zone);
// Returns True in case of a success, False in case of a failure,
// Null in case of internal exception,
// Error in case VM error has to propagated up to the caller.
static ObjectPtr Match(const TypedData& bytecode,
const String& subject,
int32_t* captures,
intptr_t start_position,
Zone* zone);
};
} // namespace dart