mirror of
https://github.com/python/cpython
synced 2024-11-05 18:12:54 +00:00
0b7814e0b6
Use _PyDeadline_Init() and _PyDeadline_Get() in EnterNonRecursiveMutex() of thread_nt.h. _PyDeadline_Get() uses the monotonic clock which is now the same as the perf counter clock on all platforms. So this change does not cause any behavior change. It just reuses existing helper functions.
523 lines
12 KiB
C
523 lines
12 KiB
C
#include "pycore_interp.h" // _PyInterpreterState.threads.stacksize
|
|
#include "pycore_time.h" // _PyTime_AsMicroseconds()
|
|
|
|
/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
|
|
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
|
|
/* Eliminated some memory leaks, gsw@agere.com */
|
|
|
|
#include <windows.h>
|
|
#include <limits.h>
|
|
#ifdef HAVE_PROCESS_H
|
|
#include <process.h>
|
|
#endif
|
|
|
|
/* options */
|
|
#ifndef _PY_USE_CV_LOCKS
|
|
#define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */
|
|
#endif
|
|
|
|
/* Now, define a non-recursive mutex using either condition variables
|
|
* and critical sections (fast) or using operating system mutexes
|
|
* (slow)
|
|
*/
|
|
|
|
#if _PY_USE_CV_LOCKS
|
|
|
|
#include "condvar.h"
|
|
|
|
typedef struct _NRMUTEX
|
|
{
|
|
PyMUTEX_T cs;
|
|
PyCOND_T cv;
|
|
int locked;
|
|
} NRMUTEX;
|
|
typedef NRMUTEX *PNRMUTEX;
|
|
|
|
static PNRMUTEX
|
|
AllocNonRecursiveMutex(void)
|
|
{
|
|
PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
|
|
if (!m)
|
|
return NULL;
|
|
if (PyCOND_INIT(&m->cv))
|
|
goto fail;
|
|
if (PyMUTEX_INIT(&m->cs)) {
|
|
PyCOND_FINI(&m->cv);
|
|
goto fail;
|
|
}
|
|
m->locked = 0;
|
|
return m;
|
|
fail:
|
|
PyMem_RawFree(m);
|
|
return NULL;
|
|
}
|
|
|
|
static VOID
|
|
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
if (mutex) {
|
|
PyCOND_FINI(&mutex->cv);
|
|
PyMUTEX_FINI(&mutex->cs);
|
|
PyMem_RawFree(mutex);
|
|
}
|
|
}
|
|
|
|
static DWORD
|
|
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
|
{
|
|
DWORD result = WAIT_OBJECT_0;
|
|
if (PyMUTEX_LOCK(&mutex->cs))
|
|
return WAIT_FAILED;
|
|
if (milliseconds == INFINITE) {
|
|
while (mutex->locked) {
|
|
if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
|
|
result = WAIT_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
} else if (milliseconds != 0) {
|
|
/* wait at least until the deadline */
|
|
PyTime_t timeout = (PyTime_t)milliseconds * (1000 * 1000);
|
|
PyTime_t deadline = _PyDeadline_Init(timeout);
|
|
while (mutex->locked) {
|
|
PyTime_t microseconds = _PyTime_AsMicroseconds(timeout,
|
|
_PyTime_ROUND_TIMEOUT);
|
|
if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, microseconds) < 0) {
|
|
result = WAIT_FAILED;
|
|
break;
|
|
}
|
|
|
|
timeout = _PyDeadline_Get(deadline);
|
|
if (timeout <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!mutex->locked) {
|
|
mutex->locked = 1;
|
|
result = WAIT_OBJECT_0;
|
|
} else if (result == WAIT_OBJECT_0)
|
|
result = WAIT_TIMEOUT;
|
|
/* else, it is WAIT_FAILED */
|
|
PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
|
|
return result;
|
|
}
|
|
|
|
static BOOL
|
|
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
BOOL result;
|
|
if (PyMUTEX_LOCK(&mutex->cs))
|
|
return FALSE;
|
|
mutex->locked = 0;
|
|
/* condvar APIs return 0 on success. We need to return TRUE on success. */
|
|
result = !PyCOND_SIGNAL(&mutex->cv);
|
|
PyMUTEX_UNLOCK(&mutex->cs);
|
|
return result;
|
|
}
|
|
|
|
#else /* if ! _PY_USE_CV_LOCKS */
|
|
|
|
/* NR-locks based on a kernel mutex */
|
|
#define PNRMUTEX HANDLE
|
|
|
|
static PNRMUTEX
|
|
AllocNonRecursiveMutex(void)
|
|
{
|
|
return CreateSemaphore(NULL, 1, 1, NULL);
|
|
}
|
|
|
|
static VOID
|
|
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
/* No in-use check */
|
|
CloseHandle(mutex);
|
|
}
|
|
|
|
static DWORD
|
|
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
|
{
|
|
return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
|
|
}
|
|
|
|
static BOOL
|
|
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
return ReleaseSemaphore(mutex, 1, NULL);
|
|
}
|
|
#endif /* _PY_USE_CV_LOCKS */
|
|
|
|
unsigned long PyThread_get_thread_ident(void);
|
|
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
unsigned long PyThread_get_thread_native_id(void);
|
|
#endif
|
|
|
|
/*
|
|
* Initialization for the current runtime.
|
|
*/
|
|
static void
|
|
PyThread__init_thread(void)
|
|
{
|
|
// Initialization of the C package should not be needed.
|
|
}
|
|
|
|
/*
|
|
* Thread support.
|
|
*/
|
|
|
|
typedef struct {
|
|
void (*func)(void*);
|
|
void *arg;
|
|
} callobj;
|
|
|
|
/* thunker to call adapt between the function type used by the system's
|
|
thread start function and the internally used one. */
|
|
static unsigned __stdcall
|
|
bootstrap(void *call)
|
|
{
|
|
callobj *obj = (callobj*)call;
|
|
void (*func)(void*) = obj->func;
|
|
void *arg = obj->arg;
|
|
HeapFree(GetProcessHeap(), 0, obj);
|
|
func(arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyThread_start_joinable_thread(void (*func)(void *), void *arg,
|
|
PyThread_ident_t* ident, PyThread_handle_t* handle) {
|
|
HANDLE hThread;
|
|
unsigned threadID;
|
|
callobj *obj;
|
|
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
|
|
if (!obj)
|
|
return -1;
|
|
obj->func = func;
|
|
obj->arg = arg;
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0;
|
|
hThread = (HANDLE)_beginthreadex(0,
|
|
Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int),
|
|
bootstrap, obj,
|
|
0, &threadID);
|
|
if (hThread == 0) {
|
|
/* I've seen errno == EAGAIN here, which means "there are
|
|
* too many threads".
|
|
*/
|
|
HeapFree(GetProcessHeap(), 0, obj);
|
|
return -1;
|
|
}
|
|
*ident = threadID;
|
|
// The cast is safe since HANDLE is pointer-sized
|
|
*handle = (PyThread_handle_t) hThread;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long
|
|
PyThread_start_new_thread(void (*func)(void *), void *arg) {
|
|
PyThread_handle_t handle;
|
|
PyThread_ident_t ident;
|
|
if (PyThread_start_joinable_thread(func, arg, &ident, &handle)) {
|
|
return PYTHREAD_INVALID_THREAD_ID;
|
|
}
|
|
CloseHandle((HANDLE) handle);
|
|
// The cast is safe since the ident is really an unsigned int
|
|
return (unsigned long) ident;
|
|
}
|
|
|
|
int
|
|
PyThread_join_thread(PyThread_handle_t handle) {
|
|
HANDLE hThread = (HANDLE) handle;
|
|
int errored = (WaitForSingleObject(hThread, INFINITE) != WAIT_OBJECT_0);
|
|
CloseHandle(hThread);
|
|
return errored;
|
|
}
|
|
|
|
int
|
|
PyThread_detach_thread(PyThread_handle_t handle) {
|
|
HANDLE hThread = (HANDLE) handle;
|
|
return (CloseHandle(hThread) == 0);
|
|
}
|
|
|
|
/*
|
|
* Return the thread Id instead of a handle. The Id is said to uniquely identify the
|
|
* thread in the system
|
|
*/
|
|
PyThread_ident_t
|
|
PyThread_get_thread_ident_ex(void)
|
|
{
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
return GetCurrentThreadId();
|
|
}
|
|
|
|
unsigned long
|
|
PyThread_get_thread_ident(void)
|
|
{
|
|
return (unsigned long) PyThread_get_thread_ident_ex();
|
|
}
|
|
|
|
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
/*
|
|
* Return the native Thread ID (TID) of the calling thread.
|
|
* The native ID of a thread is valid and guaranteed to be unique system-wide
|
|
* from the time the thread is created until the thread has been terminated.
|
|
*/
|
|
unsigned long
|
|
PyThread_get_thread_native_id(void)
|
|
{
|
|
if (!initialized) {
|
|
PyThread_init_thread();
|
|
}
|
|
|
|
DWORD native_id;
|
|
native_id = GetCurrentThreadId();
|
|
return (unsigned long) native_id;
|
|
}
|
|
#endif
|
|
|
|
void _Py_NO_RETURN
|
|
PyThread_exit_thread(void)
|
|
{
|
|
if (!initialized)
|
|
exit(0);
|
|
_endthreadex(0);
|
|
}
|
|
|
|
/*
|
|
* Lock support. It has to be implemented as semaphores.
|
|
* I [Dag] tried to implement it with mutex but I could find a way to
|
|
* tell whether a thread already own the lock or not.
|
|
*/
|
|
PyThread_type_lock
|
|
PyThread_allocate_lock(void)
|
|
{
|
|
PNRMUTEX mutex;
|
|
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
mutex = AllocNonRecursiveMutex() ;
|
|
|
|
PyThread_type_lock aLock = (PyThread_type_lock) mutex;
|
|
assert(aLock);
|
|
|
|
return aLock;
|
|
}
|
|
|
|
void
|
|
PyThread_free_lock(PyThread_type_lock aLock)
|
|
{
|
|
FreeNonRecursiveMutex(aLock) ;
|
|
}
|
|
|
|
// WaitForSingleObject() accepts timeout in milliseconds in the range
|
|
// [0; 0xFFFFFFFE] (DWORD type). INFINITE value (0xFFFFFFFF) means no
|
|
// timeout. 0xFFFFFFFE milliseconds is around 49.7 days.
|
|
const DWORD TIMEOUT_MS_MAX = 0xFFFFFFFE;
|
|
|
|
/*
|
|
* Return 1 on success if the lock was acquired
|
|
*
|
|
* and 0 if the lock was not acquired. This means a 0 is returned
|
|
* if the lock has already been acquired by this thread!
|
|
*/
|
|
PyLockStatus
|
|
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
|
|
PY_TIMEOUT_T microseconds, int intr_flag)
|
|
{
|
|
assert(aLock);
|
|
|
|
/* Fow now, intr_flag does nothing on Windows, and lock acquires are
|
|
* uninterruptible. */
|
|
PyLockStatus success;
|
|
PY_TIMEOUT_T milliseconds;
|
|
|
|
if (microseconds >= 0) {
|
|
milliseconds = microseconds / 1000;
|
|
// Round milliseconds away from zero
|
|
if (microseconds % 1000 > 0) {
|
|
milliseconds++;
|
|
}
|
|
if (milliseconds > (PY_TIMEOUT_T)TIMEOUT_MS_MAX) {
|
|
// bpo-41710: PyThread_acquire_lock_timed() cannot report timeout
|
|
// overflow to the caller, so clamp the timeout to
|
|
// [0, TIMEOUT_MS_MAX] milliseconds.
|
|
//
|
|
// _thread.Lock.acquire() and _thread.RLock.acquire() raise an
|
|
// OverflowError if microseconds is greater than PY_TIMEOUT_MAX.
|
|
milliseconds = TIMEOUT_MS_MAX;
|
|
}
|
|
assert(milliseconds != INFINITE);
|
|
}
|
|
else {
|
|
milliseconds = INFINITE;
|
|
}
|
|
|
|
if (EnterNonRecursiveMutex((PNRMUTEX)aLock,
|
|
(DWORD)milliseconds) == WAIT_OBJECT_0) {
|
|
success = PY_LOCK_ACQUIRED;
|
|
}
|
|
else {
|
|
success = PY_LOCK_FAILURE;
|
|
}
|
|
|
|
return success;
|
|
}
|
|
int
|
|
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
|
|
{
|
|
return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
|
|
}
|
|
|
|
void
|
|
PyThread_release_lock(PyThread_type_lock aLock)
|
|
{
|
|
assert(aLock);
|
|
(void)LeaveNonRecursiveMutex((PNRMUTEX) aLock);
|
|
}
|
|
|
|
/* minimum/maximum thread stack sizes supported */
|
|
#define THREAD_MIN_STACKSIZE 0x8000 /* 32 KiB */
|
|
#define THREAD_MAX_STACKSIZE 0x10000000 /* 256 MiB */
|
|
|
|
/* set the thread stack size.
|
|
* Return 0 if size is valid, -1 otherwise.
|
|
*/
|
|
static int
|
|
_pythread_nt_set_stacksize(size_t size)
|
|
{
|
|
/* set to default */
|
|
if (size == 0) {
|
|
_PyInterpreterState_GET()->threads.stacksize = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* valid range? */
|
|
if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
|
|
_PyInterpreterState_GET()->threads.stacksize = size;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)
|
|
|
|
|
|
/* Thread Local Storage (TLS) API
|
|
|
|
This API is DEPRECATED since Python 3.7. See PEP 539 for details.
|
|
*/
|
|
|
|
int
|
|
PyThread_create_key(void)
|
|
{
|
|
DWORD result = TlsAlloc();
|
|
if (result == TLS_OUT_OF_INDEXES)
|
|
return -1;
|
|
return (int)result;
|
|
}
|
|
|
|
void
|
|
PyThread_delete_key(int key)
|
|
{
|
|
TlsFree(key);
|
|
}
|
|
|
|
int
|
|
PyThread_set_key_value(int key, void *value)
|
|
{
|
|
BOOL ok = TlsSetValue(key, value);
|
|
return ok ? 0 : -1;
|
|
}
|
|
|
|
void *
|
|
PyThread_get_key_value(int key)
|
|
{
|
|
return TlsGetValue(key);
|
|
}
|
|
|
|
void
|
|
PyThread_delete_key_value(int key)
|
|
{
|
|
/* NULL is used as "key missing", and it is also the default
|
|
* given by TlsGetValue() if nothing has been set yet.
|
|
*/
|
|
TlsSetValue(key, NULL);
|
|
}
|
|
|
|
|
|
/* reinitialization of TLS is not necessary after fork when using
|
|
* the native TLS functions. And forking isn't supported on Windows either.
|
|
*/
|
|
void
|
|
PyThread_ReInitTLS(void)
|
|
{
|
|
}
|
|
|
|
|
|
/* Thread Specific Storage (TSS) API
|
|
|
|
Platform-specific components of TSS API implementation.
|
|
*/
|
|
|
|
int
|
|
PyThread_tss_create(Py_tss_t *key)
|
|
{
|
|
assert(key != NULL);
|
|
/* If the key has been created, function is silently skipped. */
|
|
if (key->_is_initialized) {
|
|
return 0;
|
|
}
|
|
|
|
DWORD result = TlsAlloc();
|
|
if (result == TLS_OUT_OF_INDEXES) {
|
|
return -1;
|
|
}
|
|
/* In Windows, platform-specific key type is DWORD. */
|
|
key->_key = result;
|
|
key->_is_initialized = 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
PyThread_tss_delete(Py_tss_t *key)
|
|
{
|
|
assert(key != NULL);
|
|
/* If the key has not been created, function is silently skipped. */
|
|
if (!key->_is_initialized) {
|
|
return;
|
|
}
|
|
|
|
TlsFree(key->_key);
|
|
key->_key = TLS_OUT_OF_INDEXES;
|
|
key->_is_initialized = 0;
|
|
}
|
|
|
|
int
|
|
PyThread_tss_set(Py_tss_t *key, void *value)
|
|
{
|
|
assert(key != NULL);
|
|
BOOL ok = TlsSetValue(key->_key, value);
|
|
return ok ? 0 : -1;
|
|
}
|
|
|
|
void *
|
|
PyThread_tss_get(Py_tss_t *key)
|
|
{
|
|
assert(key != NULL);
|
|
int err = GetLastError();
|
|
void *r = TlsGetValue(key->_key);
|
|
if (r || !GetLastError()) {
|
|
SetLastError(err);
|
|
}
|
|
return r;
|
|
}
|