cpython/Include/internal/pycore_code.h

504 lines
14 KiB
C

#ifndef Py_INTERNAL_CODE_H
#define Py_INTERNAL_CODE_H
#ifdef __cplusplus
extern "C" {
#endif
/* PEP 659
* Specialization and quickening structs and helper functions
*/
// Inline caches. If you change the number of cache entries for an instruction,
// you must *also* update the number of cache entries in Lib/opcode.py and bump
// the magic number in Lib/importlib/_bootstrap_external.py!
#define CACHE_ENTRIES(cache) (sizeof(cache)/sizeof(_Py_CODEUNIT))
typedef struct {
_Py_CODEUNIT counter;
_Py_CODEUNIT index;
_Py_CODEUNIT module_keys_version[2];
_Py_CODEUNIT builtin_keys_version;
} _PyLoadGlobalCache;
#define INLINE_CACHE_ENTRIES_LOAD_GLOBAL CACHE_ENTRIES(_PyLoadGlobalCache)
typedef struct {
_Py_CODEUNIT counter;
} _PyBinaryOpCache;
#define INLINE_CACHE_ENTRIES_BINARY_OP CACHE_ENTRIES(_PyBinaryOpCache)
typedef struct {
_Py_CODEUNIT counter;
} _PyUnpackSequenceCache;
#define INLINE_CACHE_ENTRIES_UNPACK_SEQUENCE \
CACHE_ENTRIES(_PyUnpackSequenceCache)
typedef struct {
_Py_CODEUNIT counter;
_Py_CODEUNIT mask;
} _PyCompareOpCache;
#define INLINE_CACHE_ENTRIES_COMPARE_OP CACHE_ENTRIES(_PyCompareOpCache)
typedef struct {
_Py_CODEUNIT counter;
_Py_CODEUNIT type_version[2];
_Py_CODEUNIT func_version;
} _PyBinarySubscrCache;
#define INLINE_CACHE_ENTRIES_BINARY_SUBSCR CACHE_ENTRIES(_PyBinarySubscrCache)
typedef struct {
_Py_CODEUNIT counter;
_Py_CODEUNIT version[2];
_Py_CODEUNIT index;
} _PyAttrCache;
typedef struct {
_Py_CODEUNIT counter;
_Py_CODEUNIT type_version[2];
_Py_CODEUNIT keys_version[2];
_Py_CODEUNIT descr[4];
} _PyLoadMethodCache;
// MUST be the max(_PyAttrCache, _PyLoadMethodCache)
#define INLINE_CACHE_ENTRIES_LOAD_ATTR CACHE_ENTRIES(_PyLoadMethodCache)
#define INLINE_CACHE_ENTRIES_STORE_ATTR CACHE_ENTRIES(_PyAttrCache)
typedef struct {
_Py_CODEUNIT counter;
_Py_CODEUNIT func_version[2];
_Py_CODEUNIT min_args;
} _PyCallCache;
#define INLINE_CACHE_ENTRIES_CALL CACHE_ENTRIES(_PyCallCache)
typedef struct {
_Py_CODEUNIT counter;
} _PyStoreSubscrCache;
#define INLINE_CACHE_ENTRIES_STORE_SUBSCR CACHE_ENTRIES(_PyStoreSubscrCache)
typedef struct {
_Py_CODEUNIT counter;
} _PyForIterCache;
#define INLINE_CACHE_ENTRIES_FOR_ITER CACHE_ENTRIES(_PyForIterCache)
#define QUICKENING_WARMUP_DELAY 8
/* We want to compare to zero for efficiency, so we offset values accordingly */
#define QUICKENING_INITIAL_WARMUP_VALUE (-QUICKENING_WARMUP_DELAY)
void _PyCode_Quicken(PyCodeObject *code);
static inline void
_PyCode_Warmup(PyCodeObject *code)
{
if (code->co_warmup != 0) {
code->co_warmup++;
if (code->co_warmup == 0) {
_PyCode_Quicken(code);
}
}
}
extern uint8_t _PyOpcode_Adaptive[256];
extern Py_ssize_t _Py_QuickenedCount;
// Borrowed references to common callables:
struct callable_cache {
PyObject *isinstance;
PyObject *len;
PyObject *list_append;
};
/* "Locals plus" for a code object is the set of locals + cell vars +
* free vars. This relates to variable names as well as offsets into
* the "fast locals" storage array of execution frames. The compiler
* builds the list of names, their offsets, and the corresponding
* kind of local.
*
* Those kinds represent the source of the initial value and the
* variable's scope (as related to closures). A "local" is an
* argument or other variable defined in the current scope. A "free"
* variable is one that is defined in an outer scope and comes from
* the function's closure. A "cell" variable is a local that escapes
* into an inner function as part of a closure, and thus must be
* wrapped in a cell. Any "local" can also be a "cell", but the
* "free" kind is mutually exclusive with both.
*/
// Note that these all fit within a byte, as do combinations.
// Later, we will use the smaller numbers to differentiate the different
// kinds of locals (e.g. pos-only arg, varkwargs, local-only).
#define CO_FAST_LOCAL 0x20
#define CO_FAST_CELL 0x40
#define CO_FAST_FREE 0x80
typedef unsigned char _PyLocals_Kind;
static inline _PyLocals_Kind
_PyLocals_GetKind(PyObject *kinds, int i)
{
assert(PyBytes_Check(kinds));
assert(0 <= i && i < PyBytes_GET_SIZE(kinds));
char *ptr = PyBytes_AS_STRING(kinds);
return (_PyLocals_Kind)(ptr[i]);
}
static inline void
_PyLocals_SetKind(PyObject *kinds, int i, _PyLocals_Kind kind)
{
assert(PyBytes_Check(kinds));
assert(0 <= i && i < PyBytes_GET_SIZE(kinds));
char *ptr = PyBytes_AS_STRING(kinds);
ptr[i] = (char) kind;
}
struct _PyCodeConstructor {
/* metadata */
PyObject *filename;
PyObject *name;
PyObject *qualname;
int flags;
/* the code */
PyObject *code;
int firstlineno;
PyObject *linetable;
/* used by the code */
PyObject *consts;
PyObject *names;
/* mapping frame offsets to information */
PyObject *localsplusnames; // Tuple of strings
PyObject *localspluskinds; // Bytes object, one byte per variable
/* args (within varnames) */
int argcount;
int posonlyargcount;
// XXX Replace argcount with posorkwargcount (argcount - posonlyargcount).
int kwonlyargcount;
/* needed to create the frame */
int stacksize;
/* used by the eval loop */
PyObject *exceptiontable;
};
// Using an "arguments struct" like this is helpful for maintainability
// in a case such as this with many parameters. It does bear a risk:
// if the struct changes and callers are not updated properly then the
// compiler will not catch problems (like a missing argument). This can
// cause hard-to-debug problems. The risk is mitigated by the use of
// check_code() in codeobject.c. However, we may decide to switch
// back to a regular function signature. Regardless, this approach
// wouldn't be appropriate if this weren't a strictly internal API.
// (See the comments in https://github.com/python/cpython/pull/26258.)
PyAPI_FUNC(int) _PyCode_Validate(struct _PyCodeConstructor *);
PyAPI_FUNC(PyCodeObject *) _PyCode_New(struct _PyCodeConstructor *);
/* Private API */
/* Getters for internal PyCodeObject data. */
extern PyObject* _PyCode_GetVarnames(PyCodeObject *);
extern PyObject* _PyCode_GetCellvars(PyCodeObject *);
extern PyObject* _PyCode_GetFreevars(PyCodeObject *);
extern PyObject* _PyCode_GetCode(PyCodeObject *);
/** API for initializing the line number tables. */
extern int _PyCode_InitAddressRange(PyCodeObject* co, PyCodeAddressRange *bounds);
/** Out of process API for initializing the location table. */
extern void _PyLineTable_InitAddressRange(
const char *linetable,
Py_ssize_t length,
int firstlineno,
PyCodeAddressRange *range);
/** API for traversing the line number table. */
extern int _PyLineTable_NextAddressRange(PyCodeAddressRange *range);
extern int _PyLineTable_PreviousAddressRange(PyCodeAddressRange *range);
/* Specialization functions */
extern int _Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr,
PyObject *name);
extern int _Py_Specialize_StoreAttr(PyObject *owner, _Py_CODEUNIT *instr,
PyObject *name);
extern int _Py_Specialize_LoadGlobal(PyObject *globals, PyObject *builtins, _Py_CODEUNIT *instr, PyObject *name);
extern int _Py_Specialize_BinarySubscr(PyObject *sub, PyObject *container, _Py_CODEUNIT *instr);
extern int _Py_Specialize_StoreSubscr(PyObject *container, PyObject *sub, _Py_CODEUNIT *instr);
extern int _Py_Specialize_Call(PyObject *callable, _Py_CODEUNIT *instr,
int nargs, PyObject *kwnames);
extern void _Py_Specialize_BinaryOp(PyObject *lhs, PyObject *rhs, _Py_CODEUNIT *instr,
int oparg, PyObject **locals);
extern void _Py_Specialize_CompareOp(PyObject *lhs, PyObject *rhs,
_Py_CODEUNIT *instr, int oparg);
extern void _Py_Specialize_UnpackSequence(PyObject *seq, _Py_CODEUNIT *instr,
int oparg);
extern void _Py_Specialize_ForIter(PyObject *iter, _Py_CODEUNIT *instr);
/* Deallocator function for static codeobjects used in deepfreeze.py */
extern void _PyStaticCode_Dealloc(PyCodeObject *co);
/* Function to intern strings of codeobjects */
extern int _PyStaticCode_InternStrings(PyCodeObject *co);
#ifdef Py_STATS
#define STAT_INC(opname, name) do { if (_py_stats) _py_stats->opcode_stats[opname].specialization.name++; } while (0)
#define STAT_DEC(opname, name) do { if (_py_stats) _py_stats->opcode_stats[opname].specialization.name--; } while (0)
#define OPCODE_EXE_INC(opname) do { if (_py_stats) _py_stats->opcode_stats[opname].execution_count++; } while (0)
#define CALL_STAT_INC(name) do { if (_py_stats) _py_stats->call_stats.name++; } while (0)
#define OBJECT_STAT_INC(name) do { if (_py_stats) _py_stats->object_stats.name++; } while (0)
#define OBJECT_STAT_INC_COND(name, cond) \
do { if (_py_stats && cond) _py_stats->object_stats.name++; } while (0)
#define EVAL_CALL_STAT_INC(name) do { if (_py_stats) _py_stats->call_stats.eval_calls[name]++; } while (0)
#define EVAL_CALL_STAT_INC_IF_FUNCTION(name, callable) \
do { if (_py_stats && PyFunction_Check(callable)) _py_stats->call_stats.eval_calls[name]++; } while (0)
// Used by the _opcode extension which is built as a shared library
PyAPI_FUNC(PyObject*) _Py_GetSpecializationStats(void);
#else
#define STAT_INC(opname, name) ((void)0)
#define STAT_DEC(opname, name) ((void)0)
#define OPCODE_EXE_INC(opname) ((void)0)
#define CALL_STAT_INC(name) ((void)0)
#define OBJECT_STAT_INC(name) ((void)0)
#define OBJECT_STAT_INC_COND(name, cond) ((void)0)
#define EVAL_CALL_STAT_INC(name) ((void)0)
#define EVAL_CALL_STAT_INC_IF_FUNCTION(name, callable) ((void)0)
#endif // !Py_STATS
// Cache values are only valid in memory, so use native endianness.
#ifdef WORDS_BIGENDIAN
static inline void
write_u32(uint16_t *p, uint32_t val)
{
p[0] = (uint16_t)(val >> 16);
p[1] = (uint16_t)(val >> 0);
}
static inline void
write_u64(uint16_t *p, uint64_t val)
{
p[0] = (uint16_t)(val >> 48);
p[1] = (uint16_t)(val >> 32);
p[2] = (uint16_t)(val >> 16);
p[3] = (uint16_t)(val >> 0);
}
static inline uint32_t
read_u32(uint16_t *p)
{
uint32_t val = 0;
val |= (uint32_t)p[0] << 16;
val |= (uint32_t)p[1] << 0;
return val;
}
static inline uint64_t
read_u64(uint16_t *p)
{
uint64_t val = 0;
val |= (uint64_t)p[0] << 48;
val |= (uint64_t)p[1] << 32;
val |= (uint64_t)p[2] << 16;
val |= (uint64_t)p[3] << 0;
return val;
}
#else
static inline void
write_u32(uint16_t *p, uint32_t val)
{
p[0] = (uint16_t)(val >> 0);
p[1] = (uint16_t)(val >> 16);
}
static inline void
write_u64(uint16_t *p, uint64_t val)
{
p[0] = (uint16_t)(val >> 0);
p[1] = (uint16_t)(val >> 16);
p[2] = (uint16_t)(val >> 32);
p[3] = (uint16_t)(val >> 48);
}
static inline uint32_t
read_u32(uint16_t *p)
{
uint32_t val = 0;
val |= (uint32_t)p[0] << 0;
val |= (uint32_t)p[1] << 16;
return val;
}
static inline uint64_t
read_u64(uint16_t *p)
{
uint64_t val = 0;
val |= (uint64_t)p[0] << 0;
val |= (uint64_t)p[1] << 16;
val |= (uint64_t)p[2] << 32;
val |= (uint64_t)p[3] << 48;
return val;
}
#endif
static inline void
write_obj(uint16_t *p, PyObject *obj)
{
uintptr_t val = (uintptr_t)obj;
#if SIZEOF_VOID_P == 8
write_u64(p, val);
#elif SIZEOF_VOID_P == 4
write_u32(p, val);
#else
#error "SIZEOF_VOID_P must be 4 or 8"
#endif
}
static inline PyObject *
read_obj(uint16_t *p)
{
uintptr_t val;
#if SIZEOF_VOID_P == 8
val = read_u64(p);
#elif SIZEOF_VOID_P == 4
val = read_u32(p);
#else
#error "SIZEOF_VOID_P must be 4 or 8"
#endif
return (PyObject *)val;
}
static inline int
write_varint(uint8_t *ptr, unsigned int val)
{
int written = 1;
while (val >= 64) {
*ptr++ = 64 | (val & 63);
val >>= 6;
written++;
}
*ptr = val;
return written;
}
static inline int
write_signed_varint(uint8_t *ptr, int val)
{
if (val < 0) {
val = ((-val)<<1) | 1;
}
else {
val = val << 1;
}
return write_varint(ptr, val);
}
static inline int
write_location_entry_start(uint8_t *ptr, int code, int length)
{
assert((code & 15) == code);
*ptr = 128 | (code << 3) | (length - 1);
return 1;
}
/** Counters
* The first 16-bit value in each inline cache is a counter.
* When counting misses, the counter is treated as a simple unsigned value.
*
* When counting executions until the next specialization attempt,
* exponential backoff is used to reduce the number of specialization failures.
* The high 12 bits store the counter, the low 4 bits store the backoff exponent.
* On a specialization failure, the backoff exponent is incremented and the
* counter set to (2**backoff - 1).
* Backoff == 6 -> starting counter == 63, backoff == 10 -> starting counter == 1023.
*/
/* With a 16-bit counter, we have 12 bits for the counter value, and 4 bits for the backoff */
#define ADAPTIVE_BACKOFF_BITS 4
/* The initial counter value is 31 == 2**ADAPTIVE_BACKOFF_START - 1 */
#define ADAPTIVE_BACKOFF_START 5
#define MAX_BACKOFF_VALUE (16 - ADAPTIVE_BACKOFF_BITS)
static inline uint16_t
adaptive_counter_bits(int value, int backoff) {
return (value << ADAPTIVE_BACKOFF_BITS) |
(backoff & ((1<<ADAPTIVE_BACKOFF_BITS)-1));
}
static inline uint16_t
adaptive_counter_start(void) {
unsigned int value = (1 << ADAPTIVE_BACKOFF_START) - 1;
return adaptive_counter_bits(value, ADAPTIVE_BACKOFF_START);
}
static inline uint16_t
adaptive_counter_backoff(uint16_t counter) {
unsigned int backoff = counter & ((1<<ADAPTIVE_BACKOFF_BITS)-1);
backoff++;
if (backoff > MAX_BACKOFF_VALUE) {
backoff = MAX_BACKOFF_VALUE;
}
unsigned int value = (1 << backoff) - 1;
return adaptive_counter_bits(value, backoff);
}
/* Line array cache for tracing */
extern int _PyCode_CreateLineArray(PyCodeObject *co);
static inline int
_PyCode_InitLineArray(PyCodeObject *co)
{
if (co->_co_linearray) {
return 0;
}
return _PyCode_CreateLineArray(co);
}
static inline int
_PyCode_LineNumberFromArray(PyCodeObject *co, int index)
{
assert(co->_co_linearray != NULL);
assert(index >= 0);
assert(index < Py_SIZE(co));
if (co->_co_linearray_entry_size == 2) {
return ((int16_t *)co->_co_linearray)[index];
}
else {
assert(co->_co_linearray_entry_size == 4);
return ((int32_t *)co->_co_linearray)[index];
}
}
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTERNAL_CODE_H */