dart-sdk/runtime/platform/splay-tree-inl.h

272 lines
8.2 KiB
C
Raw Normal View History

// Copyright (c) 2010, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
Reland "[vm] Finish adding support for ECMAScript 2018 features." This work pulls in v8 support for these features with appropriate changes for Dart and closes https://github.com/dart-lang/sdk/issues/34935. This adds support for the following features: * Interpreting patterns as Unicode patterns instead of BMP patterns * the dotAll flag (`/s`) for changing the behavior of '.' to also match line terminators * Escapes for character classes described by Unicode property groups (e.g., \p{Greek} to match all Greek characters, or \P{Greek} for all non-Greek characters). The following TC39 proposals describe some of the added features: * https://github.com/tc39/proposal-regexp-dotall-flag * https://github.com/tc39/proposal-regexp-unicode-property-escapes These additional changes are included: * Extends named capture group names to include the full range of identifier characters supported by ECMAScript, not just ASCII. * Changing the RegExp interface to return RegExpMatch objects, not Match objects, so that downcasting is not necessary to use named capture groups from Dart **Note**: The changes to the RegExp interface are a breaking change for implementers of the RegExp interface. Current users of the RegExp interface (i.e., code using Dart RegExp objects) will not be affected. Change-Id: Ie62e6082a0e2fedc1680ef2576ce0c6db80fc19a Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/100641 Reviewed-by: Martin Kustermann <kustermann@google.com> Commit-Queue: Stevie Strickland <sstrickl@google.com>
2019-04-29 09:11:48 +00:00
//
// The original file can be found at:
// https://github.com/v8/v8/blob/master/src/splay-tree-inl.h
#ifndef RUNTIME_PLATFORM_SPLAY_TREE_INL_H_
#define RUNTIME_PLATFORM_SPLAY_TREE_INL_H_
#include <vector>
#include "platform/splay-tree.h"
namespace dart {
template <typename Config, class B, class Allocator>
SplayTree<Config, B, Allocator>::~SplayTree() {
NodeDeleter deleter;
ForEachNode(&deleter);
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::Insert(const Key& key, Locator* locator) {
if (is_empty()) {
// If the tree is empty, insert the new node.
root_ = new (allocator_) Node(key, Config::NoValue());
} else {
// Splay on the key to move the last node on the search path
// for the key to the root of the tree.
Splay(key);
// Ignore repeated insertions with the same key.
int cmp = Config::Compare(key, root_->key_);
if (cmp == 0) {
locator->bind(root_);
return false;
}
// Insert the new node.
Node* node = new (allocator_) Node(key, Config::NoValue());
InsertInternal(cmp, node);
}
locator->bind(root_);
return true;
}
template <typename Config, class B, class Allocator>
void SplayTree<Config, B, Allocator>::InsertInternal(int cmp, Node* node) {
if (cmp > 0) {
node->left_ = root_;
node->right_ = root_->right_;
root_->right_ = nullptr;
} else {
node->right_ = root_;
node->left_ = root_->left_;
root_->left_ = nullptr;
}
root_ = node;
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::FindInternal(const Key& key) {
if (is_empty()) return false;
Splay(key);
return Config::Compare(key, root_->key_) == 0;
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::Contains(const Key& key) {
return FindInternal(key);
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::Find(const Key& key, Locator* locator) {
if (FindInternal(key)) {
locator->bind(root_);
return true;
} else {
return false;
}
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::FindGreatestLessThan(const Key& key,
Locator* locator) {
if (is_empty()) return false;
// Splay on the key to move the node with the given key or the last
// node on the search path to the top of the tree.
Splay(key);
// Now the result is either the root node or the greatest node in
// the left subtree.
int cmp = Config::Compare(root_->key_, key);
if (cmp <= 0) {
locator->bind(root_);
return true;
} else {
Node* temp = root_;
root_ = root_->left_;
bool result = FindGreatest(locator);
root_ = temp;
return result;
}
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::FindLeastGreaterThan(const Key& key,
Locator* locator) {
if (is_empty()) return false;
// Splay on the key to move the node with the given key or the last
// node on the search path to the top of the tree.
Splay(key);
// Now the result is either the root node or the least node in
// the right subtree.
int cmp = Config::Compare(root_->key_, key);
if (cmp >= 0) {
locator->bind(root_);
return true;
} else {
Node* temp = root_;
root_ = root_->right_;
bool result = FindLeast(locator);
root_ = temp;
return result;
}
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::FindGreatest(Locator* locator) {
if (is_empty()) return false;
Node* current = root_;
while (current->right_ != nullptr)
current = current->right_;
locator->bind(current);
return true;
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::FindLeast(Locator* locator) {
if (is_empty()) return false;
Node* current = root_;
while (current->left_ != nullptr)
current = current->left_;
locator->bind(current);
return true;
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::Move(const Key& old_key,
const Key& new_key) {
if (!FindInternal(old_key)) return false;
Node* node_to_move = root_;
RemoveRootNode(old_key);
Splay(new_key);
int cmp = Config::Compare(new_key, root_->key_);
if (cmp == 0) {
// A node with the target key already exists.
delete node_to_move;
return false;
}
node_to_move->key_ = new_key;
InsertInternal(cmp, node_to_move);
return true;
}
template <typename Config, class B, class Allocator>
bool SplayTree<Config, B, Allocator>::Remove(const Key& key) {
if (!FindInternal(key)) return false;
Node* node_to_remove = root_;
RemoveRootNode(key);
delete node_to_remove;
return true;
}
template <typename Config, class B, class Allocator>
void SplayTree<Config, B, Allocator>::RemoveRootNode(const Key& key) {
if (root_->left_ == nullptr) {
// No left child, so the new tree is just the right child.
root_ = root_->right_;
} else {
// Left child exists.
Node* right = root_->right_;
// Make the original left child the new root.
root_ = root_->left_;
// Splay to make sure that the new root has an empty right child.
Splay(key);
// Insert the original right child as the right child of the new
// root.
root_->right_ = right;
}
}
template <typename Config, class B, class Allocator>
void SplayTree<Config, B, Allocator>::Splay(const Key& key) {
if (is_empty()) return;
Node dummy_node(Config::kNoKey, Config::NoValue());
// Create a dummy node. The use of the dummy node is a bit
// counter-intuitive: The right child of the dummy node will hold
// the L tree of the algorithm. The left child of the dummy node
// will hold the R tree of the algorithm. Using a dummy node, left
// and right will always be nodes and we avoid special cases.
Node* dummy = &dummy_node;
Node* left = dummy;
Node* right = dummy;
Node* current = root_;
while (true) {
int cmp = Config::Compare(key, current->key_);
if (cmp < 0) {
if (current->left_ == nullptr) break;
if (Config::Compare(key, current->left_->key_) < 0) {
// Rotate right.
Node* temp = current->left_;
current->left_ = temp->right_;
temp->right_ = current;
current = temp;
if (current->left_ == nullptr) break;
}
// Link right.
right->left_ = current;
right = current;
current = current->left_;
} else if (cmp > 0) {
if (current->right_ == nullptr) break;
if (Config::Compare(key, current->right_->key_) > 0) {
// Rotate left.
Node* temp = current->right_;
current->right_ = temp->left_;
temp->left_ = current;
current = temp;
if (current->right_ == nullptr) break;
}
// Link left.
left->right_ = current;
left = current;
current = current->right_;
} else {
break;
}
}
// Assemble.
left->right_ = current->left_;
right->left_ = current->right_;
current->left_ = dummy->right_;
current->right_ = dummy->left_;
root_ = current;
}
template <typename Config, class B, class Allocator>
template <class Callback>
void SplayTree<Config, B, Allocator>::ForEach(Callback* callback) {
NodeToPairAdaptor<Callback> callback_adaptor(callback);
ForEachNode(&callback_adaptor);
}
template <typename Config, class B, class Allocator>
template <class Callback>
void SplayTree<Config, B, Allocator>::ForEachNode(Callback* callback) {
if (root_ == nullptr) return;
// Pre-allocate some space for tiny trees.
std::vector<Node*> nodes_to_visit;
nodes_to_visit.push_back(root_);
size_t pos = 0;
while (pos < nodes_to_visit.size()) {
Node* node = nodes_to_visit[pos++];
if (node->left() != nullptr) nodes_to_visit.push_back(node->left());
if (node->right() != nullptr) nodes_to_visit.push_back(node->right());
callback->Call(node);
}
}
} // namespace dart
#endif // RUNTIME_PLATFORM_SPLAY_TREE_INL_H_