mirror of
https://github.com/python/cpython
synced 2024-11-02 08:37:57 +00:00
2ef73be891
* Add _Py_memory_repeat function to pycore_list * Add _Py_RefcntAdd function to pycore_object * Use the new functions in tuplerepeat, list_repeat, and list_inplace_repeat
1265 lines
35 KiB
C
1265 lines
35 KiB
C
|
|
/* Tuple object implementation */
|
|
|
|
#include "Python.h"
|
|
#include "pycore_abstract.h" // _PyIndex_Check()
|
|
#include "pycore_gc.h" // _PyObject_GC_IS_TRACKED()
|
|
#include "pycore_initconfig.h" // _PyStatus_OK()
|
|
#include "pycore_object.h" // _PyObject_GC_TRACK(), _Py_FatalRefcountError()
|
|
|
|
/*[clinic input]
|
|
class tuple "PyTupleObject *" "&PyTuple_Type"
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f051ba3cfdf9a189]*/
|
|
|
|
#include "clinic/tupleobject.c.h"
|
|
|
|
|
|
static inline PyTupleObject * maybe_freelist_pop(Py_ssize_t);
|
|
static inline int maybe_freelist_push(PyTupleObject *);
|
|
|
|
|
|
/* Allocate an uninitialized tuple object. Before making it public, following
|
|
steps must be done:
|
|
|
|
- Initialize its items.
|
|
- Call _PyObject_GC_TRACK() on it.
|
|
|
|
Because the empty tuple is always reused and it's already tracked by GC,
|
|
this function must not be called with size == 0 (unless from PyTuple_New()
|
|
which wraps this function).
|
|
*/
|
|
static PyTupleObject *
|
|
tuple_alloc(Py_ssize_t size)
|
|
{
|
|
if (size < 0) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
#ifdef Py_DEBUG
|
|
assert(size != 0); // The empty tuple is statically allocated.
|
|
#endif
|
|
|
|
PyTupleObject *op = maybe_freelist_pop(size);
|
|
if (op == NULL) {
|
|
/* Check for overflow */
|
|
if ((size_t)size > ((size_t)PY_SSIZE_T_MAX - (sizeof(PyTupleObject) -
|
|
sizeof(PyObject *))) / sizeof(PyObject *)) {
|
|
return (PyTupleObject *)PyErr_NoMemory();
|
|
}
|
|
op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size);
|
|
if (op == NULL)
|
|
return NULL;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
// The empty tuple singleton is not tracked by the GC.
|
|
// It does not contain any Python object.
|
|
// Note that tuple subclasses have their own empty instances.
|
|
|
|
static inline PyObject *
|
|
tuple_get_empty(void)
|
|
{
|
|
Py_INCREF(&_Py_SINGLETON(tuple_empty));
|
|
return (PyObject *)&_Py_SINGLETON(tuple_empty);
|
|
}
|
|
|
|
PyObject *
|
|
PyTuple_New(Py_ssize_t size)
|
|
{
|
|
PyTupleObject *op;
|
|
if (size == 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
op = tuple_alloc(size);
|
|
if (op == NULL) {
|
|
return NULL;
|
|
}
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
op->ob_item[i] = NULL;
|
|
}
|
|
_PyObject_GC_TRACK(op);
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
Py_ssize_t
|
|
PyTuple_Size(PyObject *op)
|
|
{
|
|
if (!PyTuple_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
else
|
|
return Py_SIZE(op);
|
|
}
|
|
|
|
PyObject *
|
|
PyTuple_GetItem(PyObject *op, Py_ssize_t i)
|
|
{
|
|
if (!PyTuple_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (i < 0 || i >= Py_SIZE(op)) {
|
|
PyErr_SetString(PyExc_IndexError, "tuple index out of range");
|
|
return NULL;
|
|
}
|
|
return ((PyTupleObject *)op) -> ob_item[i];
|
|
}
|
|
|
|
int
|
|
PyTuple_SetItem(PyObject *op, Py_ssize_t i, PyObject *newitem)
|
|
{
|
|
PyObject **p;
|
|
if (!PyTuple_Check(op) || Py_REFCNT(op) != 1) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (i < 0 || i >= Py_SIZE(op)) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"tuple assignment index out of range");
|
|
return -1;
|
|
}
|
|
p = ((PyTupleObject *)op) -> ob_item + i;
|
|
Py_XSETREF(*p, newitem);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
_PyTuple_MaybeUntrack(PyObject *op)
|
|
{
|
|
PyTupleObject *t;
|
|
Py_ssize_t i, n;
|
|
|
|
if (!PyTuple_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op))
|
|
return;
|
|
t = (PyTupleObject *) op;
|
|
n = Py_SIZE(t);
|
|
for (i = 0; i < n; i++) {
|
|
PyObject *elt = PyTuple_GET_ITEM(t, i);
|
|
/* Tuple with NULL elements aren't
|
|
fully constructed, don't untrack
|
|
them yet. */
|
|
if (!elt ||
|
|
_PyObject_GC_MAY_BE_TRACKED(elt))
|
|
return;
|
|
}
|
|
_PyObject_GC_UNTRACK(op);
|
|
}
|
|
|
|
PyObject *
|
|
PyTuple_Pack(Py_ssize_t n, ...)
|
|
{
|
|
Py_ssize_t i;
|
|
PyObject *o;
|
|
PyObject **items;
|
|
va_list vargs;
|
|
|
|
if (n == 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
|
|
va_start(vargs, n);
|
|
PyTupleObject *result = tuple_alloc(n);
|
|
if (result == NULL) {
|
|
va_end(vargs);
|
|
return NULL;
|
|
}
|
|
items = result->ob_item;
|
|
for (i = 0; i < n; i++) {
|
|
o = va_arg(vargs, PyObject *);
|
|
Py_INCREF(o);
|
|
items[i] = o;
|
|
}
|
|
va_end(vargs);
|
|
_PyObject_GC_TRACK(result);
|
|
return (PyObject *)result;
|
|
}
|
|
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
tupledealloc(PyTupleObject *op)
|
|
{
|
|
if (Py_SIZE(op) == 0) {
|
|
/* The empty tuple is statically allocated. */
|
|
if (op == &_Py_SINGLETON(tuple_empty)) {
|
|
#ifdef Py_DEBUG
|
|
_Py_FatalRefcountError("deallocating the empty tuple singleton");
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
#ifdef Py_DEBUG
|
|
/* tuple subclasses have their own empty instances. */
|
|
assert(!PyTuple_CheckExact(op));
|
|
#endif
|
|
}
|
|
|
|
PyObject_GC_UnTrack(op);
|
|
Py_TRASHCAN_BEGIN(op, tupledealloc)
|
|
|
|
Py_ssize_t i = Py_SIZE(op);
|
|
while (--i >= 0) {
|
|
Py_XDECREF(op->ob_item[i]);
|
|
}
|
|
// This will abort on the empty singleton (if there is one).
|
|
if (!maybe_freelist_push(op)) {
|
|
Py_TYPE(op)->tp_free((PyObject *)op);
|
|
}
|
|
|
|
Py_TRASHCAN_END
|
|
}
|
|
|
|
static PyObject *
|
|
tuplerepr(PyTupleObject *v)
|
|
{
|
|
Py_ssize_t i, n;
|
|
_PyUnicodeWriter writer;
|
|
|
|
n = Py_SIZE(v);
|
|
if (n == 0)
|
|
return PyUnicode_FromString("()");
|
|
|
|
/* While not mutable, it is still possible to end up with a cycle in a
|
|
tuple through an object that stores itself within a tuple (and thus
|
|
infinitely asks for the repr of itself). This should only be
|
|
possible within a type. */
|
|
i = Py_ReprEnter((PyObject *)v);
|
|
if (i != 0) {
|
|
return i > 0 ? PyUnicode_FromString("(...)") : NULL;
|
|
}
|
|
|
|
_PyUnicodeWriter_Init(&writer);
|
|
writer.overallocate = 1;
|
|
if (Py_SIZE(v) > 1) {
|
|
/* "(" + "1" + ", 2" * (len - 1) + ")" */
|
|
writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;
|
|
}
|
|
else {
|
|
/* "(1,)" */
|
|
writer.min_length = 4;
|
|
}
|
|
|
|
if (_PyUnicodeWriter_WriteChar(&writer, '(') < 0)
|
|
goto error;
|
|
|
|
/* Do repr() on each element. */
|
|
for (i = 0; i < n; ++i) {
|
|
PyObject *s;
|
|
|
|
if (i > 0) {
|
|
if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
|
|
goto error;
|
|
}
|
|
|
|
s = PyObject_Repr(v->ob_item[i]);
|
|
if (s == NULL)
|
|
goto error;
|
|
|
|
if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
|
|
Py_DECREF(s);
|
|
goto error;
|
|
}
|
|
Py_DECREF(s);
|
|
}
|
|
|
|
writer.overallocate = 0;
|
|
if (n > 1) {
|
|
if (_PyUnicodeWriter_WriteChar(&writer, ')') < 0)
|
|
goto error;
|
|
}
|
|
else {
|
|
if (_PyUnicodeWriter_WriteASCIIString(&writer, ",)", 2) < 0)
|
|
goto error;
|
|
}
|
|
|
|
Py_ReprLeave((PyObject *)v);
|
|
return _PyUnicodeWriter_Finish(&writer);
|
|
|
|
error:
|
|
_PyUnicodeWriter_Dealloc(&writer);
|
|
Py_ReprLeave((PyObject *)v);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Hash for tuples. This is a slightly simplified version of the xxHash
|
|
non-cryptographic hash:
|
|
- we do not use any parallellism, there is only 1 accumulator.
|
|
- we drop the final mixing since this is just a permutation of the
|
|
output space: it does not help against collisions.
|
|
- at the end, we mangle the length with a single constant.
|
|
For the xxHash specification, see
|
|
https://github.com/Cyan4973/xxHash/blob/master/doc/xxhash_spec.md
|
|
|
|
Below are the official constants from the xxHash specification. Optimizing
|
|
compilers should emit a single "rotate" instruction for the
|
|
_PyHASH_XXROTATE() expansion. If that doesn't happen for some important
|
|
platform, the macro could be changed to expand to a platform-specific rotate
|
|
spelling instead.
|
|
*/
|
|
#if SIZEOF_PY_UHASH_T > 4
|
|
#define _PyHASH_XXPRIME_1 ((Py_uhash_t)11400714785074694791ULL)
|
|
#define _PyHASH_XXPRIME_2 ((Py_uhash_t)14029467366897019727ULL)
|
|
#define _PyHASH_XXPRIME_5 ((Py_uhash_t)2870177450012600261ULL)
|
|
#define _PyHASH_XXROTATE(x) ((x << 31) | (x >> 33)) /* Rotate left 31 bits */
|
|
#else
|
|
#define _PyHASH_XXPRIME_1 ((Py_uhash_t)2654435761UL)
|
|
#define _PyHASH_XXPRIME_2 ((Py_uhash_t)2246822519UL)
|
|
#define _PyHASH_XXPRIME_5 ((Py_uhash_t)374761393UL)
|
|
#define _PyHASH_XXROTATE(x) ((x << 13) | (x >> 19)) /* Rotate left 13 bits */
|
|
#endif
|
|
|
|
/* Tests have shown that it's not worth to cache the hash value, see
|
|
https://bugs.python.org/issue9685 */
|
|
static Py_hash_t
|
|
tuplehash(PyTupleObject *v)
|
|
{
|
|
Py_ssize_t i, len = Py_SIZE(v);
|
|
PyObject **item = v->ob_item;
|
|
|
|
Py_uhash_t acc = _PyHASH_XXPRIME_5;
|
|
for (i = 0; i < len; i++) {
|
|
Py_uhash_t lane = PyObject_Hash(item[i]);
|
|
if (lane == (Py_uhash_t)-1) {
|
|
return -1;
|
|
}
|
|
acc += lane * _PyHASH_XXPRIME_2;
|
|
acc = _PyHASH_XXROTATE(acc);
|
|
acc *= _PyHASH_XXPRIME_1;
|
|
}
|
|
|
|
/* Add input length, mangled to keep the historical value of hash(()). */
|
|
acc += len ^ (_PyHASH_XXPRIME_5 ^ 3527539UL);
|
|
|
|
if (acc == (Py_uhash_t)-1) {
|
|
return 1546275796;
|
|
}
|
|
return acc;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
tuplelength(PyTupleObject *a)
|
|
{
|
|
return Py_SIZE(a);
|
|
}
|
|
|
|
static int
|
|
tuplecontains(PyTupleObject *a, PyObject *el)
|
|
{
|
|
Py_ssize_t i;
|
|
int cmp;
|
|
|
|
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
|
|
cmp = PyObject_RichCompareBool(PyTuple_GET_ITEM(a, i), el, Py_EQ);
|
|
return cmp;
|
|
}
|
|
|
|
static PyObject *
|
|
tupleitem(PyTupleObject *a, Py_ssize_t i)
|
|
{
|
|
if (i < 0 || i >= Py_SIZE(a)) {
|
|
PyErr_SetString(PyExc_IndexError, "tuple index out of range");
|
|
return NULL;
|
|
}
|
|
Py_INCREF(a->ob_item[i]);
|
|
return a->ob_item[i];
|
|
}
|
|
|
|
PyObject *
|
|
_PyTuple_FromArray(PyObject *const *src, Py_ssize_t n)
|
|
{
|
|
if (n == 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
|
|
PyTupleObject *tuple = tuple_alloc(n);
|
|
if (tuple == NULL) {
|
|
return NULL;
|
|
}
|
|
PyObject **dst = tuple->ob_item;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
PyObject *item = src[i];
|
|
Py_INCREF(item);
|
|
dst[i] = item;
|
|
}
|
|
_PyObject_GC_TRACK(tuple);
|
|
return (PyObject *)tuple;
|
|
}
|
|
|
|
PyObject *
|
|
_PyTuple_FromArraySteal(PyObject *const *src, Py_ssize_t n)
|
|
{
|
|
if (n == 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
PyTupleObject *tuple = tuple_alloc(n);
|
|
if (tuple == NULL) {
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
Py_DECREF(src[i]);
|
|
}
|
|
return NULL;
|
|
}
|
|
PyObject **dst = tuple->ob_item;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
PyObject *item = src[i];
|
|
dst[i] = item;
|
|
}
|
|
_PyObject_GC_TRACK(tuple);
|
|
return (PyObject *)tuple;
|
|
}
|
|
|
|
static PyObject *
|
|
tupleslice(PyTupleObject *a, Py_ssize_t ilow,
|
|
Py_ssize_t ihigh)
|
|
{
|
|
if (ilow < 0)
|
|
ilow = 0;
|
|
if (ihigh > Py_SIZE(a))
|
|
ihigh = Py_SIZE(a);
|
|
if (ihigh < ilow)
|
|
ihigh = ilow;
|
|
if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) {
|
|
Py_INCREF(a);
|
|
return (PyObject *)a;
|
|
}
|
|
return _PyTuple_FromArray(a->ob_item + ilow, ihigh - ilow);
|
|
}
|
|
|
|
PyObject *
|
|
PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j)
|
|
{
|
|
if (op == NULL || !PyTuple_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return tupleslice((PyTupleObject *)op, i, j);
|
|
}
|
|
|
|
static PyObject *
|
|
tupleconcat(PyTupleObject *a, PyObject *bb)
|
|
{
|
|
Py_ssize_t size;
|
|
Py_ssize_t i;
|
|
PyObject **src, **dest;
|
|
PyTupleObject *np;
|
|
if (Py_SIZE(a) == 0 && PyTuple_CheckExact(bb)) {
|
|
Py_INCREF(bb);
|
|
return bb;
|
|
}
|
|
if (!PyTuple_Check(bb)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"can only concatenate tuple (not \"%.200s\") to tuple",
|
|
Py_TYPE(bb)->tp_name);
|
|
return NULL;
|
|
}
|
|
PyTupleObject *b = (PyTupleObject *)bb;
|
|
|
|
if (Py_SIZE(b) == 0 && PyTuple_CheckExact(a)) {
|
|
Py_INCREF(a);
|
|
return (PyObject *)a;
|
|
}
|
|
assert((size_t)Py_SIZE(a) + (size_t)Py_SIZE(b) < PY_SSIZE_T_MAX);
|
|
size = Py_SIZE(a) + Py_SIZE(b);
|
|
if (size == 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
|
|
np = tuple_alloc(size);
|
|
if (np == NULL) {
|
|
return NULL;
|
|
}
|
|
src = a->ob_item;
|
|
dest = np->ob_item;
|
|
for (i = 0; i < Py_SIZE(a); i++) {
|
|
PyObject *v = src[i];
|
|
Py_INCREF(v);
|
|
dest[i] = v;
|
|
}
|
|
src = b->ob_item;
|
|
dest = np->ob_item + Py_SIZE(a);
|
|
for (i = 0; i < Py_SIZE(b); i++) {
|
|
PyObject *v = src[i];
|
|
Py_INCREF(v);
|
|
dest[i] = v;
|
|
}
|
|
_PyObject_GC_TRACK(np);
|
|
return (PyObject *)np;
|
|
}
|
|
|
|
static PyObject *
|
|
tuplerepeat(PyTupleObject *a, Py_ssize_t n)
|
|
{
|
|
const Py_ssize_t input_size = Py_SIZE(a);
|
|
if (input_size == 0 || n == 1) {
|
|
if (PyTuple_CheckExact(a)) {
|
|
/* Since tuples are immutable, we can return a shared
|
|
copy in this case */
|
|
Py_INCREF(a);
|
|
return (PyObject *)a;
|
|
}
|
|
}
|
|
if (input_size == 0 || n <= 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
assert(n>0);
|
|
|
|
if (input_size > PY_SSIZE_T_MAX / n)
|
|
return PyErr_NoMemory();
|
|
Py_ssize_t output_size = input_size * n;
|
|
|
|
PyTupleObject *np = tuple_alloc(output_size);
|
|
if (np == NULL)
|
|
return NULL;
|
|
|
|
PyObject **dest = np->ob_item;
|
|
if (input_size == 1) {
|
|
PyObject *elem = a->ob_item[0];
|
|
_Py_RefcntAdd(elem, n);
|
|
PyObject **dest_end = dest + output_size;
|
|
while (dest < dest_end) {
|
|
*dest++ = elem;
|
|
}
|
|
}
|
|
else {
|
|
PyObject **src = a->ob_item;
|
|
PyObject **src_end = src + input_size;
|
|
while (src < src_end) {
|
|
_Py_RefcntAdd(*src, n);
|
|
*dest++ = *src++;
|
|
}
|
|
|
|
_Py_memory_repeat((char *)np->ob_item, sizeof(PyObject *)*output_size,
|
|
sizeof(PyObject *)*input_size);
|
|
}
|
|
_PyObject_GC_TRACK(np);
|
|
return (PyObject *) np;
|
|
}
|
|
|
|
/*[clinic input]
|
|
tuple.index
|
|
|
|
value: object
|
|
start: slice_index(accept={int}) = 0
|
|
stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize
|
|
/
|
|
|
|
Return first index of value.
|
|
|
|
Raises ValueError if the value is not present.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
tuple_index_impl(PyTupleObject *self, PyObject *value, Py_ssize_t start,
|
|
Py_ssize_t stop)
|
|
/*[clinic end generated code: output=07b6f9f3cb5c33eb input=fb39e9874a21fe3f]*/
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
if (start < 0) {
|
|
start += Py_SIZE(self);
|
|
if (start < 0)
|
|
start = 0;
|
|
}
|
|
if (stop < 0) {
|
|
stop += Py_SIZE(self);
|
|
}
|
|
else if (stop > Py_SIZE(self)) {
|
|
stop = Py_SIZE(self);
|
|
}
|
|
for (i = start; i < stop; i++) {
|
|
int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ);
|
|
if (cmp > 0)
|
|
return PyLong_FromSsize_t(i);
|
|
else if (cmp < 0)
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "tuple.index(x): x not in tuple");
|
|
return NULL;
|
|
}
|
|
|
|
/*[clinic input]
|
|
tuple.count
|
|
|
|
value: object
|
|
/
|
|
|
|
Return number of occurrences of value.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
tuple_count(PyTupleObject *self, PyObject *value)
|
|
/*[clinic end generated code: output=aa927affc5a97605 input=531721aff65bd772]*/
|
|
{
|
|
Py_ssize_t count = 0;
|
|
Py_ssize_t i;
|
|
|
|
for (i = 0; i < Py_SIZE(self); i++) {
|
|
int cmp = PyObject_RichCompareBool(self->ob_item[i], value, Py_EQ);
|
|
if (cmp > 0)
|
|
count++;
|
|
else if (cmp < 0)
|
|
return NULL;
|
|
}
|
|
return PyLong_FromSsize_t(count);
|
|
}
|
|
|
|
static int
|
|
tupletraverse(PyTupleObject *o, visitproc visit, void *arg)
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
for (i = Py_SIZE(o); --i >= 0; )
|
|
Py_VISIT(o->ob_item[i]);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
tuplerichcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyTupleObject *vt, *wt;
|
|
Py_ssize_t i;
|
|
Py_ssize_t vlen, wlen;
|
|
|
|
if (!PyTuple_Check(v) || !PyTuple_Check(w))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
vt = (PyTupleObject *)v;
|
|
wt = (PyTupleObject *)w;
|
|
|
|
vlen = Py_SIZE(vt);
|
|
wlen = Py_SIZE(wt);
|
|
|
|
/* Note: the corresponding code for lists has an "early out" test
|
|
* here when op is EQ or NE and the lengths differ. That pays there,
|
|
* but Tim was unable to find any real code where EQ/NE tuple
|
|
* compares don't have the same length, so testing for it here would
|
|
* have cost without benefit.
|
|
*/
|
|
|
|
/* Search for the first index where items are different.
|
|
* Note that because tuples are immutable, it's safe to reuse
|
|
* vlen and wlen across the comparison calls.
|
|
*/
|
|
for (i = 0; i < vlen && i < wlen; i++) {
|
|
int k = PyObject_RichCompareBool(vt->ob_item[i],
|
|
wt->ob_item[i], Py_EQ);
|
|
if (k < 0)
|
|
return NULL;
|
|
if (!k)
|
|
break;
|
|
}
|
|
|
|
if (i >= vlen || i >= wlen) {
|
|
/* No more items to compare -- compare sizes */
|
|
Py_RETURN_RICHCOMPARE(vlen, wlen, op);
|
|
}
|
|
|
|
/* We have an item that differs -- shortcuts for EQ/NE */
|
|
if (op == Py_EQ) {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
if (op == Py_NE) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
/* Compare the final item again using the proper operator */
|
|
return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op);
|
|
}
|
|
|
|
static PyObject *
|
|
tuple_subtype_new(PyTypeObject *type, PyObject *iterable);
|
|
|
|
/*[clinic input]
|
|
@classmethod
|
|
tuple.__new__ as tuple_new
|
|
iterable: object(c_default="NULL") = ()
|
|
/
|
|
|
|
Built-in immutable sequence.
|
|
|
|
If no argument is given, the constructor returns an empty tuple.
|
|
If iterable is specified the tuple is initialized from iterable's items.
|
|
|
|
If the argument is a tuple, the return value is the same object.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
tuple_new_impl(PyTypeObject *type, PyObject *iterable)
|
|
/*[clinic end generated code: output=4546d9f0d469bce7 input=86963bcde633b5a2]*/
|
|
{
|
|
if (type != &PyTuple_Type)
|
|
return tuple_subtype_new(type, iterable);
|
|
|
|
if (iterable == NULL) {
|
|
return tuple_get_empty();
|
|
}
|
|
else {
|
|
return PySequence_Tuple(iterable);
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
tuple_vectorcall(PyObject *type, PyObject * const*args,
|
|
size_t nargsf, PyObject *kwnames)
|
|
{
|
|
if (!_PyArg_NoKwnames("tuple", kwnames)) {
|
|
return NULL;
|
|
}
|
|
|
|
Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
|
|
if (!_PyArg_CheckPositional("tuple", nargs, 0, 1)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (nargs) {
|
|
return tuple_new_impl(_PyType_CAST(type), args[0]);
|
|
}
|
|
else {
|
|
return tuple_get_empty();
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
tuple_subtype_new(PyTypeObject *type, PyObject *iterable)
|
|
{
|
|
PyObject *tmp, *newobj, *item;
|
|
Py_ssize_t i, n;
|
|
|
|
assert(PyType_IsSubtype(type, &PyTuple_Type));
|
|
// tuple subclasses must implement the GC protocol
|
|
assert(_PyType_IS_GC(type));
|
|
|
|
tmp = tuple_new_impl(&PyTuple_Type, iterable);
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
assert(PyTuple_Check(tmp));
|
|
/* This may allocate an empty tuple that is not the global one. */
|
|
newobj = type->tp_alloc(type, n = PyTuple_GET_SIZE(tmp));
|
|
if (newobj == NULL) {
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
item = PyTuple_GET_ITEM(tmp, i);
|
|
Py_INCREF(item);
|
|
PyTuple_SET_ITEM(newobj, i, item);
|
|
}
|
|
Py_DECREF(tmp);
|
|
|
|
// Don't track if a subclass tp_alloc is PyType_GenericAlloc()
|
|
if (!_PyObject_GC_IS_TRACKED(newobj)) {
|
|
_PyObject_GC_TRACK(newobj);
|
|
}
|
|
return newobj;
|
|
}
|
|
|
|
static PySequenceMethods tuple_as_sequence = {
|
|
(lenfunc)tuplelength, /* sq_length */
|
|
(binaryfunc)tupleconcat, /* sq_concat */
|
|
(ssizeargfunc)tuplerepeat, /* sq_repeat */
|
|
(ssizeargfunc)tupleitem, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)tuplecontains, /* sq_contains */
|
|
};
|
|
|
|
static PyObject*
|
|
tuplesubscript(PyTupleObject* self, PyObject* item)
|
|
{
|
|
if (_PyIndex_Check(item)) {
|
|
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
|
|
if (i == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (i < 0)
|
|
i += PyTuple_GET_SIZE(self);
|
|
return tupleitem(self, i);
|
|
}
|
|
else if (PySlice_Check(item)) {
|
|
Py_ssize_t start, stop, step, slicelength, i;
|
|
size_t cur;
|
|
PyObject* it;
|
|
PyObject **src, **dest;
|
|
|
|
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
|
|
return NULL;
|
|
}
|
|
slicelength = PySlice_AdjustIndices(PyTuple_GET_SIZE(self), &start,
|
|
&stop, step);
|
|
|
|
if (slicelength <= 0) {
|
|
return tuple_get_empty();
|
|
}
|
|
else if (start == 0 && step == 1 &&
|
|
slicelength == PyTuple_GET_SIZE(self) &&
|
|
PyTuple_CheckExact(self)) {
|
|
Py_INCREF(self);
|
|
return (PyObject *)self;
|
|
}
|
|
else {
|
|
PyTupleObject* result = tuple_alloc(slicelength);
|
|
if (!result) return NULL;
|
|
|
|
src = self->ob_item;
|
|
dest = result->ob_item;
|
|
for (cur = start, i = 0; i < slicelength;
|
|
cur += step, i++) {
|
|
it = src[cur];
|
|
Py_INCREF(it);
|
|
dest[i] = it;
|
|
}
|
|
|
|
_PyObject_GC_TRACK(result);
|
|
return (PyObject *)result;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"tuple indices must be integers or slices, not %.200s",
|
|
Py_TYPE(item)->tp_name);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*[clinic input]
|
|
tuple.__getnewargs__
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
tuple___getnewargs___impl(PyTupleObject *self)
|
|
/*[clinic end generated code: output=25e06e3ee56027e2 input=1aeb4b286a21639a]*/
|
|
{
|
|
return Py_BuildValue("(N)", tupleslice(self, 0, Py_SIZE(self)));
|
|
}
|
|
|
|
static PyMethodDef tuple_methods[] = {
|
|
TUPLE___GETNEWARGS___METHODDEF
|
|
TUPLE_INDEX_METHODDEF
|
|
TUPLE_COUNT_METHODDEF
|
|
{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyMappingMethods tuple_as_mapping = {
|
|
(lenfunc)tuplelength,
|
|
(binaryfunc)tuplesubscript,
|
|
0
|
|
};
|
|
|
|
static PyObject *tuple_iter(PyObject *seq);
|
|
|
|
PyTypeObject PyTuple_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"tuple",
|
|
sizeof(PyTupleObject) - sizeof(PyObject *),
|
|
sizeof(PyObject *),
|
|
(destructor)tupledealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
(reprfunc)tuplerepr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&tuple_as_sequence, /* tp_as_sequence */
|
|
&tuple_as_mapping, /* tp_as_mapping */
|
|
(hashfunc)tuplehash, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TUPLE_SUBCLASS |
|
|
_Py_TPFLAGS_MATCH_SELF | Py_TPFLAGS_SEQUENCE, /* tp_flags */
|
|
tuple_new__doc__, /* tp_doc */
|
|
(traverseproc)tupletraverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
tuplerichcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
tuple_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
tuple_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
tuple_new, /* tp_new */
|
|
PyObject_GC_Del, /* tp_free */
|
|
.tp_vectorcall = tuple_vectorcall,
|
|
};
|
|
|
|
/* The following function breaks the notion that tuples are immutable:
|
|
it changes the size of a tuple. We get away with this only if there
|
|
is only one module referencing the object. You can also think of it
|
|
as creating a new tuple object and destroying the old one, only more
|
|
efficiently. In any case, don't use this if the tuple may already be
|
|
known to some other part of the code. */
|
|
|
|
int
|
|
_PyTuple_Resize(PyObject **pv, Py_ssize_t newsize)
|
|
{
|
|
PyTupleObject *v;
|
|
PyTupleObject *sv;
|
|
Py_ssize_t i;
|
|
Py_ssize_t oldsize;
|
|
|
|
v = (PyTupleObject *) *pv;
|
|
if (v == NULL || !Py_IS_TYPE(v, &PyTuple_Type) ||
|
|
(Py_SIZE(v) != 0 && Py_REFCNT(v) != 1)) {
|
|
*pv = 0;
|
|
Py_XDECREF(v);
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
|
|
oldsize = Py_SIZE(v);
|
|
if (oldsize == newsize) {
|
|
return 0;
|
|
}
|
|
if (newsize == 0) {
|
|
Py_DECREF(v);
|
|
*pv = tuple_get_empty();
|
|
return 0;
|
|
}
|
|
if (oldsize == 0) {
|
|
#ifdef Py_DEBUG
|
|
assert(v == &_Py_SINGLETON(tuple_empty));
|
|
#endif
|
|
/* The empty tuple is statically allocated so we never
|
|
resize it in-place. */
|
|
Py_DECREF(v);
|
|
*pv = PyTuple_New(newsize);
|
|
return *pv == NULL ? -1 : 0;
|
|
}
|
|
|
|
/* XXX UNREF/NEWREF interface should be more symmetrical */
|
|
#ifdef Py_REF_DEBUG
|
|
_Py_RefTotal--;
|
|
#endif
|
|
if (_PyObject_GC_IS_TRACKED(v)) {
|
|
_PyObject_GC_UNTRACK(v);
|
|
}
|
|
#ifdef Py_TRACE_REFS
|
|
_Py_ForgetReference((PyObject *) v);
|
|
#endif
|
|
/* DECREF items deleted by shrinkage */
|
|
for (i = newsize; i < oldsize; i++) {
|
|
Py_CLEAR(v->ob_item[i]);
|
|
}
|
|
sv = PyObject_GC_Resize(PyTupleObject, v, newsize);
|
|
if (sv == NULL) {
|
|
*pv = NULL;
|
|
PyObject_GC_Del(v);
|
|
return -1;
|
|
}
|
|
_Py_NewReference((PyObject *) sv);
|
|
/* Zero out items added by growing */
|
|
if (newsize > oldsize)
|
|
memset(&sv->ob_item[oldsize], 0,
|
|
sizeof(*sv->ob_item) * (newsize - oldsize));
|
|
*pv = (PyObject *) sv;
|
|
_PyObject_GC_TRACK(sv);
|
|
return 0;
|
|
}
|
|
|
|
|
|
PyStatus
|
|
_PyTuple_InitTypes(PyInterpreterState *interp)
|
|
{
|
|
if (!_Py_IsMainInterpreter(interp)) {
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
if (PyType_Ready(&PyTuple_Type) < 0) {
|
|
return _PyStatus_ERR("Can't initialize tuple type");
|
|
}
|
|
|
|
if (PyType_Ready(&PyTupleIter_Type) < 0) {
|
|
return _PyStatus_ERR("Can't initialize tuple iterator type");
|
|
}
|
|
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
static void maybe_freelist_clear(PyInterpreterState *, int);
|
|
|
|
void
|
|
_PyTuple_Fini(PyInterpreterState *interp)
|
|
{
|
|
maybe_freelist_clear(interp, 1);
|
|
}
|
|
|
|
void
|
|
_PyTuple_ClearFreeList(PyInterpreterState *interp)
|
|
{
|
|
maybe_freelist_clear(interp, 0);
|
|
}
|
|
|
|
/*********************** Tuple Iterator **************************/
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
Py_ssize_t it_index;
|
|
PyTupleObject *it_seq; /* Set to NULL when iterator is exhausted */
|
|
} tupleiterobject;
|
|
|
|
static void
|
|
tupleiter_dealloc(tupleiterobject *it)
|
|
{
|
|
_PyObject_GC_UNTRACK(it);
|
|
Py_XDECREF(it->it_seq);
|
|
PyObject_GC_Del(it);
|
|
}
|
|
|
|
static int
|
|
tupleiter_traverse(tupleiterobject *it, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(it->it_seq);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
tupleiter_next(tupleiterobject *it)
|
|
{
|
|
PyTupleObject *seq;
|
|
PyObject *item;
|
|
|
|
assert(it != NULL);
|
|
seq = it->it_seq;
|
|
if (seq == NULL)
|
|
return NULL;
|
|
assert(PyTuple_Check(seq));
|
|
|
|
if (it->it_index < PyTuple_GET_SIZE(seq)) {
|
|
item = PyTuple_GET_ITEM(seq, it->it_index);
|
|
++it->it_index;
|
|
Py_INCREF(item);
|
|
return item;
|
|
}
|
|
|
|
it->it_seq = NULL;
|
|
Py_DECREF(seq);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
tupleiter_len(tupleiterobject *it, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
Py_ssize_t len = 0;
|
|
if (it->it_seq)
|
|
len = PyTuple_GET_SIZE(it->it_seq) - it->it_index;
|
|
return PyLong_FromSsize_t(len);
|
|
}
|
|
|
|
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
|
|
|
|
static PyObject *
|
|
tupleiter_reduce(tupleiterobject *it, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
if (it->it_seq)
|
|
return Py_BuildValue("N(O)n", _PyEval_GetBuiltin(&_Py_ID(iter)),
|
|
it->it_seq, it->it_index);
|
|
else
|
|
return Py_BuildValue("N(())", _PyEval_GetBuiltin(&_Py_ID(iter)));
|
|
}
|
|
|
|
static PyObject *
|
|
tupleiter_setstate(tupleiterobject *it, PyObject *state)
|
|
{
|
|
Py_ssize_t index = PyLong_AsSsize_t(state);
|
|
if (index == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (it->it_seq != NULL) {
|
|
if (index < 0)
|
|
index = 0;
|
|
else if (index > PyTuple_GET_SIZE(it->it_seq))
|
|
index = PyTuple_GET_SIZE(it->it_seq); /* exhausted iterator */
|
|
it->it_index = index;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
|
|
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
|
|
|
|
static PyMethodDef tupleiter_methods[] = {
|
|
{"__length_hint__", (PyCFunction)tupleiter_len, METH_NOARGS, length_hint_doc},
|
|
{"__reduce__", (PyCFunction)tupleiter_reduce, METH_NOARGS, reduce_doc},
|
|
{"__setstate__", (PyCFunction)tupleiter_setstate, METH_O, setstate_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyTupleIter_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"tuple_iterator", /* tp_name */
|
|
sizeof(tupleiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)tupleiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)tupleiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)tupleiter_next, /* tp_iternext */
|
|
tupleiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
tuple_iter(PyObject *seq)
|
|
{
|
|
tupleiterobject *it;
|
|
|
|
if (!PyTuple_Check(seq)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
it = PyObject_GC_New(tupleiterobject, &PyTupleIter_Type);
|
|
if (it == NULL)
|
|
return NULL;
|
|
it->it_index = 0;
|
|
Py_INCREF(seq);
|
|
it->it_seq = (PyTupleObject *)seq;
|
|
_PyObject_GC_TRACK(it);
|
|
return (PyObject *)it;
|
|
}
|
|
|
|
|
|
/*************
|
|
* freelists *
|
|
*************/
|
|
|
|
#define STATE (interp->tuple)
|
|
#define FREELIST_FINALIZED (STATE.numfree[0] < 0)
|
|
|
|
static inline PyTupleObject *
|
|
maybe_freelist_pop(Py_ssize_t size)
|
|
{
|
|
#if PyTuple_NFREELISTS > 0
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
#ifdef Py_DEBUG
|
|
/* maybe_freelist_pop() must not be called after maybe_freelist_fini(). */
|
|
assert(!FREELIST_FINALIZED);
|
|
#endif
|
|
if (size == 0) {
|
|
return NULL;
|
|
}
|
|
assert(size > 0);
|
|
if (size < PyTuple_MAXSAVESIZE) {
|
|
Py_ssize_t index = size - 1;
|
|
PyTupleObject *op = STATE.free_list[index];
|
|
if (op != NULL) {
|
|
/* op is the head of a linked list, with the first item
|
|
pointing to the next node. Here we pop off the old head. */
|
|
STATE.free_list[index] = (PyTupleObject *) op->ob_item[0];
|
|
STATE.numfree[index]--;
|
|
/* Inlined _PyObject_InitVar() without _PyType_HasFeature() test */
|
|
#ifdef Py_TRACE_REFS
|
|
/* maybe_freelist_push() ensures these were already set. */
|
|
// XXX Can we drop these? See commit 68055ce6fe01 (GvR, Dec 1998).
|
|
Py_SET_SIZE(op, size);
|
|
Py_SET_TYPE(op, &PyTuple_Type);
|
|
#endif
|
|
_Py_NewReference((PyObject *)op);
|
|
/* END inlined _PyObject_InitVar() */
|
|
OBJECT_STAT_INC(from_freelist);
|
|
return op;
|
|
}
|
|
}
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
static inline int
|
|
maybe_freelist_push(PyTupleObject *op)
|
|
{
|
|
#if PyTuple_NFREELISTS > 0
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
#ifdef Py_DEBUG
|
|
/* maybe_freelist_push() must not be called after maybe_freelist_fini(). */
|
|
assert(!FREELIST_FINALIZED);
|
|
#endif
|
|
if (Py_SIZE(op) == 0) {
|
|
return 0;
|
|
}
|
|
Py_ssize_t index = Py_SIZE(op) - 1;
|
|
if (index < PyTuple_NFREELISTS
|
|
&& STATE.numfree[index] < PyTuple_MAXFREELIST
|
|
&& Py_IS_TYPE(op, &PyTuple_Type))
|
|
{
|
|
/* op is the head of a linked list, with the first item
|
|
pointing to the next node. Here we set op as the new head. */
|
|
op->ob_item[0] = (PyObject *) STATE.free_list[index];
|
|
STATE.free_list[index] = op;
|
|
STATE.numfree[index]++;
|
|
OBJECT_STAT_INC(to_freelist);
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
maybe_freelist_clear(PyInterpreterState *interp, int fini)
|
|
{
|
|
#if PyTuple_NFREELISTS > 0
|
|
for (Py_ssize_t i = 0; i < PyTuple_NFREELISTS; i++) {
|
|
PyTupleObject *p = STATE.free_list[i];
|
|
STATE.free_list[i] = NULL;
|
|
STATE.numfree[i] = fini ? -1 : 0;
|
|
while (p) {
|
|
PyTupleObject *q = p;
|
|
p = (PyTupleObject *)(p->ob_item[0]);
|
|
PyObject_GC_Del(q);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Print summary info about the state of the optimized allocator */
|
|
void
|
|
_PyTuple_DebugMallocStats(FILE *out)
|
|
{
|
|
#if PyTuple_NFREELISTS > 0
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
for (int i = 0; i < PyTuple_NFREELISTS; i++) {
|
|
int len = i + 1;
|
|
char buf[128];
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"free %d-sized PyTupleObject", len);
|
|
_PyDebugAllocatorStats(out, buf, STATE.numfree[i],
|
|
_PyObject_VAR_SIZE(&PyTuple_Type, len));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#undef STATE
|
|
#undef FREELIST_FINALIZED
|