mirror of
https://github.com/python/cpython
synced 2024-11-05 18:12:54 +00:00
4117 lines
121 KiB
C
4117 lines
121 KiB
C
/* List object implementation */
|
|
|
|
#include "Python.h"
|
|
#include "pycore_abstract.h" // _PyIndex_Check()
|
|
#include "pycore_ceval.h" // _PyEval_GetBuiltin()
|
|
#include "pycore_dict.h" // _PyDictViewObject
|
|
#include "pycore_pyatomic_ft_wrappers.h"
|
|
#include "pycore_interp.h" // PyInterpreterState.list
|
|
#include "pycore_list.h" // struct _Py_list_freelist, _PyListIterObject
|
|
#include "pycore_long.h" // _PyLong_DigitCount
|
|
#include "pycore_modsupport.h" // _PyArg_NoKwnames()
|
|
#include "pycore_object.h" // _PyObject_GC_TRACK(), _PyDebugAllocatorStats()
|
|
#include "pycore_tuple.h" // _PyTuple_FromArray()
|
|
#include "pycore_setobject.h" // _PySet_NextEntry()
|
|
#include <stddef.h>
|
|
|
|
/*[clinic input]
|
|
class list "PyListObject *" "&PyList_Type"
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f9b222678f9f71e0]*/
|
|
|
|
#include "clinic/listobject.c.h"
|
|
|
|
_Py_DECLARE_STR(list_err, "list index out of range");
|
|
|
|
#ifdef WITH_FREELISTS
|
|
static struct _Py_list_freelist *
|
|
get_list_freelist(void)
|
|
{
|
|
struct _Py_object_freelists *freelists = _Py_object_freelists_GET();
|
|
assert(freelists != NULL);
|
|
return &freelists->lists;
|
|
}
|
|
#endif
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
typedef struct {
|
|
Py_ssize_t allocated;
|
|
PyObject *ob_item[];
|
|
} _PyListArray;
|
|
|
|
static _PyListArray *
|
|
list_allocate_array(size_t capacity)
|
|
{
|
|
if (capacity > PY_SSIZE_T_MAX/sizeof(PyObject*) - 1) {
|
|
return NULL;
|
|
}
|
|
_PyListArray *array = PyMem_Malloc(sizeof(_PyListArray) + capacity * sizeof(PyObject *));
|
|
if (array == NULL) {
|
|
return NULL;
|
|
}
|
|
array->allocated = capacity;
|
|
return array;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
list_capacity(PyObject **items)
|
|
{
|
|
_PyListArray *array = _Py_CONTAINER_OF(items, _PyListArray, ob_item);
|
|
return array->allocated;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
free_list_items(PyObject** items, bool use_qsbr)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
_PyListArray *array = _Py_CONTAINER_OF(items, _PyListArray, ob_item);
|
|
if (use_qsbr) {
|
|
_PyMem_FreeDelayed(array);
|
|
}
|
|
else {
|
|
PyMem_Free(array);
|
|
}
|
|
#else
|
|
PyMem_Free(items);
|
|
#endif
|
|
}
|
|
|
|
/* Ensure ob_item has room for at least newsize elements, and set
|
|
* ob_size to newsize. If newsize > ob_size on entry, the content
|
|
* of the new slots at exit is undefined heap trash; it's the caller's
|
|
* responsibility to overwrite them with sane values.
|
|
* The number of allocated elements may grow, shrink, or stay the same.
|
|
* Failure is impossible if newsize <= self.allocated on entry, although
|
|
* that partly relies on an assumption that the system realloc() never
|
|
* fails when passed a number of bytes <= the number of bytes last
|
|
* allocated (the C standard doesn't guarantee this, but it's hard to
|
|
* imagine a realloc implementation where it wouldn't be true).
|
|
* Note that self->ob_item may change, and even if newsize is less
|
|
* than ob_size on entry.
|
|
*/
|
|
static int
|
|
list_resize(PyListObject *self, Py_ssize_t newsize)
|
|
{
|
|
size_t new_allocated, target_bytes;
|
|
Py_ssize_t allocated = self->allocated;
|
|
|
|
/* Bypass realloc() when a previous overallocation is large enough
|
|
to accommodate the newsize. If the newsize falls lower than half
|
|
the allocated size, then proceed with the realloc() to shrink the list.
|
|
*/
|
|
if (allocated >= newsize && newsize >= (allocated >> 1)) {
|
|
assert(self->ob_item != NULL || newsize == 0);
|
|
Py_SET_SIZE(self, newsize);
|
|
return 0;
|
|
}
|
|
|
|
/* This over-allocates proportional to the list size, making room
|
|
* for additional growth. The over-allocation is mild, but is
|
|
* enough to give linear-time amortized behavior over a long
|
|
* sequence of appends() in the presence of a poorly-performing
|
|
* system realloc().
|
|
* Add padding to make the allocated size multiple of 4.
|
|
* The growth pattern is: 0, 4, 8, 16, 24, 32, 40, 52, 64, 76, ...
|
|
* Note: new_allocated won't overflow because the largest possible value
|
|
* is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t.
|
|
*/
|
|
new_allocated = ((size_t)newsize + (newsize >> 3) + 6) & ~(size_t)3;
|
|
/* Do not overallocate if the new size is closer to overallocated size
|
|
* than to the old size.
|
|
*/
|
|
if (newsize - Py_SIZE(self) > (Py_ssize_t)(new_allocated - newsize))
|
|
new_allocated = ((size_t)newsize + 3) & ~(size_t)3;
|
|
|
|
if (newsize == 0)
|
|
new_allocated = 0;
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
_PyListArray *array = list_allocate_array(new_allocated);
|
|
if (array == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
PyObject **old_items = self->ob_item;
|
|
if (self->ob_item) {
|
|
if (new_allocated < (size_t)allocated) {
|
|
target_bytes = new_allocated * sizeof(PyObject*);
|
|
}
|
|
else {
|
|
target_bytes = allocated * sizeof(PyObject*);
|
|
}
|
|
memcpy(array->ob_item, self->ob_item, target_bytes);
|
|
}
|
|
_Py_atomic_store_ptr_release(&self->ob_item, &array->ob_item);
|
|
self->allocated = new_allocated;
|
|
Py_SET_SIZE(self, newsize);
|
|
if (old_items != NULL) {
|
|
free_list_items(old_items, _PyObject_GC_IS_SHARED(self));
|
|
}
|
|
#else
|
|
PyObject **items;
|
|
if (new_allocated <= (size_t)PY_SSIZE_T_MAX / sizeof(PyObject *)) {
|
|
target_bytes = new_allocated * sizeof(PyObject *);
|
|
items = (PyObject **)PyMem_Realloc(self->ob_item, target_bytes);
|
|
}
|
|
else {
|
|
// integer overflow
|
|
items = NULL;
|
|
}
|
|
if (items == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
self->ob_item = items;
|
|
Py_SET_SIZE(self, newsize);
|
|
self->allocated = new_allocated;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
list_preallocate_exact(PyListObject *self, Py_ssize_t size)
|
|
{
|
|
PyObject **items;
|
|
assert(self->ob_item == NULL);
|
|
assert(size > 0);
|
|
|
|
/* Since the Python memory allocator has granularity of 16 bytes on 64-bit
|
|
* platforms (8 on 32-bit), there is no benefit of allocating space for
|
|
* the odd number of items, and there is no drawback of rounding the
|
|
* allocated size up to the nearest even number.
|
|
*/
|
|
size = (size + 1) & ~(size_t)1;
|
|
#ifdef Py_GIL_DISABLED
|
|
_PyListArray *array = list_allocate_array(size);
|
|
if (array == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
items = array->ob_item;
|
|
#else
|
|
items = PyMem_New(PyObject*, size);
|
|
if (items == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
#endif
|
|
self->ob_item = items;
|
|
self->allocated = size;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
_PyList_ClearFreeList(struct _Py_object_freelists *freelists, int is_finalization)
|
|
{
|
|
#ifdef WITH_FREELISTS
|
|
struct _Py_list_freelist *state = &freelists->lists;
|
|
while (state->numfree > 0) {
|
|
PyListObject *op = state->items[--state->numfree];
|
|
assert(PyList_CheckExact(op));
|
|
PyObject_GC_Del(op);
|
|
}
|
|
if (is_finalization) {
|
|
state->numfree = -1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Print summary info about the state of the optimized allocator */
|
|
void
|
|
_PyList_DebugMallocStats(FILE *out)
|
|
{
|
|
#ifdef WITH_FREELISTS
|
|
struct _Py_list_freelist *list_freelist = get_list_freelist();
|
|
_PyDebugAllocatorStats(out,
|
|
"free PyListObject",
|
|
list_freelist->numfree, sizeof(PyListObject));
|
|
#endif
|
|
}
|
|
|
|
PyObject *
|
|
PyList_New(Py_ssize_t size)
|
|
{
|
|
PyListObject *op;
|
|
|
|
if (size < 0) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef WITH_FREELISTS
|
|
struct _Py_list_freelist *list_freelist = get_list_freelist();
|
|
if (PyList_MAXFREELIST && list_freelist->numfree > 0) {
|
|
list_freelist->numfree--;
|
|
op = list_freelist->items[list_freelist->numfree];
|
|
OBJECT_STAT_INC(from_freelist);
|
|
_Py_NewReference((PyObject *)op);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
op = PyObject_GC_New(PyListObject, &PyList_Type);
|
|
if (op == NULL) {
|
|
return NULL;
|
|
}
|
|
}
|
|
if (size <= 0) {
|
|
op->ob_item = NULL;
|
|
}
|
|
else {
|
|
#ifdef Py_GIL_DISABLED
|
|
_PyListArray *array = list_allocate_array(size);
|
|
if (array == NULL) {
|
|
Py_DECREF(op);
|
|
return PyErr_NoMemory();
|
|
}
|
|
memset(&array->ob_item, 0, size * sizeof(PyObject *));
|
|
op->ob_item = array->ob_item;
|
|
#else
|
|
op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
|
|
#endif
|
|
if (op->ob_item == NULL) {
|
|
Py_DECREF(op);
|
|
return PyErr_NoMemory();
|
|
}
|
|
}
|
|
Py_SET_SIZE(op, size);
|
|
op->allocated = size;
|
|
_PyObject_GC_TRACK(op);
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
static PyObject *
|
|
list_new_prealloc(Py_ssize_t size)
|
|
{
|
|
assert(size > 0);
|
|
PyListObject *op = (PyListObject *) PyList_New(0);
|
|
if (op == NULL) {
|
|
return NULL;
|
|
}
|
|
assert(op->ob_item == NULL);
|
|
#ifdef Py_GIL_DISABLED
|
|
_PyListArray *array = list_allocate_array(size);
|
|
if (array == NULL) {
|
|
Py_DECREF(op);
|
|
return PyErr_NoMemory();
|
|
}
|
|
op->ob_item = array->ob_item;
|
|
#else
|
|
op->ob_item = PyMem_New(PyObject *, size);
|
|
if (op->ob_item == NULL) {
|
|
Py_DECREF(op);
|
|
return PyErr_NoMemory();
|
|
}
|
|
#endif
|
|
op->allocated = size;
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
Py_ssize_t
|
|
PyList_Size(PyObject *op)
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
else {
|
|
return PyList_GET_SIZE(op);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
valid_index(Py_ssize_t i, Py_ssize_t limit)
|
|
{
|
|
/* The cast to size_t lets us use just a single comparison
|
|
to check whether i is in the range: 0 <= i < limit.
|
|
|
|
See: Section 14.2 "Bounds Checking" in the Agner Fog
|
|
optimization manual found at:
|
|
https://www.agner.org/optimize/optimizing_cpp.pdf
|
|
*/
|
|
return (size_t) i < (size_t) limit;
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
|
|
static PyObject *
|
|
list_item_impl(PyListObject *self, Py_ssize_t idx)
|
|
{
|
|
PyObject *item = NULL;
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
if (!_PyObject_GC_IS_SHARED(self)) {
|
|
_PyObject_GC_SET_SHARED(self);
|
|
}
|
|
Py_ssize_t size = Py_SIZE(self);
|
|
if (!valid_index(idx, size)) {
|
|
goto exit;
|
|
}
|
|
item = Py_NewRef(self->ob_item[idx]);
|
|
exit:
|
|
Py_END_CRITICAL_SECTION();
|
|
return item;
|
|
}
|
|
|
|
static inline PyObject*
|
|
list_get_item_ref(PyListObject *op, Py_ssize_t i)
|
|
{
|
|
if (!_Py_IsOwnedByCurrentThread((PyObject *)op) && !_PyObject_GC_IS_SHARED(op)) {
|
|
return list_item_impl(op, i);
|
|
}
|
|
// Need atomic operation for the getting size.
|
|
Py_ssize_t size = PyList_GET_SIZE(op);
|
|
if (!valid_index(i, size)) {
|
|
return NULL;
|
|
}
|
|
PyObject **ob_item = _Py_atomic_load_ptr(&op->ob_item);
|
|
if (ob_item == NULL) {
|
|
return NULL;
|
|
}
|
|
Py_ssize_t cap = list_capacity(ob_item);
|
|
assert(cap != -1 && cap >= size);
|
|
if (!valid_index(i, cap)) {
|
|
return NULL;
|
|
}
|
|
PyObject *item = _Py_TryXGetRef(&ob_item[i]);
|
|
if (item == NULL) {
|
|
return list_item_impl(op, i);
|
|
}
|
|
return item;
|
|
}
|
|
#else
|
|
static inline PyObject*
|
|
list_get_item_ref(PyListObject *op, Py_ssize_t i)
|
|
{
|
|
if (!valid_index(i, Py_SIZE(op))) {
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(PyList_GET_ITEM(op, i));
|
|
}
|
|
#endif
|
|
|
|
PyObject *
|
|
PyList_GetItem(PyObject *op, Py_ssize_t i)
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!valid_index(i, Py_SIZE(op))) {
|
|
_Py_DECLARE_STR(list_err, "list index out of range");
|
|
PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
|
|
return NULL;
|
|
}
|
|
return ((PyListObject *)op) -> ob_item[i];
|
|
}
|
|
|
|
PyObject *
|
|
PyList_GetItemRef(PyObject *op, Py_ssize_t i)
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected a list");
|
|
return NULL;
|
|
}
|
|
PyObject *item = list_get_item_ref((PyListObject *)op, i);
|
|
if (item == NULL) {
|
|
_Py_DECLARE_STR(list_err, "list index out of range");
|
|
PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
|
|
return NULL;
|
|
}
|
|
return item;
|
|
}
|
|
|
|
int
|
|
PyList_SetItem(PyObject *op, Py_ssize_t i,
|
|
PyObject *newitem)
|
|
{
|
|
PyObject **p;
|
|
if (!PyList_Check(op)) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
int ret;
|
|
PyListObject *self = ((PyListObject *)op);
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
if (!valid_index(i, Py_SIZE(self))) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"list assignment index out of range");
|
|
ret = -1;
|
|
goto end;
|
|
}
|
|
p = self->ob_item + i;
|
|
Py_XSETREF(*p, newitem);
|
|
ret = 0;
|
|
end:
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
|
|
{
|
|
Py_ssize_t i, n = Py_SIZE(self);
|
|
PyObject **items;
|
|
if (v == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
|
|
assert((size_t)n + 1 < PY_SSIZE_T_MAX);
|
|
if (list_resize(self, n+1) < 0)
|
|
return -1;
|
|
|
|
if (where < 0) {
|
|
where += n;
|
|
if (where < 0)
|
|
where = 0;
|
|
}
|
|
if (where > n)
|
|
where = n;
|
|
items = self->ob_item;
|
|
for (i = n; --i >= where; )
|
|
items[i+1] = items[i];
|
|
items[where] = Py_NewRef(v);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
PyListObject *self = (PyListObject *)op;
|
|
int err;
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
err = ins1(self, where, newitem);
|
|
Py_END_CRITICAL_SECTION();
|
|
return err;
|
|
}
|
|
|
|
/* internal, used by _PyList_AppendTakeRef */
|
|
int
|
|
_PyList_AppendTakeRefListResize(PyListObject *self, PyObject *newitem)
|
|
{
|
|
Py_ssize_t len = Py_SIZE(self);
|
|
assert(self->allocated == -1 || self->allocated == len);
|
|
if (list_resize(self, len + 1) < 0) {
|
|
Py_DECREF(newitem);
|
|
return -1;
|
|
}
|
|
PyList_SET_ITEM(self, len, newitem);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyList_Append(PyObject *op, PyObject *newitem)
|
|
{
|
|
if (PyList_Check(op) && (newitem != NULL)) {
|
|
int ret;
|
|
Py_BEGIN_CRITICAL_SECTION(op);
|
|
ret = _PyList_AppendTakeRef((PyListObject *)op, Py_NewRef(newitem));
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
list_dealloc(PyObject *self)
|
|
{
|
|
PyListObject *op = (PyListObject *)self;
|
|
Py_ssize_t i;
|
|
PyObject_GC_UnTrack(op);
|
|
Py_TRASHCAN_BEGIN(op, list_dealloc)
|
|
if (op->ob_item != NULL) {
|
|
/* Do it backwards, for Christian Tismer.
|
|
There's a simple test case where somehow this reduces
|
|
thrashing when a *very* large list is created and
|
|
immediately deleted. */
|
|
i = Py_SIZE(op);
|
|
while (--i >= 0) {
|
|
Py_XDECREF(op->ob_item[i]);
|
|
}
|
|
free_list_items(op->ob_item, false);
|
|
}
|
|
#ifdef WITH_FREELISTS
|
|
struct _Py_list_freelist *list_freelist = get_list_freelist();
|
|
if (list_freelist->numfree < PyList_MAXFREELIST && list_freelist->numfree >= 0 && PyList_CheckExact(op)) {
|
|
list_freelist->items[list_freelist->numfree++] = op;
|
|
OBJECT_STAT_INC(to_freelist);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
Py_TYPE(op)->tp_free((PyObject *)op);
|
|
}
|
|
Py_TRASHCAN_END
|
|
}
|
|
|
|
static PyObject *
|
|
list_repr_impl(PyListObject *v)
|
|
{
|
|
PyObject *s;
|
|
_PyUnicodeWriter writer;
|
|
Py_ssize_t i = Py_ReprEnter((PyObject*)v);
|
|
if (i != 0) {
|
|
return i > 0 ? PyUnicode_FromString("[...]") : NULL;
|
|
}
|
|
|
|
_PyUnicodeWriter_Init(&writer);
|
|
writer.overallocate = 1;
|
|
/* "[" + "1" + ", 2" * (len - 1) + "]" */
|
|
writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;
|
|
|
|
if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0)
|
|
goto error;
|
|
|
|
/* Do repr() on each element. Note that this may mutate the list,
|
|
so must refetch the list size on each iteration. */
|
|
for (i = 0; i < Py_SIZE(v); ++i) {
|
|
if (i > 0) {
|
|
if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
|
|
goto error;
|
|
}
|
|
|
|
s = PyObject_Repr(v->ob_item[i]);
|
|
if (s == NULL)
|
|
goto error;
|
|
|
|
if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
|
|
Py_DECREF(s);
|
|
goto error;
|
|
}
|
|
Py_DECREF(s);
|
|
}
|
|
|
|
writer.overallocate = 0;
|
|
if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0)
|
|
goto error;
|
|
|
|
Py_ReprLeave((PyObject *)v);
|
|
return _PyUnicodeWriter_Finish(&writer);
|
|
|
|
error:
|
|
_PyUnicodeWriter_Dealloc(&writer);
|
|
Py_ReprLeave((PyObject *)v);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
list_repr(PyObject *self)
|
|
{
|
|
if (PyList_GET_SIZE(self) == 0) {
|
|
return PyUnicode_FromString("[]");
|
|
}
|
|
PyListObject *v = (PyListObject *)self;
|
|
PyObject *ret = NULL;
|
|
Py_BEGIN_CRITICAL_SECTION(v);
|
|
ret = list_repr_impl(v);
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
list_length(PyObject *a)
|
|
{
|
|
return PyList_GET_SIZE(a);
|
|
}
|
|
|
|
static int
|
|
list_contains(PyObject *aa, PyObject *el)
|
|
{
|
|
|
|
for (Py_ssize_t i = 0; ; i++) {
|
|
PyObject *item = list_get_item_ref((PyListObject *)aa, i);
|
|
if (item == NULL) {
|
|
// out-of-bounds
|
|
return 0;
|
|
}
|
|
int cmp = PyObject_RichCompareBool(item, el, Py_EQ);
|
|
Py_DECREF(item);
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
list_item(PyObject *aa, Py_ssize_t i)
|
|
{
|
|
PyListObject *a = (PyListObject *)aa;
|
|
if (!valid_index(i, PyList_GET_SIZE(a))) {
|
|
PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
|
|
return NULL;
|
|
}
|
|
PyObject *item;
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
#ifdef Py_GIL_DISABLED
|
|
if (!_Py_IsOwnedByCurrentThread((PyObject *)a) && !_PyObject_GC_IS_SHARED(a)) {
|
|
_PyObject_GC_SET_SHARED(a);
|
|
}
|
|
#endif
|
|
item = Py_NewRef(a->ob_item[i]);
|
|
Py_END_CRITICAL_SECTION();
|
|
return item;
|
|
}
|
|
|
|
static PyObject *
|
|
list_slice_lock_held(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
|
|
{
|
|
PyListObject *np;
|
|
PyObject **src, **dest;
|
|
Py_ssize_t i, len;
|
|
len = ihigh - ilow;
|
|
if (len <= 0) {
|
|
return PyList_New(0);
|
|
}
|
|
np = (PyListObject *) list_new_prealloc(len);
|
|
if (np == NULL)
|
|
return NULL;
|
|
|
|
src = a->ob_item + ilow;
|
|
dest = np->ob_item;
|
|
for (i = 0; i < len; i++) {
|
|
PyObject *v = src[i];
|
|
dest[i] = Py_NewRef(v);
|
|
}
|
|
Py_SET_SIZE(np, len);
|
|
return (PyObject *)np;
|
|
}
|
|
|
|
PyObject *
|
|
PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
|
|
{
|
|
if (!PyList_Check(a)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
PyObject *ret;
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
if (ilow < 0) {
|
|
ilow = 0;
|
|
}
|
|
else if (ilow > Py_SIZE(a)) {
|
|
ilow = Py_SIZE(a);
|
|
}
|
|
if (ihigh < ilow) {
|
|
ihigh = ilow;
|
|
}
|
|
else if (ihigh > Py_SIZE(a)) {
|
|
ihigh = Py_SIZE(a);
|
|
}
|
|
ret = list_slice_lock_held((PyListObject *)a, ilow, ihigh);
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
static PyObject *
|
|
list_concat_lock_held(PyListObject *a, PyListObject *b)
|
|
{
|
|
Py_ssize_t size;
|
|
Py_ssize_t i;
|
|
PyObject **src, **dest;
|
|
PyListObject *np;
|
|
assert((size_t)Py_SIZE(a) + (size_t)Py_SIZE(b) < PY_SSIZE_T_MAX);
|
|
size = Py_SIZE(a) + Py_SIZE(b);
|
|
if (size == 0) {
|
|
return PyList_New(0);
|
|
}
|
|
np = (PyListObject *) list_new_prealloc(size);
|
|
if (np == NULL) {
|
|
return NULL;
|
|
}
|
|
src = a->ob_item;
|
|
dest = np->ob_item;
|
|
for (i = 0; i < Py_SIZE(a); i++) {
|
|
PyObject *v = src[i];
|
|
dest[i] = Py_NewRef(v);
|
|
}
|
|
src = b->ob_item;
|
|
dest = np->ob_item + Py_SIZE(a);
|
|
for (i = 0; i < Py_SIZE(b); i++) {
|
|
PyObject *v = src[i];
|
|
dest[i] = Py_NewRef(v);
|
|
}
|
|
Py_SET_SIZE(np, size);
|
|
return (PyObject *)np;
|
|
}
|
|
|
|
static PyObject *
|
|
list_concat(PyObject *aa, PyObject *bb)
|
|
{
|
|
if (!PyList_Check(bb)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"can only concatenate list (not \"%.200s\") to list",
|
|
Py_TYPE(bb)->tp_name);
|
|
return NULL;
|
|
}
|
|
PyListObject *a = (PyListObject *)aa;
|
|
PyListObject *b = (PyListObject *)bb;
|
|
PyObject *ret;
|
|
Py_BEGIN_CRITICAL_SECTION2(a, b);
|
|
ret = list_concat_lock_held(a, b);
|
|
Py_END_CRITICAL_SECTION2();
|
|
return ret;
|
|
}
|
|
|
|
static PyObject *
|
|
list_repeat_lock_held(PyListObject *a, Py_ssize_t n)
|
|
{
|
|
const Py_ssize_t input_size = Py_SIZE(a);
|
|
if (input_size == 0 || n <= 0)
|
|
return PyList_New(0);
|
|
assert(n > 0);
|
|
|
|
if (input_size > PY_SSIZE_T_MAX / n)
|
|
return PyErr_NoMemory();
|
|
Py_ssize_t output_size = input_size * n;
|
|
|
|
PyListObject *np = (PyListObject *) list_new_prealloc(output_size);
|
|
if (np == NULL)
|
|
return NULL;
|
|
|
|
PyObject **dest = np->ob_item;
|
|
if (input_size == 1) {
|
|
PyObject *elem = a->ob_item[0];
|
|
_Py_RefcntAdd(elem, n);
|
|
PyObject **dest_end = dest + output_size;
|
|
while (dest < dest_end) {
|
|
*dest++ = elem;
|
|
}
|
|
}
|
|
else {
|
|
PyObject **src = a->ob_item;
|
|
PyObject **src_end = src + input_size;
|
|
while (src < src_end) {
|
|
_Py_RefcntAdd(*src, n);
|
|
*dest++ = *src++;
|
|
}
|
|
|
|
_Py_memory_repeat((char *)np->ob_item, sizeof(PyObject *)*output_size,
|
|
sizeof(PyObject *)*input_size);
|
|
}
|
|
|
|
Py_SET_SIZE(np, output_size);
|
|
return (PyObject *) np;
|
|
}
|
|
|
|
static PyObject *
|
|
list_repeat(PyObject *aa, Py_ssize_t n)
|
|
{
|
|
PyObject *ret;
|
|
PyListObject *a = (PyListObject *)aa;
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
ret = list_repeat_lock_held(a, n);
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
list_clear_impl(PyListObject *a, bool is_resize)
|
|
{
|
|
PyObject **items = a->ob_item;
|
|
if (items == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* Because XDECREF can recursively invoke operations on
|
|
this list, we make it empty first. */
|
|
Py_ssize_t i = Py_SIZE(a);
|
|
Py_SET_SIZE(a, 0);
|
|
FT_ATOMIC_STORE_PTR_RELEASE(a->ob_item, NULL);
|
|
a->allocated = 0;
|
|
while (--i >= 0) {
|
|
Py_XDECREF(items[i]);
|
|
}
|
|
#ifdef Py_GIL_DISABLED
|
|
bool use_qsbr = is_resize && _PyObject_GC_IS_SHARED(a);
|
|
#else
|
|
bool use_qsbr = false;
|
|
#endif
|
|
free_list_items(items, use_qsbr);
|
|
// Note that there is no guarantee that the list is actually empty
|
|
// at this point, because XDECREF may have populated it indirectly again!
|
|
}
|
|
|
|
static void
|
|
list_clear(PyListObject *a)
|
|
{
|
|
list_clear_impl(a, true);
|
|
}
|
|
|
|
static int
|
|
list_clear_slot(PyObject *self)
|
|
{
|
|
list_clear_impl((PyListObject *)self, false);
|
|
return 0;
|
|
}
|
|
|
|
/* a[ilow:ihigh] = v if v != NULL.
|
|
* del a[ilow:ihigh] if v == NULL.
|
|
*
|
|
* Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's
|
|
* guaranteed the call cannot fail.
|
|
*/
|
|
static int
|
|
list_ass_slice_lock_held(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
|
|
{
|
|
/* Because [X]DECREF can recursively invoke list operations on
|
|
this list, we must postpone all [X]DECREF activity until
|
|
after the list is back in its canonical shape. Therefore
|
|
we must allocate an additional array, 'recycle', into which
|
|
we temporarily copy the items that are deleted from the
|
|
list. :-( */
|
|
PyObject *recycle_on_stack[8];
|
|
PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
|
|
PyObject **item;
|
|
PyObject **vitem = NULL;
|
|
PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
|
|
Py_ssize_t n; /* # of elements in replacement list */
|
|
Py_ssize_t norig; /* # of elements in list getting replaced */
|
|
Py_ssize_t d; /* Change in size */
|
|
Py_ssize_t k;
|
|
size_t s;
|
|
int result = -1; /* guilty until proved innocent */
|
|
#define b ((PyListObject *)v)
|
|
if (v == NULL)
|
|
n = 0;
|
|
else {
|
|
v_as_SF = PySequence_Fast(v, "can only assign an iterable");
|
|
if(v_as_SF == NULL)
|
|
goto Error;
|
|
n = PySequence_Fast_GET_SIZE(v_as_SF);
|
|
vitem = PySequence_Fast_ITEMS(v_as_SF);
|
|
}
|
|
if (ilow < 0)
|
|
ilow = 0;
|
|
else if (ilow > Py_SIZE(a))
|
|
ilow = Py_SIZE(a);
|
|
|
|
if (ihigh < ilow)
|
|
ihigh = ilow;
|
|
else if (ihigh > Py_SIZE(a))
|
|
ihigh = Py_SIZE(a);
|
|
|
|
norig = ihigh - ilow;
|
|
assert(norig >= 0);
|
|
d = n - norig;
|
|
if (Py_SIZE(a) + d == 0) {
|
|
Py_XDECREF(v_as_SF);
|
|
list_clear(a);
|
|
return 0;
|
|
}
|
|
item = a->ob_item;
|
|
/* recycle the items that we are about to remove */
|
|
s = norig * sizeof(PyObject *);
|
|
/* If norig == 0, item might be NULL, in which case we may not memcpy from it. */
|
|
if (s) {
|
|
if (s > sizeof(recycle_on_stack)) {
|
|
recycle = (PyObject **)PyMem_Malloc(s);
|
|
if (recycle == NULL) {
|
|
PyErr_NoMemory();
|
|
goto Error;
|
|
}
|
|
}
|
|
memcpy(recycle, &item[ilow], s);
|
|
}
|
|
|
|
if (d < 0) { /* Delete -d items */
|
|
Py_ssize_t tail;
|
|
tail = (Py_SIZE(a) - ihigh) * sizeof(PyObject *);
|
|
memmove(&item[ihigh+d], &item[ihigh], tail);
|
|
if (list_resize(a, Py_SIZE(a) + d) < 0) {
|
|
memmove(&item[ihigh], &item[ihigh+d], tail);
|
|
memcpy(&item[ilow], recycle, s);
|
|
goto Error;
|
|
}
|
|
item = a->ob_item;
|
|
}
|
|
else if (d > 0) { /* Insert d items */
|
|
k = Py_SIZE(a);
|
|
if (list_resize(a, k+d) < 0)
|
|
goto Error;
|
|
item = a->ob_item;
|
|
memmove(&item[ihigh+d], &item[ihigh],
|
|
(k - ihigh)*sizeof(PyObject *));
|
|
}
|
|
for (k = 0; k < n; k++, ilow++) {
|
|
PyObject *w = vitem[k];
|
|
item[ilow] = Py_XNewRef(w);
|
|
}
|
|
for (k = norig - 1; k >= 0; --k)
|
|
Py_XDECREF(recycle[k]);
|
|
result = 0;
|
|
Error:
|
|
if (recycle != recycle_on_stack)
|
|
PyMem_Free(recycle);
|
|
Py_XDECREF(v_as_SF);
|
|
return result;
|
|
#undef b
|
|
}
|
|
|
|
static int
|
|
list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
|
|
{
|
|
int ret;
|
|
if (a == (PyListObject *)v) {
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
Py_ssize_t n = PyList_GET_SIZE(a);
|
|
PyObject *copy = list_slice_lock_held(a, 0, n);
|
|
if (copy == NULL) {
|
|
return -1;
|
|
}
|
|
ret = list_ass_slice_lock_held(a, ilow, ihigh, copy);
|
|
Py_DECREF(copy);
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
else if (v != NULL && PyList_CheckExact(v)) {
|
|
Py_BEGIN_CRITICAL_SECTION2(a, v);
|
|
ret = list_ass_slice_lock_held(a, ilow, ihigh, v);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else {
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
ret = list_ass_slice_lock_held(a, ilow, ihigh, v);
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
|
|
{
|
|
if (!PyList_Check(a)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
|
|
}
|
|
|
|
static int
|
|
list_inplace_repeat_lock_held(PyListObject *self, Py_ssize_t n)
|
|
{
|
|
Py_ssize_t input_size = PyList_GET_SIZE(self);
|
|
if (input_size == 0 || n == 1) {
|
|
return 0;
|
|
}
|
|
|
|
if (n < 1) {
|
|
list_clear(self);
|
|
return 0;
|
|
}
|
|
|
|
if (input_size > PY_SSIZE_T_MAX / n) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
Py_ssize_t output_size = input_size * n;
|
|
|
|
if (list_resize(self, output_size) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
PyObject **items = self->ob_item;
|
|
for (Py_ssize_t j = 0; j < input_size; j++) {
|
|
_Py_RefcntAdd(items[j], n-1);
|
|
}
|
|
_Py_memory_repeat((char *)items, sizeof(PyObject *)*output_size,
|
|
sizeof(PyObject *)*input_size);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
list_inplace_repeat(PyObject *_self, Py_ssize_t n)
|
|
{
|
|
PyObject *ret;
|
|
PyListObject *self = (PyListObject *) _self;
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
if (list_inplace_repeat_lock_held(self, n) < 0) {
|
|
ret = NULL;
|
|
}
|
|
else {
|
|
ret = Py_NewRef(self);
|
|
}
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
list_ass_item_lock_held(PyListObject *a, Py_ssize_t i, PyObject *v)
|
|
{
|
|
if (!valid_index(i, Py_SIZE(a))) {
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"list assignment index out of range");
|
|
return -1;
|
|
}
|
|
PyObject *tmp = a->ob_item[i];
|
|
if (v == NULL) {
|
|
Py_ssize_t size = Py_SIZE(a);
|
|
for (Py_ssize_t idx = i; idx < size - 1; idx++) {
|
|
FT_ATOMIC_STORE_PTR_RELAXED(a->ob_item[idx], a->ob_item[idx + 1]);
|
|
}
|
|
Py_SET_SIZE(a, size - 1);
|
|
}
|
|
else {
|
|
FT_ATOMIC_STORE_PTR_RELEASE(a->ob_item[i], Py_NewRef(v));
|
|
}
|
|
Py_DECREF(tmp);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
list_ass_item(PyObject *aa, Py_ssize_t i, PyObject *v)
|
|
{
|
|
int ret;
|
|
PyListObject *a = (PyListObject *)aa;
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
ret = list_ass_item_lock_held(a, i, v);
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.insert
|
|
|
|
index: Py_ssize_t
|
|
object: object
|
|
/
|
|
|
|
Insert object before index.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_insert_impl(PyListObject *self, Py_ssize_t index, PyObject *object)
|
|
/*[clinic end generated code: output=7f35e32f60c8cb78 input=b1987ca998a4ae2d]*/
|
|
{
|
|
if (ins1(self, index, object) == 0) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.clear as py_list_clear
|
|
|
|
Remove all items from list.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
py_list_clear_impl(PyListObject *self)
|
|
/*[clinic end generated code: output=83726743807e3518 input=e285b7f09051a9ba]*/
|
|
{
|
|
list_clear(self);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.copy
|
|
|
|
Return a shallow copy of the list.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_copy_impl(PyListObject *self)
|
|
/*[clinic end generated code: output=ec6b72d6209d418e input=81c54b0c7bb4f73d]*/
|
|
{
|
|
return list_slice_lock_held(self, 0, Py_SIZE(self));
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.append
|
|
|
|
object: object
|
|
/
|
|
|
|
Append object to the end of the list.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_append_impl(PyListObject *self, PyObject *object)
|
|
/*[clinic end generated code: output=78423561d92ed405 input=122b0853de54004f]*/
|
|
{
|
|
if (_PyList_AppendTakeRef(self, Py_NewRef(object)) < 0) {
|
|
return NULL;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static int
|
|
list_extend_fast(PyListObject *self, PyObject *iterable)
|
|
{
|
|
Py_ssize_t n = PySequence_Fast_GET_SIZE(iterable);
|
|
if (n == 0) {
|
|
/* short circuit when iterable is empty */
|
|
return 0;
|
|
}
|
|
|
|
Py_ssize_t m = Py_SIZE(self);
|
|
// It should not be possible to allocate a list large enough to cause
|
|
// an overflow on any relevant platform.
|
|
assert(m < PY_SSIZE_T_MAX - n);
|
|
if (self->ob_item == NULL) {
|
|
if (list_preallocate_exact(self, n) < 0) {
|
|
return -1;
|
|
}
|
|
Py_SET_SIZE(self, n);
|
|
}
|
|
else if (list_resize(self, m + n) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
// note that we may still have self == iterable here for the
|
|
// situation a.extend(a), but the following code works
|
|
// in that case too. Just make sure to resize self
|
|
// before calling PySequence_Fast_ITEMS.
|
|
//
|
|
// populate the end of self with iterable's items.
|
|
PyObject **src = PySequence_Fast_ITEMS(iterable);
|
|
PyObject **dest = self->ob_item + m;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
PyObject *o = src[i];
|
|
dest[i] = Py_NewRef(o);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
list_extend_iter_lock_held(PyListObject *self, PyObject *iterable)
|
|
{
|
|
PyObject *it = PyObject_GetIter(iterable);
|
|
if (it == NULL) {
|
|
return -1;
|
|
}
|
|
PyObject *(*iternext)(PyObject *) = *Py_TYPE(it)->tp_iternext;
|
|
|
|
/* Guess a result list size. */
|
|
Py_ssize_t n = PyObject_LengthHint(iterable, 8);
|
|
if (n < 0) {
|
|
Py_DECREF(it);
|
|
return -1;
|
|
}
|
|
|
|
Py_ssize_t m = Py_SIZE(self);
|
|
if (m > PY_SSIZE_T_MAX - n) {
|
|
/* m + n overflowed; on the chance that n lied, and there really
|
|
* is enough room, ignore it. If n was telling the truth, we'll
|
|
* eventually run out of memory during the loop.
|
|
*/
|
|
}
|
|
else if (self->ob_item == NULL) {
|
|
if (n && list_preallocate_exact(self, n) < 0)
|
|
goto error;
|
|
}
|
|
else {
|
|
/* Make room. */
|
|
if (list_resize(self, m + n) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* Make the list sane again. */
|
|
Py_SET_SIZE(self, m);
|
|
}
|
|
|
|
/* Run iterator to exhaustion. */
|
|
for (;;) {
|
|
PyObject *item = iternext(it);
|
|
if (item == NULL) {
|
|
if (PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_StopIteration))
|
|
PyErr_Clear();
|
|
else
|
|
goto error;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (Py_SIZE(self) < self->allocated) {
|
|
Py_ssize_t len = Py_SIZE(self);
|
|
PyList_SET_ITEM(self, len, item); // steals item ref
|
|
Py_SET_SIZE(self, len + 1);
|
|
}
|
|
else {
|
|
if (_PyList_AppendTakeRef(self, item) < 0)
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* Cut back result list if initial guess was too large. */
|
|
if (Py_SIZE(self) < self->allocated) {
|
|
if (list_resize(self, Py_SIZE(self)) < 0)
|
|
goto error;
|
|
}
|
|
|
|
Py_DECREF(it);
|
|
return 0;
|
|
|
|
error:
|
|
Py_DECREF(it);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
list_extend_lock_held(PyListObject *self, PyObject *iterable)
|
|
{
|
|
PyObject *seq = PySequence_Fast(iterable, "argument must be iterable");
|
|
if (!seq) {
|
|
return -1;
|
|
}
|
|
|
|
int res = list_extend_fast(self, seq);
|
|
Py_DECREF(seq);
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
list_extend_set(PyListObject *self, PySetObject *other)
|
|
{
|
|
Py_ssize_t m = Py_SIZE(self);
|
|
Py_ssize_t n = PySet_GET_SIZE(other);
|
|
if (list_resize(self, m + n) < 0) {
|
|
return -1;
|
|
}
|
|
/* populate the end of self with iterable's items */
|
|
Py_ssize_t setpos = 0;
|
|
Py_hash_t hash;
|
|
PyObject *key;
|
|
PyObject **dest = self->ob_item + m;
|
|
while (_PySet_NextEntryRef((PyObject *)other, &setpos, &key, &hash)) {
|
|
FT_ATOMIC_STORE_PTR_RELEASE(*dest, key);
|
|
dest++;
|
|
}
|
|
Py_SET_SIZE(self, m + n);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
list_extend_dict(PyListObject *self, PyDictObject *dict, int which_item)
|
|
{
|
|
// which_item: 0 for keys and 1 for values
|
|
Py_ssize_t m = Py_SIZE(self);
|
|
Py_ssize_t n = PyDict_GET_SIZE(dict);
|
|
if (list_resize(self, m + n) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
PyObject **dest = self->ob_item + m;
|
|
Py_ssize_t pos = 0;
|
|
PyObject *keyvalue[2];
|
|
while (_PyDict_Next((PyObject *)dict, &pos, &keyvalue[0], &keyvalue[1], NULL)) {
|
|
PyObject *obj = keyvalue[which_item];
|
|
Py_INCREF(obj);
|
|
FT_ATOMIC_STORE_PTR_RELEASE(*dest, obj);
|
|
dest++;
|
|
}
|
|
|
|
Py_SET_SIZE(self, m + n);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
list_extend_dictitems(PyListObject *self, PyDictObject *dict)
|
|
{
|
|
Py_ssize_t m = Py_SIZE(self);
|
|
Py_ssize_t n = PyDict_GET_SIZE(dict);
|
|
if (list_resize(self, m + n) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
PyObject **dest = self->ob_item + m;
|
|
Py_ssize_t pos = 0;
|
|
Py_ssize_t i = 0;
|
|
PyObject *key, *value;
|
|
while (_PyDict_Next((PyObject *)dict, &pos, &key, &value, NULL)) {
|
|
PyObject *item = PyTuple_Pack(2, key, value);
|
|
if (item == NULL) {
|
|
Py_SET_SIZE(self, m + i);
|
|
return -1;
|
|
}
|
|
FT_ATOMIC_STORE_PTR_RELEASE(*dest, item);
|
|
dest++;
|
|
i++;
|
|
}
|
|
|
|
Py_SET_SIZE(self, m + n);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_list_extend(PyListObject *self, PyObject *iterable)
|
|
{
|
|
// Special case:
|
|
// lists and tuples which can use PySequence_Fast ops
|
|
int res = -1;
|
|
if ((PyObject *)self == iterable) {
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
res = list_inplace_repeat_lock_held(self, 2);
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
else if (PyList_CheckExact(iterable)) {
|
|
Py_BEGIN_CRITICAL_SECTION2(self, iterable);
|
|
res = list_extend_lock_held(self, iterable);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else if (PyTuple_CheckExact(iterable)) {
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
res = list_extend_lock_held(self, iterable);
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
else if (PyAnySet_CheckExact(iterable)) {
|
|
Py_BEGIN_CRITICAL_SECTION2(self, iterable);
|
|
res = list_extend_set(self, (PySetObject *)iterable);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else if (PyDict_CheckExact(iterable)) {
|
|
Py_BEGIN_CRITICAL_SECTION2(self, iterable);
|
|
res = list_extend_dict(self, (PyDictObject *)iterable, 0 /*keys*/);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else if (Py_IS_TYPE(iterable, &PyDictKeys_Type)) {
|
|
PyDictObject *dict = ((_PyDictViewObject *)iterable)->dv_dict;
|
|
Py_BEGIN_CRITICAL_SECTION2(self, dict);
|
|
res = list_extend_dict(self, dict, 0 /*keys*/);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else if (Py_IS_TYPE(iterable, &PyDictValues_Type)) {
|
|
PyDictObject *dict = ((_PyDictViewObject *)iterable)->dv_dict;
|
|
Py_BEGIN_CRITICAL_SECTION2(self, dict);
|
|
res = list_extend_dict(self, dict, 1 /*values*/);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else if (Py_IS_TYPE(iterable, &PyDictItems_Type)) {
|
|
PyDictObject *dict = ((_PyDictViewObject *)iterable)->dv_dict;
|
|
Py_BEGIN_CRITICAL_SECTION2(self, dict);
|
|
res = list_extend_dictitems(self, dict);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
else {
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
res = list_extend_iter_lock_held(self, iterable);
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*[clinic input]
|
|
list.extend as list_extend
|
|
|
|
iterable: object
|
|
/
|
|
|
|
Extend list by appending elements from the iterable.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_extend(PyListObject *self, PyObject *iterable)
|
|
/*[clinic end generated code: output=630fb3bca0c8e789 input=979da7597a515791]*/
|
|
{
|
|
if (_list_extend(self, iterable) < 0) {
|
|
return NULL;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject *
|
|
_PyList_Extend(PyListObject *self, PyObject *iterable)
|
|
{
|
|
return list_extend(self, iterable);
|
|
}
|
|
|
|
int
|
|
PyList_Extend(PyObject *self, PyObject *iterable)
|
|
{
|
|
if (!PyList_Check(self)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return _list_extend((PyListObject*)self, iterable);
|
|
}
|
|
|
|
|
|
int
|
|
PyList_Clear(PyObject *self)
|
|
{
|
|
if (!PyList_Check(self)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
list_clear((PyListObject*)self);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
list_inplace_concat(PyObject *_self, PyObject *other)
|
|
{
|
|
PyListObject *self = (PyListObject *)_self;
|
|
if (_list_extend(self, other) < 0) {
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(self);
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.pop
|
|
|
|
index: Py_ssize_t = -1
|
|
/
|
|
|
|
Remove and return item at index (default last).
|
|
|
|
Raises IndexError if list is empty or index is out of range.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_pop_impl(PyListObject *self, Py_ssize_t index)
|
|
/*[clinic end generated code: output=6bd69dcb3f17eca8 input=c269141068ae4b8f]*/
|
|
{
|
|
PyObject *v;
|
|
int status;
|
|
|
|
if (Py_SIZE(self) == 0) {
|
|
/* Special-case most common failure cause */
|
|
PyErr_SetString(PyExc_IndexError, "pop from empty list");
|
|
return NULL;
|
|
}
|
|
if (index < 0)
|
|
index += Py_SIZE(self);
|
|
if (!valid_index(index, Py_SIZE(self))) {
|
|
PyErr_SetString(PyExc_IndexError, "pop index out of range");
|
|
return NULL;
|
|
}
|
|
|
|
PyObject **items = self->ob_item;
|
|
v = items[index];
|
|
const Py_ssize_t size_after_pop = Py_SIZE(self) - 1;
|
|
if (size_after_pop == 0) {
|
|
Py_INCREF(v);
|
|
list_clear(self);
|
|
status = 0;
|
|
}
|
|
else {
|
|
if ((size_after_pop - index) > 0) {
|
|
memmove(&items[index], &items[index+1], (size_after_pop - index) * sizeof(PyObject *));
|
|
}
|
|
status = list_resize(self, size_after_pop);
|
|
}
|
|
if (status >= 0) {
|
|
return v; // and v now owns the reference the list had
|
|
}
|
|
else {
|
|
// list resize failed, need to restore
|
|
memmove(&items[index+1], &items[index], (size_after_pop - index)* sizeof(PyObject *));
|
|
items[index] = v;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
|
|
static void
|
|
reverse_slice(PyObject **lo, PyObject **hi)
|
|
{
|
|
assert(lo && hi);
|
|
|
|
--hi;
|
|
while (lo < hi) {
|
|
PyObject *t = *lo;
|
|
*lo = *hi;
|
|
*hi = t;
|
|
++lo;
|
|
--hi;
|
|
}
|
|
}
|
|
|
|
/* Lots of code for an adaptive, stable, natural mergesort. There are many
|
|
* pieces to this algorithm; read listsort.txt for overviews and details.
|
|
*/
|
|
|
|
/* A sortslice contains a pointer to an array of keys and a pointer to
|
|
* an array of corresponding values. In other words, keys[i]
|
|
* corresponds with values[i]. If values == NULL, then the keys are
|
|
* also the values.
|
|
*
|
|
* Several convenience routines are provided here, so that keys and
|
|
* values are always moved in sync.
|
|
*/
|
|
|
|
typedef struct {
|
|
PyObject **keys;
|
|
PyObject **values;
|
|
} sortslice;
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j)
|
|
{
|
|
s1->keys[i] = s2->keys[j];
|
|
if (s1->values != NULL)
|
|
s1->values[i] = s2->values[j];
|
|
}
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
sortslice_copy_incr(sortslice *dst, sortslice *src)
|
|
{
|
|
*dst->keys++ = *src->keys++;
|
|
if (dst->values != NULL)
|
|
*dst->values++ = *src->values++;
|
|
}
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
sortslice_copy_decr(sortslice *dst, sortslice *src)
|
|
{
|
|
*dst->keys-- = *src->keys--;
|
|
if (dst->values != NULL)
|
|
*dst->values-- = *src->values--;
|
|
}
|
|
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
|
|
Py_ssize_t n)
|
|
{
|
|
memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
|
|
if (s1->values != NULL)
|
|
memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
|
|
}
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
|
|
Py_ssize_t n)
|
|
{
|
|
memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
|
|
if (s1->values != NULL)
|
|
memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
|
|
}
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
sortslice_advance(sortslice *slice, Py_ssize_t n)
|
|
{
|
|
slice->keys += n;
|
|
if (slice->values != NULL)
|
|
slice->values += n;
|
|
}
|
|
|
|
/* Comparison function: ms->key_compare, which is set at run-time in
|
|
* listsort_impl to optimize for various special cases.
|
|
* Returns -1 on error, 1 if x < y, 0 if x >= y.
|
|
*/
|
|
|
|
#define ISLT(X, Y) (*(ms->key_compare))(X, Y, ms)
|
|
|
|
/* Compare X to Y via "<". Goto "fail" if the comparison raises an
|
|
error. Else "k" is set to true iff X<Y, and an "if (k)" block is
|
|
started. It makes more sense in context <wink>. X and Y are PyObject*s.
|
|
*/
|
|
#define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail; \
|
|
if (k)
|
|
|
|
/* The maximum number of entries in a MergeState's pending-runs stack.
|
|
* For a list with n elements, this needs at most floor(log2(n)) + 1 entries
|
|
* even if we didn't force runs to a minimal length. So the number of bits
|
|
* in a Py_ssize_t is plenty large enough for all cases.
|
|
*/
|
|
#define MAX_MERGE_PENDING (SIZEOF_SIZE_T * 8)
|
|
|
|
/* When we get into galloping mode, we stay there until both runs win less
|
|
* often than MIN_GALLOP consecutive times. See listsort.txt for more info.
|
|
*/
|
|
#define MIN_GALLOP 7
|
|
|
|
/* Avoid malloc for small temp arrays. */
|
|
#define MERGESTATE_TEMP_SIZE 256
|
|
|
|
/* The largest value of minrun. This must be a power of 2, and >= 1, so that
|
|
* the compute_minrun() algorithm guarantees to return a result no larger than
|
|
* this,
|
|
*/
|
|
#define MAX_MINRUN 64
|
|
#if ((MAX_MINRUN) < 1) || ((MAX_MINRUN) & ((MAX_MINRUN) - 1))
|
|
#error "MAX_MINRUN must be a power of 2, and >= 1"
|
|
#endif
|
|
|
|
/* One MergeState exists on the stack per invocation of mergesort. It's just
|
|
* a convenient way to pass state around among the helper functions.
|
|
*/
|
|
struct s_slice {
|
|
sortslice base;
|
|
Py_ssize_t len; /* length of run */
|
|
int power; /* node "level" for powersort merge strategy */
|
|
};
|
|
|
|
typedef struct s_MergeState MergeState;
|
|
struct s_MergeState {
|
|
/* This controls when we get *into* galloping mode. It's initialized
|
|
* to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
|
|
* random data, and lower for highly structured data.
|
|
*/
|
|
Py_ssize_t min_gallop;
|
|
|
|
Py_ssize_t listlen; /* len(input_list) - read only */
|
|
PyObject **basekeys; /* base address of keys array - read only */
|
|
|
|
/* 'a' is temp storage to help with merges. It contains room for
|
|
* alloced entries.
|
|
*/
|
|
sortslice a; /* may point to temparray below */
|
|
Py_ssize_t alloced;
|
|
|
|
/* A stack of n pending runs yet to be merged. Run #i starts at
|
|
* address base[i] and extends for len[i] elements. It's always
|
|
* true (so long as the indices are in bounds) that
|
|
*
|
|
* pending[i].base + pending[i].len == pending[i+1].base
|
|
*
|
|
* so we could cut the storage for this, but it's a minor amount,
|
|
* and keeping all the info explicit simplifies the code.
|
|
*/
|
|
int n;
|
|
struct s_slice pending[MAX_MERGE_PENDING];
|
|
|
|
/* 'a' points to this when possible, rather than muck with malloc. */
|
|
PyObject *temparray[MERGESTATE_TEMP_SIZE];
|
|
|
|
/* This is the function we will use to compare two keys,
|
|
* even when none of our special cases apply and we have to use
|
|
* safe_object_compare. */
|
|
int (*key_compare)(PyObject *, PyObject *, MergeState *);
|
|
|
|
/* This function is used by unsafe_object_compare to optimize comparisons
|
|
* when we know our list is type-homogeneous but we can't assume anything else.
|
|
* In the pre-sort check it is set equal to Py_TYPE(key)->tp_richcompare */
|
|
PyObject *(*key_richcompare)(PyObject *, PyObject *, int);
|
|
|
|
/* This function is used by unsafe_tuple_compare to compare the first elements
|
|
* of tuples. It may be set to safe_object_compare, but the idea is that hopefully
|
|
* we can assume more, and use one of the special-case compares. */
|
|
int (*tuple_elem_compare)(PyObject *, PyObject *, MergeState *);
|
|
};
|
|
|
|
/* binarysort is the best method for sorting small arrays: it does few
|
|
compares, but can do data movement quadratic in the number of elements.
|
|
ss->keys is viewed as an array of n kays, a[:n]. a[:ok] is already sorted.
|
|
Pass ok = 0 (or 1) if you don't know.
|
|
It's sorted in-place, by a stable binary insertion sort. If ss->values
|
|
isn't NULL, it's permuted in lockstap with ss->keys.
|
|
On entry, must have n >= 1, and 0 <= ok <= n <= MAX_MINRUN.
|
|
Return -1 if comparison raises an exception, else 0.
|
|
Even in case of error, the output slice will be some permutation of
|
|
the input (nothing is lost or duplicated).
|
|
*/
|
|
static int
|
|
binarysort(MergeState *ms, const sortslice *ss, Py_ssize_t n, Py_ssize_t ok)
|
|
{
|
|
Py_ssize_t k; /* for IFLT macro expansion */
|
|
PyObject ** const a = ss->keys;
|
|
PyObject ** const v = ss->values;
|
|
const bool has_values = v != NULL;
|
|
PyObject *pivot;
|
|
Py_ssize_t M;
|
|
|
|
assert(0 <= ok && ok <= n && 1 <= n && n <= MAX_MINRUN);
|
|
/* assert a[:ok] is sorted */
|
|
if (! ok)
|
|
++ok;
|
|
/* Regular insertion sort has average- and worst-case O(n**2) cost
|
|
for both # of comparisons and number of bytes moved. But its branches
|
|
are highly predictable, and it loves sorted input (n-1 compares and no
|
|
data movement). This is significant in cases like sortperf.py's %sort,
|
|
where an out-of-order element near the start of a run is moved into
|
|
place slowly but then the remaining elements up to length minrun are
|
|
generally at worst one slot away from their correct position (so only
|
|
need 1 or 2 commpares to resolve). If comparisons are very fast (such
|
|
as for a list of Python floats), the simple inner loop leaves it
|
|
very competitive with binary insertion, despite that it does
|
|
significantly more compares overall on random data.
|
|
|
|
Binary insertion sort has worst, average, and best case O(n log n)
|
|
cost for # of comparisons, but worst and average case O(n**2) cost
|
|
for data movement. The more expensive comparisons, the more important
|
|
the comparison advantage. But its branches are less predictable the
|
|
more "randomish" the data, and that's so significant its worst case
|
|
in real life is random input rather than reverse-ordered (which does
|
|
about twice the data movement than random input does).
|
|
|
|
Note that the number of bytes moved doesn't seem to matter. MAX_MINRUN
|
|
of 64 is so small that the key and value pointers all fit in a corner
|
|
of L1 cache, and moving things around in that is very fast. */
|
|
#if 0 // ordinary insertion sort.
|
|
PyObject * vpivot = NULL;
|
|
for (; ok < n; ++ok) {
|
|
pivot = a[ok];
|
|
if (has_values)
|
|
vpivot = v[ok];
|
|
for (M = ok - 1; M >= 0; --M) {
|
|
k = ISLT(pivot, a[M]);
|
|
if (k < 0) {
|
|
a[M + 1] = pivot;
|
|
if (has_values)
|
|
v[M + 1] = vpivot;
|
|
goto fail;
|
|
}
|
|
else if (k) {
|
|
a[M + 1] = a[M];
|
|
if (has_values)
|
|
v[M + 1] = v[M];
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
a[M + 1] = pivot;
|
|
if (has_values)
|
|
v[M + 1] = vpivot;
|
|
}
|
|
#else // binary insertion sort
|
|
Py_ssize_t L, R;
|
|
for (; ok < n; ++ok) {
|
|
/* set L to where a[ok] belongs */
|
|
L = 0;
|
|
R = ok;
|
|
pivot = a[ok];
|
|
/* Slice invariants. vacuously true at the start:
|
|
* all a[0:L] <= pivot
|
|
* all a[L:R] unknown
|
|
* all a[R:ok] > pivot
|
|
*/
|
|
assert(L < R);
|
|
do {
|
|
/* don't do silly ;-) things to prevent overflow when finding
|
|
the midpoint; L and R are very far from filling a Py_ssize_t */
|
|
M = (L + R) >> 1;
|
|
#if 1 // straightforward, but highly unpredictable branch on random data
|
|
IFLT(pivot, a[M])
|
|
R = M;
|
|
else
|
|
L = M + 1;
|
|
#else
|
|
/* Try to get compiler to generate conditional move instructions
|
|
instead. Works fine, but leaving it disabled for now because
|
|
it's not yielding consistently faster sorts. Needs more
|
|
investigation. More computation in the inner loop adds its own
|
|
costs, which can be significant when compares are fast. */
|
|
k = ISLT(pivot, a[M]);
|
|
if (k < 0)
|
|
goto fail;
|
|
Py_ssize_t Mp1 = M + 1;
|
|
R = k ? M : R;
|
|
L = k ? L : Mp1;
|
|
#endif
|
|
} while (L < R);
|
|
assert(L == R);
|
|
/* a[:L] holds all elements from a[:ok] <= pivot now, so pivot belongs
|
|
at index L. Slide a[L:ok] to the right a slot to make room for it.
|
|
Caution: using memmove is much slower under MSVC 5; we're not
|
|
usually moving many slots. Years later: under Visual Studio 2022,
|
|
memmove seems just slightly slower than doing it "by hand". */
|
|
for (M = ok; M > L; --M)
|
|
a[M] = a[M - 1];
|
|
a[L] = pivot;
|
|
if (has_values) {
|
|
pivot = v[ok];
|
|
for (M = ok; M > L; --M)
|
|
v[M] = v[M - 1];
|
|
v[L] = pivot;
|
|
}
|
|
}
|
|
#endif // pick binary or regular insertion sort
|
|
return 0;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
sortslice_reverse(sortslice *s, Py_ssize_t n)
|
|
{
|
|
reverse_slice(s->keys, &s->keys[n]);
|
|
if (s->values != NULL)
|
|
reverse_slice(s->values, &s->values[n]);
|
|
}
|
|
|
|
/*
|
|
Return the length of the run beginning at slo->keys, spanning no more than
|
|
nremaining elements. The run beginning there may be ascending or descending,
|
|
but the function permutes it in place, if needed, so that it's always ascending
|
|
upon return.
|
|
|
|
Returns -1 in case of error.
|
|
*/
|
|
static Py_ssize_t
|
|
count_run(MergeState *ms, sortslice *slo, Py_ssize_t nremaining)
|
|
{
|
|
Py_ssize_t k; /* used by IFLT macro expansion */
|
|
Py_ssize_t n;
|
|
PyObject ** const lo = slo->keys;
|
|
|
|
/* In general, as things go on we've established that the slice starts
|
|
with a monotone run of n elements, starting at lo. */
|
|
|
|
/* We're n elements into the slice, and the most recent neq+1 elments are
|
|
* all equal. This reverses them in-place, and resets neq for reuse.
|
|
*/
|
|
#define REVERSE_LAST_NEQ \
|
|
if (neq) { \
|
|
sortslice slice = *slo; \
|
|
++neq; \
|
|
sortslice_advance(&slice, n - neq); \
|
|
sortslice_reverse(&slice, neq); \
|
|
neq = 0; \
|
|
}
|
|
|
|
/* Sticking to only __lt__ compares is confusing and error-prone. But in
|
|
* this routine, almost all uses of IFLT can be captured by tiny macros
|
|
* giving mnemonic names to the intent. Note that inline functions don't
|
|
* work for this (IFLT expands to code including `goto fail`).
|
|
*/
|
|
#define IF_NEXT_LARGER IFLT(lo[n-1], lo[n])
|
|
#define IF_NEXT_SMALLER IFLT(lo[n], lo[n-1])
|
|
|
|
assert(nremaining);
|
|
/* try ascending run first */
|
|
for (n = 1; n < nremaining; ++n) {
|
|
IF_NEXT_SMALLER
|
|
break;
|
|
}
|
|
if (n == nremaining)
|
|
return n;
|
|
/* lo[n] is strictly less */
|
|
/* If n is 1 now, then the first compare established it's a descending
|
|
* run, so fall through to the descending case. But if n > 1, there are
|
|
* n elements in an ascending run terminated by the strictly less lo[n].
|
|
* If the first key < lo[n-1], *somewhere* along the way the sequence
|
|
* increased, so we're done (there is no descending run).
|
|
* Else first key >= lo[n-1], which implies that the entire ascending run
|
|
* consists of equal elements. In that case, this is a descending run,
|
|
* and we reverse the all-equal prefix in-place.
|
|
*/
|
|
if (n > 1) {
|
|
IFLT(lo[0], lo[n-1])
|
|
return n;
|
|
sortslice_reverse(slo, n);
|
|
}
|
|
++n; /* in all cases it's been established that lo[n] has been resolved */
|
|
|
|
/* Finish descending run. All-squal subruns are reversed in-place on the
|
|
* fly. Their original order will be restored at the end by the whole-slice
|
|
* reversal.
|
|
*/
|
|
Py_ssize_t neq = 0;
|
|
for ( ; n < nremaining; ++n) {
|
|
IF_NEXT_SMALLER {
|
|
/* This ends the most recent run of equal elments, but still in
|
|
* the "descending" direction.
|
|
*/
|
|
REVERSE_LAST_NEQ
|
|
}
|
|
else {
|
|
IF_NEXT_LARGER /* descending run is over */
|
|
break;
|
|
else /* not x < y and not y < x implies x == y */
|
|
++neq;
|
|
}
|
|
}
|
|
REVERSE_LAST_NEQ
|
|
sortslice_reverse(slo, n); /* transform to ascending run */
|
|
|
|
/* And after reversing, it's possible this can be extended by a
|
|
* naturally increasing suffix; e.g., [3, 2, 3, 4, 1] makes an
|
|
* ascending run from the first 4 elements.
|
|
*/
|
|
for ( ; n < nremaining; ++n) {
|
|
IF_NEXT_SMALLER
|
|
break;
|
|
}
|
|
|
|
return n;
|
|
fail:
|
|
return -1;
|
|
|
|
#undef REVERSE_LAST_NEQ
|
|
#undef IF_NEXT_SMALLER
|
|
#undef IF_NEXT_LARGER
|
|
}
|
|
|
|
/*
|
|
Locate the proper position of key in a sorted vector; if the vector contains
|
|
an element equal to key, return the position immediately to the left of
|
|
the leftmost equal element. [gallop_right() does the same except returns
|
|
the position to the right of the rightmost equal element (if any).]
|
|
|
|
"a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
|
|
|
|
"hint" is an index at which to begin the search, 0 <= hint < n. The closer
|
|
hint is to the final result, the faster this runs.
|
|
|
|
The return value is the int k in 0..n such that
|
|
|
|
a[k-1] < key <= a[k]
|
|
|
|
pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
|
|
key belongs at index k; or, IOW, the first k elements of a should precede
|
|
key, and the last n-k should follow key.
|
|
|
|
Returns -1 on error. See listsort.txt for info on the method.
|
|
*/
|
|
static Py_ssize_t
|
|
gallop_left(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
|
|
{
|
|
Py_ssize_t ofs;
|
|
Py_ssize_t lastofs;
|
|
Py_ssize_t k;
|
|
|
|
assert(key && a && n > 0 && hint >= 0 && hint < n);
|
|
|
|
a += hint;
|
|
lastofs = 0;
|
|
ofs = 1;
|
|
IFLT(*a, key) {
|
|
/* a[hint] < key -- gallop right, until
|
|
* a[hint + lastofs] < key <= a[hint + ofs]
|
|
*/
|
|
const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
|
|
while (ofs < maxofs) {
|
|
IFLT(a[ofs], key) {
|
|
lastofs = ofs;
|
|
assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
else /* key <= a[hint + ofs] */
|
|
break;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to offsets relative to &a[0]. */
|
|
lastofs += hint;
|
|
ofs += hint;
|
|
}
|
|
else {
|
|
/* key <= a[hint] -- gallop left, until
|
|
* a[hint - ofs] < key <= a[hint - lastofs]
|
|
*/
|
|
const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
|
|
while (ofs < maxofs) {
|
|
IFLT(*(a-ofs), key)
|
|
break;
|
|
/* key <= a[hint - ofs] */
|
|
lastofs = ofs;
|
|
assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to positive offsets relative to &a[0]. */
|
|
k = lastofs;
|
|
lastofs = hint - ofs;
|
|
ofs = hint - k;
|
|
}
|
|
a -= hint;
|
|
|
|
assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
|
|
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
|
|
* right of lastofs but no farther right than ofs. Do a binary
|
|
* search, with invariant a[lastofs-1] < key <= a[ofs].
|
|
*/
|
|
++lastofs;
|
|
while (lastofs < ofs) {
|
|
Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
|
|
|
|
IFLT(a[m], key)
|
|
lastofs = m+1; /* a[m] < key */
|
|
else
|
|
ofs = m; /* key <= a[m] */
|
|
}
|
|
assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */
|
|
return ofs;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
Exactly like gallop_left(), except that if key already exists in a[0:n],
|
|
finds the position immediately to the right of the rightmost equal value.
|
|
|
|
The return value is the int k in 0..n such that
|
|
|
|
a[k-1] <= key < a[k]
|
|
|
|
or -1 if error.
|
|
|
|
The code duplication is massive, but this is enough different given that
|
|
we're sticking to "<" comparisons that it's much harder to follow if
|
|
written as one routine with yet another "left or right?" flag.
|
|
*/
|
|
static Py_ssize_t
|
|
gallop_right(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
|
|
{
|
|
Py_ssize_t ofs;
|
|
Py_ssize_t lastofs;
|
|
Py_ssize_t k;
|
|
|
|
assert(key && a && n > 0 && hint >= 0 && hint < n);
|
|
|
|
a += hint;
|
|
lastofs = 0;
|
|
ofs = 1;
|
|
IFLT(key, *a) {
|
|
/* key < a[hint] -- gallop left, until
|
|
* a[hint - ofs] <= key < a[hint - lastofs]
|
|
*/
|
|
const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
|
|
while (ofs < maxofs) {
|
|
IFLT(key, *(a-ofs)) {
|
|
lastofs = ofs;
|
|
assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
else /* a[hint - ofs] <= key */
|
|
break;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to positive offsets relative to &a[0]. */
|
|
k = lastofs;
|
|
lastofs = hint - ofs;
|
|
ofs = hint - k;
|
|
}
|
|
else {
|
|
/* a[hint] <= key -- gallop right, until
|
|
* a[hint + lastofs] <= key < a[hint + ofs]
|
|
*/
|
|
const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
|
|
while (ofs < maxofs) {
|
|
IFLT(key, a[ofs])
|
|
break;
|
|
/* a[hint + ofs] <= key */
|
|
lastofs = ofs;
|
|
assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to offsets relative to &a[0]. */
|
|
lastofs += hint;
|
|
ofs += hint;
|
|
}
|
|
a -= hint;
|
|
|
|
assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
|
|
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
|
|
* right of lastofs but no farther right than ofs. Do a binary
|
|
* search, with invariant a[lastofs-1] <= key < a[ofs].
|
|
*/
|
|
++lastofs;
|
|
while (lastofs < ofs) {
|
|
Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
|
|
|
|
IFLT(key, a[m])
|
|
ofs = m; /* key < a[m] */
|
|
else
|
|
lastofs = m+1; /* a[m] <= key */
|
|
}
|
|
assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */
|
|
return ofs;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
/* Conceptually a MergeState's constructor. */
|
|
static void
|
|
merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc,
|
|
sortslice *lo)
|
|
{
|
|
assert(ms != NULL);
|
|
if (has_keyfunc) {
|
|
/* The temporary space for merging will need at most half the list
|
|
* size rounded up. Use the minimum possible space so we can use the
|
|
* rest of temparray for other things. In particular, if there is
|
|
* enough extra space, listsort() will use it to store the keys.
|
|
*/
|
|
ms->alloced = (list_size + 1) / 2;
|
|
|
|
/* ms->alloced describes how many keys will be stored at
|
|
ms->temparray, but we also need to store the values. Hence,
|
|
ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */
|
|
if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced)
|
|
ms->alloced = MERGESTATE_TEMP_SIZE / 2;
|
|
ms->a.values = &ms->temparray[ms->alloced];
|
|
}
|
|
else {
|
|
ms->alloced = MERGESTATE_TEMP_SIZE;
|
|
ms->a.values = NULL;
|
|
}
|
|
ms->a.keys = ms->temparray;
|
|
ms->n = 0;
|
|
ms->min_gallop = MIN_GALLOP;
|
|
ms->listlen = list_size;
|
|
ms->basekeys = lo->keys;
|
|
}
|
|
|
|
/* Free all the temp memory owned by the MergeState. This must be called
|
|
* when you're done with a MergeState, and may be called before then if
|
|
* you want to free the temp memory early.
|
|
*/
|
|
static void
|
|
merge_freemem(MergeState *ms)
|
|
{
|
|
assert(ms != NULL);
|
|
if (ms->a.keys != ms->temparray) {
|
|
PyMem_Free(ms->a.keys);
|
|
ms->a.keys = NULL;
|
|
}
|
|
}
|
|
|
|
/* Ensure enough temp memory for 'need' array slots is available.
|
|
* Returns 0 on success and -1 if the memory can't be gotten.
|
|
*/
|
|
static int
|
|
merge_getmem(MergeState *ms, Py_ssize_t need)
|
|
{
|
|
int multiplier;
|
|
|
|
assert(ms != NULL);
|
|
if (need <= ms->alloced)
|
|
return 0;
|
|
|
|
multiplier = ms->a.values != NULL ? 2 : 1;
|
|
|
|
/* Don't realloc! That can cost cycles to copy the old data, but
|
|
* we don't care what's in the block.
|
|
*/
|
|
merge_freemem(ms);
|
|
if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject *) / multiplier) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
ms->a.keys = (PyObject **)PyMem_Malloc(multiplier * need
|
|
* sizeof(PyObject *));
|
|
if (ms->a.keys != NULL) {
|
|
ms->alloced = need;
|
|
if (ms->a.values != NULL)
|
|
ms->a.values = &ms->a.keys[need];
|
|
return 0;
|
|
}
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
|
|
merge_getmem(MS, NEED))
|
|
|
|
/* Merge the na elements starting at ssa with the nb elements starting at
|
|
* ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0.
|
|
* Must also have that ssa.keys[na-1] belongs at the end of the merge, and
|
|
* should have na <= nb. See listsort.txt for more info. Return 0 if
|
|
* successful, -1 if error.
|
|
*/
|
|
static Py_ssize_t
|
|
merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
|
|
sortslice ssb, Py_ssize_t nb)
|
|
{
|
|
Py_ssize_t k;
|
|
sortslice dest;
|
|
int result = -1; /* guilty until proved innocent */
|
|
Py_ssize_t min_gallop;
|
|
|
|
assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
|
|
assert(ssa.keys + na == ssb.keys);
|
|
if (MERGE_GETMEM(ms, na) < 0)
|
|
return -1;
|
|
sortslice_memcpy(&ms->a, 0, &ssa, 0, na);
|
|
dest = ssa;
|
|
ssa = ms->a;
|
|
|
|
sortslice_copy_incr(&dest, &ssb);
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
|
|
min_gallop = ms->min_gallop;
|
|
for (;;) {
|
|
Py_ssize_t acount = 0; /* # of times A won in a row */
|
|
Py_ssize_t bcount = 0; /* # of times B won in a row */
|
|
|
|
/* Do the straightforward thing until (if ever) one run
|
|
* appears to win consistently.
|
|
*/
|
|
for (;;) {
|
|
assert(na > 1 && nb > 0);
|
|
k = ISLT(ssb.keys[0], ssa.keys[0]);
|
|
if (k) {
|
|
if (k < 0)
|
|
goto Fail;
|
|
sortslice_copy_incr(&dest, &ssb);
|
|
++bcount;
|
|
acount = 0;
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
if (bcount >= min_gallop)
|
|
break;
|
|
}
|
|
else {
|
|
sortslice_copy_incr(&dest, &ssa);
|
|
++acount;
|
|
bcount = 0;
|
|
--na;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
if (acount >= min_gallop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* One run is winning so consistently that galloping may
|
|
* be a huge win. So try that, and continue galloping until
|
|
* (if ever) neither run appears to be winning consistently
|
|
* anymore.
|
|
*/
|
|
++min_gallop;
|
|
do {
|
|
assert(na > 1 && nb > 0);
|
|
min_gallop -= min_gallop > 1;
|
|
ms->min_gallop = min_gallop;
|
|
k = gallop_right(ms, ssb.keys[0], ssa.keys, na, 0);
|
|
acount = k;
|
|
if (k) {
|
|
if (k < 0)
|
|
goto Fail;
|
|
sortslice_memcpy(&dest, 0, &ssa, 0, k);
|
|
sortslice_advance(&dest, k);
|
|
sortslice_advance(&ssa, k);
|
|
na -= k;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
/* na==0 is impossible now if the comparison
|
|
* function is consistent, but we can't assume
|
|
* that it is.
|
|
*/
|
|
if (na == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_incr(&dest, &ssb);
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
|
|
k = gallop_left(ms, ssa.keys[0], ssb.keys, nb, 0);
|
|
bcount = k;
|
|
if (k) {
|
|
if (k < 0)
|
|
goto Fail;
|
|
sortslice_memmove(&dest, 0, &ssb, 0, k);
|
|
sortslice_advance(&dest, k);
|
|
sortslice_advance(&ssb, k);
|
|
nb -= k;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_incr(&dest, &ssa);
|
|
--na;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
|
|
++min_gallop; /* penalize it for leaving galloping mode */
|
|
ms->min_gallop = min_gallop;
|
|
}
|
|
Succeed:
|
|
result = 0;
|
|
Fail:
|
|
if (na)
|
|
sortslice_memcpy(&dest, 0, &ssa, 0, na);
|
|
return result;
|
|
CopyB:
|
|
assert(na == 1 && nb > 0);
|
|
/* The last element of ssa belongs at the end of the merge. */
|
|
sortslice_memmove(&dest, 0, &ssb, 0, nb);
|
|
sortslice_copy(&dest, nb, &ssa, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Merge the na elements starting at pa with the nb elements starting at
|
|
* ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0.
|
|
* Must also have that ssa.keys[na-1] belongs at the end of the merge, and
|
|
* should have na >= nb. See listsort.txt for more info. Return 0 if
|
|
* successful, -1 if error.
|
|
*/
|
|
static Py_ssize_t
|
|
merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
|
|
sortslice ssb, Py_ssize_t nb)
|
|
{
|
|
Py_ssize_t k;
|
|
sortslice dest, basea, baseb;
|
|
int result = -1; /* guilty until proved innocent */
|
|
Py_ssize_t min_gallop;
|
|
|
|
assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
|
|
assert(ssa.keys + na == ssb.keys);
|
|
if (MERGE_GETMEM(ms, nb) < 0)
|
|
return -1;
|
|
dest = ssb;
|
|
sortslice_advance(&dest, nb-1);
|
|
sortslice_memcpy(&ms->a, 0, &ssb, 0, nb);
|
|
basea = ssa;
|
|
baseb = ms->a;
|
|
ssb.keys = ms->a.keys + nb - 1;
|
|
if (ssb.values != NULL)
|
|
ssb.values = ms->a.values + nb - 1;
|
|
sortslice_advance(&ssa, na - 1);
|
|
|
|
sortslice_copy_decr(&dest, &ssa);
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
|
|
min_gallop = ms->min_gallop;
|
|
for (;;) {
|
|
Py_ssize_t acount = 0; /* # of times A won in a row */
|
|
Py_ssize_t bcount = 0; /* # of times B won in a row */
|
|
|
|
/* Do the straightforward thing until (if ever) one run
|
|
* appears to win consistently.
|
|
*/
|
|
for (;;) {
|
|
assert(na > 0 && nb > 1);
|
|
k = ISLT(ssb.keys[0], ssa.keys[0]);
|
|
if (k) {
|
|
if (k < 0)
|
|
goto Fail;
|
|
sortslice_copy_decr(&dest, &ssa);
|
|
++acount;
|
|
bcount = 0;
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
if (acount >= min_gallop)
|
|
break;
|
|
}
|
|
else {
|
|
sortslice_copy_decr(&dest, &ssb);
|
|
++bcount;
|
|
acount = 0;
|
|
--nb;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
if (bcount >= min_gallop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* One run is winning so consistently that galloping may
|
|
* be a huge win. So try that, and continue galloping until
|
|
* (if ever) neither run appears to be winning consistently
|
|
* anymore.
|
|
*/
|
|
++min_gallop;
|
|
do {
|
|
assert(na > 0 && nb > 1);
|
|
min_gallop -= min_gallop > 1;
|
|
ms->min_gallop = min_gallop;
|
|
k = gallop_right(ms, ssb.keys[0], basea.keys, na, na-1);
|
|
if (k < 0)
|
|
goto Fail;
|
|
k = na - k;
|
|
acount = k;
|
|
if (k) {
|
|
sortslice_advance(&dest, -k);
|
|
sortslice_advance(&ssa, -k);
|
|
sortslice_memmove(&dest, 1, &ssa, 1, k);
|
|
na -= k;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_decr(&dest, &ssb);
|
|
--nb;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
|
|
k = gallop_left(ms, ssa.keys[0], baseb.keys, nb, nb-1);
|
|
if (k < 0)
|
|
goto Fail;
|
|
k = nb - k;
|
|
bcount = k;
|
|
if (k) {
|
|
sortslice_advance(&dest, -k);
|
|
sortslice_advance(&ssb, -k);
|
|
sortslice_memcpy(&dest, 1, &ssb, 1, k);
|
|
nb -= k;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
/* nb==0 is impossible now if the comparison
|
|
* function is consistent, but we can't assume
|
|
* that it is.
|
|
*/
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_decr(&dest, &ssa);
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
|
|
++min_gallop; /* penalize it for leaving galloping mode */
|
|
ms->min_gallop = min_gallop;
|
|
}
|
|
Succeed:
|
|
result = 0;
|
|
Fail:
|
|
if (nb)
|
|
sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb);
|
|
return result;
|
|
CopyA:
|
|
assert(nb == 1 && na > 0);
|
|
/* The first element of ssb belongs at the front of the merge. */
|
|
sortslice_memmove(&dest, 1-na, &ssa, 1-na, na);
|
|
sortslice_advance(&dest, -na);
|
|
sortslice_advance(&ssa, -na);
|
|
sortslice_copy(&dest, 0, &ssb, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Merge the two runs at stack indices i and i+1.
|
|
* Returns 0 on success, -1 on error.
|
|
*/
|
|
static Py_ssize_t
|
|
merge_at(MergeState *ms, Py_ssize_t i)
|
|
{
|
|
sortslice ssa, ssb;
|
|
Py_ssize_t na, nb;
|
|
Py_ssize_t k;
|
|
|
|
assert(ms != NULL);
|
|
assert(ms->n >= 2);
|
|
assert(i >= 0);
|
|
assert(i == ms->n - 2 || i == ms->n - 3);
|
|
|
|
ssa = ms->pending[i].base;
|
|
na = ms->pending[i].len;
|
|
ssb = ms->pending[i+1].base;
|
|
nb = ms->pending[i+1].len;
|
|
assert(na > 0 && nb > 0);
|
|
assert(ssa.keys + na == ssb.keys);
|
|
|
|
/* Record the length of the combined runs; if i is the 3rd-last
|
|
* run now, also slide over the last run (which isn't involved
|
|
* in this merge). The current run i+1 goes away in any case.
|
|
*/
|
|
ms->pending[i].len = na + nb;
|
|
if (i == ms->n - 3)
|
|
ms->pending[i+1] = ms->pending[i+2];
|
|
--ms->n;
|
|
|
|
/* Where does b start in a? Elements in a before that can be
|
|
* ignored (already in place).
|
|
*/
|
|
k = gallop_right(ms, *ssb.keys, ssa.keys, na, 0);
|
|
if (k < 0)
|
|
return -1;
|
|
sortslice_advance(&ssa, k);
|
|
na -= k;
|
|
if (na == 0)
|
|
return 0;
|
|
|
|
/* Where does a end in b? Elements in b after that can be
|
|
* ignored (already in place).
|
|
*/
|
|
nb = gallop_left(ms, ssa.keys[na-1], ssb.keys, nb, nb-1);
|
|
if (nb <= 0)
|
|
return nb;
|
|
|
|
/* Merge what remains of the runs, using a temp array with
|
|
* min(na, nb) elements.
|
|
*/
|
|
if (na <= nb)
|
|
return merge_lo(ms, ssa, na, ssb, nb);
|
|
else
|
|
return merge_hi(ms, ssa, na, ssb, nb);
|
|
}
|
|
|
|
/* Two adjacent runs begin at index s1. The first run has length n1, and
|
|
* the second run (starting at index s1+n1) has length n2. The list has total
|
|
* length n.
|
|
* Compute the "power" of the first run. See listsort.txt for details.
|
|
*/
|
|
static int
|
|
powerloop(Py_ssize_t s1, Py_ssize_t n1, Py_ssize_t n2, Py_ssize_t n)
|
|
{
|
|
int result = 0;
|
|
assert(s1 >= 0);
|
|
assert(n1 > 0 && n2 > 0);
|
|
assert(s1 + n1 + n2 <= n);
|
|
/* midpoints a and b:
|
|
* a = s1 + n1/2
|
|
* b = s1 + n1 + n2/2 = a + (n1 + n2)/2
|
|
*
|
|
* Those may not be integers, though, because of the "/2". So we work with
|
|
* 2*a and 2*b instead, which are necessarily integers. It makes no
|
|
* difference to the outcome, since the bits in the expansion of (2*i)/n
|
|
* are merely shifted one position from those of i/n.
|
|
*/
|
|
Py_ssize_t a = 2 * s1 + n1; /* 2*a */
|
|
Py_ssize_t b = a + n1 + n2; /* 2*b */
|
|
/* Emulate a/n and b/n one bit a time, until bits differ. */
|
|
for (;;) {
|
|
++result;
|
|
if (a >= n) { /* both quotient bits are 1 */
|
|
assert(b >= a);
|
|
a -= n;
|
|
b -= n;
|
|
}
|
|
else if (b >= n) { /* a/n bit is 0, b/n bit is 1 */
|
|
break;
|
|
} /* else both quotient bits are 0 */
|
|
assert(a < b && b < n);
|
|
a <<= 1;
|
|
b <<= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* The next run has been identified, of length n2.
|
|
* If there's already a run on the stack, apply the "powersort" merge strategy:
|
|
* compute the topmost run's "power" (depth in a conceptual binary merge tree)
|
|
* and merge adjacent runs on the stack with greater power. See listsort.txt
|
|
* for more info.
|
|
*
|
|
* It's the caller's responsibility to push the new run on the stack when this
|
|
* returns.
|
|
*
|
|
* Returns 0 on success, -1 on error.
|
|
*/
|
|
static int
|
|
found_new_run(MergeState *ms, Py_ssize_t n2)
|
|
{
|
|
assert(ms);
|
|
if (ms->n) {
|
|
assert(ms->n > 0);
|
|
struct s_slice *p = ms->pending;
|
|
Py_ssize_t s1 = p[ms->n - 1].base.keys - ms->basekeys; /* start index */
|
|
Py_ssize_t n1 = p[ms->n - 1].len;
|
|
int power = powerloop(s1, n1, n2, ms->listlen);
|
|
while (ms->n > 1 && p[ms->n - 2].power > power) {
|
|
if (merge_at(ms, ms->n - 2) < 0)
|
|
return -1;
|
|
}
|
|
assert(ms->n < 2 || p[ms->n - 2].power < power);
|
|
p[ms->n - 1].power = power;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Regardless of invariants, merge all runs on the stack until only one
|
|
* remains. This is used at the end of the mergesort.
|
|
*
|
|
* Returns 0 on success, -1 on error.
|
|
*/
|
|
static int
|
|
merge_force_collapse(MergeState *ms)
|
|
{
|
|
struct s_slice *p = ms->pending;
|
|
|
|
assert(ms);
|
|
while (ms->n > 1) {
|
|
Py_ssize_t n = ms->n - 2;
|
|
if (n > 0 && p[n-1].len < p[n+1].len)
|
|
--n;
|
|
if (merge_at(ms, n) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Compute a good value for the minimum run length; natural runs shorter
|
|
* than this are boosted artificially via binary insertion.
|
|
*
|
|
* If n < MAX_MINRUN return n (it's too small to bother with fancy stuff).
|
|
* Else if n is an exact power of 2, return MAX_MINRUN / 2.
|
|
* Else return an int k, MAX_MINRUN / 2 <= k <= MAX_MINRUN, such that n/k is
|
|
* close to, but strictly less than, an exact power of 2.
|
|
*
|
|
* See listsort.txt for more info.
|
|
*/
|
|
static Py_ssize_t
|
|
merge_compute_minrun(Py_ssize_t n)
|
|
{
|
|
Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */
|
|
|
|
assert(n >= 0);
|
|
while (n >= MAX_MINRUN) {
|
|
r |= n & 1;
|
|
n >>= 1;
|
|
}
|
|
return n + r;
|
|
}
|
|
|
|
/* Here we define custom comparison functions to optimize for the cases one commonly
|
|
* encounters in practice: homogeneous lists, often of one of the basic types. */
|
|
|
|
/* This struct holds the comparison function and helper functions
|
|
* selected in the pre-sort check. */
|
|
|
|
/* These are the special case compare functions.
|
|
* ms->key_compare will always point to one of these: */
|
|
|
|
/* Heterogeneous compare: default, always safe to fall back on. */
|
|
static int
|
|
safe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
|
|
{
|
|
/* No assumptions necessary! */
|
|
return PyObject_RichCompareBool(v, w, Py_LT);
|
|
}
|
|
|
|
/* Homogeneous compare: safe for any two comparable objects of the same type.
|
|
* (ms->key_richcompare is set to ob_type->tp_richcompare in the
|
|
* pre-sort check.)
|
|
*/
|
|
static int
|
|
unsafe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
|
|
{
|
|
PyObject *res_obj; int res;
|
|
|
|
/* No assumptions, because we check first: */
|
|
if (Py_TYPE(v)->tp_richcompare != ms->key_richcompare)
|
|
return PyObject_RichCompareBool(v, w, Py_LT);
|
|
|
|
assert(ms->key_richcompare != NULL);
|
|
res_obj = (*(ms->key_richcompare))(v, w, Py_LT);
|
|
|
|
if (res_obj == Py_NotImplemented) {
|
|
Py_DECREF(res_obj);
|
|
return PyObject_RichCompareBool(v, w, Py_LT);
|
|
}
|
|
if (res_obj == NULL)
|
|
return -1;
|
|
|
|
if (PyBool_Check(res_obj)) {
|
|
res = (res_obj == Py_True);
|
|
}
|
|
else {
|
|
res = PyObject_IsTrue(res_obj);
|
|
}
|
|
Py_DECREF(res_obj);
|
|
|
|
/* Note that we can't assert
|
|
* res == PyObject_RichCompareBool(v, w, Py_LT);
|
|
* because of evil compare functions like this:
|
|
* lambda a, b: int(random.random() * 3) - 1)
|
|
* (which is actually in test_sort.py) */
|
|
return res;
|
|
}
|
|
|
|
/* Latin string compare: safe for any two latin (one byte per char) strings. */
|
|
static int
|
|
unsafe_latin_compare(PyObject *v, PyObject *w, MergeState *ms)
|
|
{
|
|
Py_ssize_t len;
|
|
int res;
|
|
|
|
/* Modified from Objects/unicodeobject.c:unicode_compare, assuming: */
|
|
assert(Py_IS_TYPE(v, &PyUnicode_Type));
|
|
assert(Py_IS_TYPE(w, &PyUnicode_Type));
|
|
assert(PyUnicode_KIND(v) == PyUnicode_KIND(w));
|
|
assert(PyUnicode_KIND(v) == PyUnicode_1BYTE_KIND);
|
|
|
|
len = Py_MIN(PyUnicode_GET_LENGTH(v), PyUnicode_GET_LENGTH(w));
|
|
res = memcmp(PyUnicode_DATA(v), PyUnicode_DATA(w), len);
|
|
|
|
res = (res != 0 ?
|
|
res < 0 :
|
|
PyUnicode_GET_LENGTH(v) < PyUnicode_GET_LENGTH(w));
|
|
|
|
assert(res == PyObject_RichCompareBool(v, w, Py_LT));;
|
|
return res;
|
|
}
|
|
|
|
/* Bounded int compare: compare any two longs that fit in a single machine word. */
|
|
static int
|
|
unsafe_long_compare(PyObject *v, PyObject *w, MergeState *ms)
|
|
{
|
|
PyLongObject *vl, *wl;
|
|
intptr_t v0, w0;
|
|
int res;
|
|
|
|
/* Modified from Objects/longobject.c:long_compare, assuming: */
|
|
assert(Py_IS_TYPE(v, &PyLong_Type));
|
|
assert(Py_IS_TYPE(w, &PyLong_Type));
|
|
assert(_PyLong_IsCompact((PyLongObject *)v));
|
|
assert(_PyLong_IsCompact((PyLongObject *)w));
|
|
|
|
vl = (PyLongObject*)v;
|
|
wl = (PyLongObject*)w;
|
|
|
|
v0 = _PyLong_CompactValue(vl);
|
|
w0 = _PyLong_CompactValue(wl);
|
|
|
|
res = v0 < w0;
|
|
assert(res == PyObject_RichCompareBool(v, w, Py_LT));
|
|
return res;
|
|
}
|
|
|
|
/* Float compare: compare any two floats. */
|
|
static int
|
|
unsafe_float_compare(PyObject *v, PyObject *w, MergeState *ms)
|
|
{
|
|
int res;
|
|
|
|
/* Modified from Objects/floatobject.c:float_richcompare, assuming: */
|
|
assert(Py_IS_TYPE(v, &PyFloat_Type));
|
|
assert(Py_IS_TYPE(w, &PyFloat_Type));
|
|
|
|
res = PyFloat_AS_DOUBLE(v) < PyFloat_AS_DOUBLE(w);
|
|
assert(res == PyObject_RichCompareBool(v, w, Py_LT));
|
|
return res;
|
|
}
|
|
|
|
/* Tuple compare: compare *any* two tuples, using
|
|
* ms->tuple_elem_compare to compare the first elements, which is set
|
|
* using the same pre-sort check as we use for ms->key_compare,
|
|
* but run on the list [x[0] for x in L]. This allows us to optimize compares
|
|
* on two levels (as long as [x[0] for x in L] is type-homogeneous.) The idea is
|
|
* that most tuple compares don't involve x[1:]. */
|
|
static int
|
|
unsafe_tuple_compare(PyObject *v, PyObject *w, MergeState *ms)
|
|
{
|
|
PyTupleObject *vt, *wt;
|
|
Py_ssize_t i, vlen, wlen;
|
|
int k;
|
|
|
|
/* Modified from Objects/tupleobject.c:tuplerichcompare, assuming: */
|
|
assert(Py_IS_TYPE(v, &PyTuple_Type));
|
|
assert(Py_IS_TYPE(w, &PyTuple_Type));
|
|
assert(Py_SIZE(v) > 0);
|
|
assert(Py_SIZE(w) > 0);
|
|
|
|
vt = (PyTupleObject *)v;
|
|
wt = (PyTupleObject *)w;
|
|
|
|
vlen = Py_SIZE(vt);
|
|
wlen = Py_SIZE(wt);
|
|
|
|
for (i = 0; i < vlen && i < wlen; i++) {
|
|
k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ);
|
|
if (k < 0)
|
|
return -1;
|
|
if (!k)
|
|
break;
|
|
}
|
|
|
|
if (i >= vlen || i >= wlen)
|
|
return vlen < wlen;
|
|
|
|
if (i == 0)
|
|
return ms->tuple_elem_compare(vt->ob_item[i], wt->ob_item[i], ms);
|
|
else
|
|
return PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_LT);
|
|
}
|
|
|
|
/* An adaptive, stable, natural mergesort. See listsort.txt.
|
|
* Returns Py_None on success, NULL on error. Even in case of error, the
|
|
* list will be some permutation of its input state (nothing is lost or
|
|
* duplicated).
|
|
*/
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.sort
|
|
|
|
*
|
|
key as keyfunc: object = None
|
|
reverse: bool = False
|
|
|
|
Sort the list in ascending order and return None.
|
|
|
|
The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
|
|
order of two equal elements is maintained).
|
|
|
|
If a key function is given, apply it once to each list item and sort them,
|
|
ascending or descending, according to their function values.
|
|
|
|
The reverse flag can be set to sort in descending order.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse)
|
|
/*[clinic end generated code: output=57b9f9c5e23fbe42 input=667bf25d0e3a3676]*/
|
|
{
|
|
MergeState ms;
|
|
Py_ssize_t nremaining;
|
|
Py_ssize_t minrun;
|
|
sortslice lo;
|
|
Py_ssize_t saved_ob_size, saved_allocated;
|
|
PyObject **saved_ob_item;
|
|
PyObject **final_ob_item;
|
|
PyObject *result = NULL; /* guilty until proved innocent */
|
|
Py_ssize_t i;
|
|
PyObject **keys;
|
|
|
|
assert(self != NULL);
|
|
assert(PyList_Check(self));
|
|
if (keyfunc == Py_None)
|
|
keyfunc = NULL;
|
|
|
|
/* The list is temporarily made empty, so that mutations performed
|
|
* by comparison functions can't affect the slice of memory we're
|
|
* sorting (allowing mutations during sorting is a core-dump
|
|
* factory, since ob_item may change).
|
|
*/
|
|
saved_ob_size = Py_SIZE(self);
|
|
saved_ob_item = self->ob_item;
|
|
saved_allocated = self->allocated;
|
|
Py_SET_SIZE(self, 0);
|
|
FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item, NULL);
|
|
self->allocated = -1; /* any operation will reset it to >= 0 */
|
|
|
|
if (keyfunc == NULL) {
|
|
keys = NULL;
|
|
lo.keys = saved_ob_item;
|
|
lo.values = NULL;
|
|
}
|
|
else {
|
|
if (saved_ob_size < MERGESTATE_TEMP_SIZE/2)
|
|
/* Leverage stack space we allocated but won't otherwise use */
|
|
keys = &ms.temparray[saved_ob_size+1];
|
|
else {
|
|
keys = PyMem_Malloc(sizeof(PyObject *) * saved_ob_size);
|
|
if (keys == NULL) {
|
|
PyErr_NoMemory();
|
|
goto keyfunc_fail;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < saved_ob_size ; i++) {
|
|
keys[i] = PyObject_CallOneArg(keyfunc, saved_ob_item[i]);
|
|
if (keys[i] == NULL) {
|
|
for (i=i-1 ; i>=0 ; i--)
|
|
Py_DECREF(keys[i]);
|
|
if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
|
|
PyMem_Free(keys);
|
|
goto keyfunc_fail;
|
|
}
|
|
}
|
|
|
|
lo.keys = keys;
|
|
lo.values = saved_ob_item;
|
|
}
|
|
|
|
|
|
/* The pre-sort check: here's where we decide which compare function to use.
|
|
* How much optimization is safe? We test for homogeneity with respect to
|
|
* several properties that are expensive to check at compare-time, and
|
|
* set ms appropriately. */
|
|
if (saved_ob_size > 1) {
|
|
/* Assume the first element is representative of the whole list. */
|
|
int keys_are_in_tuples = (Py_IS_TYPE(lo.keys[0], &PyTuple_Type) &&
|
|
Py_SIZE(lo.keys[0]) > 0);
|
|
|
|
PyTypeObject* key_type = (keys_are_in_tuples ?
|
|
Py_TYPE(PyTuple_GET_ITEM(lo.keys[0], 0)) :
|
|
Py_TYPE(lo.keys[0]));
|
|
|
|
int keys_are_all_same_type = 1;
|
|
int strings_are_latin = 1;
|
|
int ints_are_bounded = 1;
|
|
|
|
/* Prove that assumption by checking every key. */
|
|
for (i=0; i < saved_ob_size; i++) {
|
|
|
|
if (keys_are_in_tuples &&
|
|
!(Py_IS_TYPE(lo.keys[i], &PyTuple_Type) && Py_SIZE(lo.keys[i]) != 0)) {
|
|
keys_are_in_tuples = 0;
|
|
keys_are_all_same_type = 0;
|
|
break;
|
|
}
|
|
|
|
/* Note: for lists of tuples, key is the first element of the tuple
|
|
* lo.keys[i], not lo.keys[i] itself! We verify type-homogeneity
|
|
* for lists of tuples in the if-statement directly above. */
|
|
PyObject *key = (keys_are_in_tuples ?
|
|
PyTuple_GET_ITEM(lo.keys[i], 0) :
|
|
lo.keys[i]);
|
|
|
|
if (!Py_IS_TYPE(key, key_type)) {
|
|
keys_are_all_same_type = 0;
|
|
/* If keys are in tuple we must loop over the whole list to make
|
|
sure all items are tuples */
|
|
if (!keys_are_in_tuples) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (keys_are_all_same_type) {
|
|
if (key_type == &PyLong_Type &&
|
|
ints_are_bounded &&
|
|
!_PyLong_IsCompact((PyLongObject *)key)) {
|
|
|
|
ints_are_bounded = 0;
|
|
}
|
|
else if (key_type == &PyUnicode_Type &&
|
|
strings_are_latin &&
|
|
PyUnicode_KIND(key) != PyUnicode_1BYTE_KIND) {
|
|
|
|
strings_are_latin = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Choose the best compare, given what we now know about the keys. */
|
|
if (keys_are_all_same_type) {
|
|
|
|
if (key_type == &PyUnicode_Type && strings_are_latin) {
|
|
ms.key_compare = unsafe_latin_compare;
|
|
}
|
|
else if (key_type == &PyLong_Type && ints_are_bounded) {
|
|
ms.key_compare = unsafe_long_compare;
|
|
}
|
|
else if (key_type == &PyFloat_Type) {
|
|
ms.key_compare = unsafe_float_compare;
|
|
}
|
|
else if ((ms.key_richcompare = key_type->tp_richcompare) != NULL) {
|
|
ms.key_compare = unsafe_object_compare;
|
|
}
|
|
else {
|
|
ms.key_compare = safe_object_compare;
|
|
}
|
|
}
|
|
else {
|
|
ms.key_compare = safe_object_compare;
|
|
}
|
|
|
|
if (keys_are_in_tuples) {
|
|
/* Make sure we're not dealing with tuples of tuples
|
|
* (remember: here, key_type refers list [key[0] for key in keys]) */
|
|
if (key_type == &PyTuple_Type) {
|
|
ms.tuple_elem_compare = safe_object_compare;
|
|
}
|
|
else {
|
|
ms.tuple_elem_compare = ms.key_compare;
|
|
}
|
|
|
|
ms.key_compare = unsafe_tuple_compare;
|
|
}
|
|
}
|
|
/* End of pre-sort check: ms is now set properly! */
|
|
|
|
merge_init(&ms, saved_ob_size, keys != NULL, &lo);
|
|
|
|
nremaining = saved_ob_size;
|
|
if (nremaining < 2)
|
|
goto succeed;
|
|
|
|
/* Reverse sort stability achieved by initially reversing the list,
|
|
applying a stable forward sort, then reversing the final result. */
|
|
if (reverse) {
|
|
if (keys != NULL)
|
|
reverse_slice(&keys[0], &keys[saved_ob_size]);
|
|
reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]);
|
|
}
|
|
|
|
/* March over the array once, left to right, finding natural runs,
|
|
* and extending short natural runs to minrun elements.
|
|
*/
|
|
minrun = merge_compute_minrun(nremaining);
|
|
do {
|
|
Py_ssize_t n;
|
|
|
|
/* Identify next run. */
|
|
n = count_run(&ms, &lo, nremaining);
|
|
if (n < 0)
|
|
goto fail;
|
|
/* If short, extend to min(minrun, nremaining). */
|
|
if (n < minrun) {
|
|
const Py_ssize_t force = nremaining <= minrun ?
|
|
nremaining : minrun;
|
|
if (binarysort(&ms, &lo, force, n) < 0)
|
|
goto fail;
|
|
n = force;
|
|
}
|
|
/* Maybe merge pending runs. */
|
|
assert(ms.n == 0 || ms.pending[ms.n -1].base.keys +
|
|
ms.pending[ms.n-1].len == lo.keys);
|
|
if (found_new_run(&ms, n) < 0)
|
|
goto fail;
|
|
/* Push new run on stack. */
|
|
assert(ms.n < MAX_MERGE_PENDING);
|
|
ms.pending[ms.n].base = lo;
|
|
ms.pending[ms.n].len = n;
|
|
++ms.n;
|
|
/* Advance to find next run. */
|
|
sortslice_advance(&lo, n);
|
|
nremaining -= n;
|
|
} while (nremaining);
|
|
|
|
if (merge_force_collapse(&ms) < 0)
|
|
goto fail;
|
|
assert(ms.n == 1);
|
|
assert(keys == NULL
|
|
? ms.pending[0].base.keys == saved_ob_item
|
|
: ms.pending[0].base.keys == &keys[0]);
|
|
assert(ms.pending[0].len == saved_ob_size);
|
|
lo = ms.pending[0].base;
|
|
|
|
succeed:
|
|
result = Py_None;
|
|
fail:
|
|
if (keys != NULL) {
|
|
for (i = 0; i < saved_ob_size; i++)
|
|
Py_DECREF(keys[i]);
|
|
if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
|
|
PyMem_Free(keys);
|
|
}
|
|
|
|
if (self->allocated != -1 && result != NULL) {
|
|
/* The user mucked with the list during the sort,
|
|
* and we don't already have another error to report.
|
|
*/
|
|
PyErr_SetString(PyExc_ValueError, "list modified during sort");
|
|
result = NULL;
|
|
}
|
|
|
|
if (reverse && saved_ob_size > 1)
|
|
reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
|
|
|
|
merge_freemem(&ms);
|
|
|
|
keyfunc_fail:
|
|
final_ob_item = self->ob_item;
|
|
i = Py_SIZE(self);
|
|
Py_SET_SIZE(self, saved_ob_size);
|
|
FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item, saved_ob_item);
|
|
FT_ATOMIC_STORE_SSIZE_RELAXED(self->allocated, saved_allocated);
|
|
if (final_ob_item != NULL) {
|
|
/* we cannot use list_clear() for this because it does not
|
|
guarantee that the list is really empty when it returns */
|
|
while (--i >= 0) {
|
|
Py_XDECREF(final_ob_item[i]);
|
|
}
|
|
#ifdef Py_GIL_DISABLED
|
|
bool use_qsbr = _PyObject_GC_IS_SHARED(self);
|
|
#else
|
|
bool use_qsbr = false;
|
|
#endif
|
|
free_list_items(final_ob_item, use_qsbr);
|
|
}
|
|
return Py_XNewRef(result);
|
|
}
|
|
#undef IFLT
|
|
#undef ISLT
|
|
|
|
int
|
|
PyList_Sort(PyObject *v)
|
|
{
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
Py_BEGIN_CRITICAL_SECTION(v);
|
|
v = list_sort_impl((PyListObject *)v, NULL, 0);
|
|
Py_END_CRITICAL_SECTION();
|
|
if (v == NULL)
|
|
return -1;
|
|
Py_DECREF(v);
|
|
return 0;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.reverse
|
|
|
|
Reverse *IN PLACE*.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_reverse_impl(PyListObject *self)
|
|
/*[clinic end generated code: output=482544fc451abea9 input=04ac8e0c6a66e4d9]*/
|
|
{
|
|
if (Py_SIZE(self) > 1)
|
|
reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
int
|
|
PyList_Reverse(PyObject *v)
|
|
{
|
|
PyListObject *self = (PyListObject *)v;
|
|
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
if (Py_SIZE(self) > 1) {
|
|
reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
|
|
}
|
|
Py_END_CRITICAL_SECTION()
|
|
return 0;
|
|
}
|
|
|
|
PyObject *
|
|
PyList_AsTuple(PyObject *v)
|
|
{
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
PyObject *ret;
|
|
PyListObject *self = (PyListObject *)v;
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
ret = _PyTuple_FromArray(self->ob_item, Py_SIZE(v));
|
|
Py_END_CRITICAL_SECTION();
|
|
return ret;
|
|
}
|
|
|
|
PyObject *
|
|
_PyList_FromArraySteal(PyObject *const *src, Py_ssize_t n)
|
|
{
|
|
if (n == 0) {
|
|
return PyList_New(0);
|
|
}
|
|
|
|
PyListObject *list = (PyListObject *)PyList_New(n);
|
|
if (list == NULL) {
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
Py_DECREF(src[i]);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
PyObject **dst = list->ob_item;
|
|
memcpy(dst, src, n * sizeof(PyObject *));
|
|
|
|
return (PyObject *)list;
|
|
}
|
|
|
|
/*[clinic input]
|
|
list.index
|
|
|
|
value: object
|
|
start: slice_index(accept={int}) = 0
|
|
stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize
|
|
/
|
|
|
|
Return first index of value.
|
|
|
|
Raises ValueError if the value is not present.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_index_impl(PyListObject *self, PyObject *value, Py_ssize_t start,
|
|
Py_ssize_t stop)
|
|
/*[clinic end generated code: output=ec51b88787e4e481 input=40ec5826303a0eb1]*/
|
|
{
|
|
if (start < 0) {
|
|
start += Py_SIZE(self);
|
|
if (start < 0)
|
|
start = 0;
|
|
}
|
|
if (stop < 0) {
|
|
stop += Py_SIZE(self);
|
|
if (stop < 0)
|
|
stop = 0;
|
|
}
|
|
for (Py_ssize_t i = start; i < stop; i++) {
|
|
PyObject *obj = list_get_item_ref(self, i);
|
|
if (obj == NULL) {
|
|
// out-of-bounds
|
|
break;
|
|
}
|
|
int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
|
|
Py_DECREF(obj);
|
|
if (cmp > 0)
|
|
return PyLong_FromSsize_t(i);
|
|
else if (cmp < 0)
|
|
return NULL;
|
|
}
|
|
PyErr_Format(PyExc_ValueError, "%R is not in list", value);
|
|
return NULL;
|
|
}
|
|
|
|
/*[clinic input]
|
|
list.count
|
|
|
|
value: object
|
|
/
|
|
|
|
Return number of occurrences of value.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_count(PyListObject *self, PyObject *value)
|
|
/*[clinic end generated code: output=b1f5d284205ae714 input=3bdc3a5e6f749565]*/
|
|
{
|
|
Py_ssize_t count = 0;
|
|
for (Py_ssize_t i = 0; ; i++) {
|
|
PyObject *obj = list_get_item_ref(self, i);
|
|
if (obj == NULL) {
|
|
// out-of-bounds
|
|
break;
|
|
}
|
|
if (obj == value) {
|
|
count++;
|
|
Py_DECREF(obj);
|
|
continue;
|
|
}
|
|
int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
|
|
Py_DECREF(obj);
|
|
if (cmp > 0)
|
|
count++;
|
|
else if (cmp < 0)
|
|
return NULL;
|
|
}
|
|
return PyLong_FromSsize_t(count);
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
list.remove
|
|
|
|
value: object
|
|
/
|
|
|
|
Remove first occurrence of value.
|
|
|
|
Raises ValueError if the value is not present.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list_remove_impl(PyListObject *self, PyObject *value)
|
|
/*[clinic end generated code: output=b9b76a6633b18778 input=26c813dbb95aa93b]*/
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
for (i = 0; i < Py_SIZE(self); i++) {
|
|
PyObject *obj = self->ob_item[i];
|
|
Py_INCREF(obj);
|
|
int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
|
|
Py_DECREF(obj);
|
|
if (cmp > 0) {
|
|
if (list_ass_slice_lock_held(self, i, i+1, NULL) == 0)
|
|
Py_RETURN_NONE;
|
|
return NULL;
|
|
}
|
|
else if (cmp < 0)
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
list_traverse(PyObject *self, visitproc visit, void *arg)
|
|
{
|
|
PyListObject *o = (PyListObject *)self;
|
|
Py_ssize_t i;
|
|
|
|
for (i = Py_SIZE(o); --i >= 0; )
|
|
Py_VISIT(o->ob_item[i]);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
list_richcompare_impl(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyListObject *vl, *wl;
|
|
Py_ssize_t i;
|
|
|
|
if (!PyList_Check(v) || !PyList_Check(w))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
vl = (PyListObject *)v;
|
|
wl = (PyListObject *)w;
|
|
|
|
if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) {
|
|
/* Shortcut: if the lengths differ, the lists differ */
|
|
if (op == Py_EQ)
|
|
Py_RETURN_FALSE;
|
|
else
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
/* Search for the first index where items are different */
|
|
for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) {
|
|
PyObject *vitem = vl->ob_item[i];
|
|
PyObject *witem = wl->ob_item[i];
|
|
if (vitem == witem) {
|
|
continue;
|
|
}
|
|
|
|
Py_INCREF(vitem);
|
|
Py_INCREF(witem);
|
|
int k = PyObject_RichCompareBool(vitem, witem, Py_EQ);
|
|
Py_DECREF(vitem);
|
|
Py_DECREF(witem);
|
|
if (k < 0)
|
|
return NULL;
|
|
if (!k)
|
|
break;
|
|
}
|
|
|
|
if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) {
|
|
/* No more items to compare -- compare sizes */
|
|
Py_RETURN_RICHCOMPARE(Py_SIZE(vl), Py_SIZE(wl), op);
|
|
}
|
|
|
|
/* We have an item that differs -- shortcuts for EQ/NE */
|
|
if (op == Py_EQ) {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
if (op == Py_NE) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
/* Compare the final item again using the proper operator */
|
|
return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
|
|
}
|
|
|
|
static PyObject *
|
|
list_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *ret;
|
|
Py_BEGIN_CRITICAL_SECTION2(v, w);
|
|
ret = list_richcompare_impl(v, w, op);
|
|
Py_END_CRITICAL_SECTION2()
|
|
return ret;
|
|
}
|
|
|
|
/*[clinic input]
|
|
list.__init__
|
|
|
|
iterable: object(c_default="NULL") = ()
|
|
/
|
|
|
|
Built-in mutable sequence.
|
|
|
|
If no argument is given, the constructor creates a new empty list.
|
|
The argument must be an iterable if specified.
|
|
[clinic start generated code]*/
|
|
|
|
static int
|
|
list___init___impl(PyListObject *self, PyObject *iterable)
|
|
/*[clinic end generated code: output=0f3c21379d01de48 input=b3f3fe7206af8f6b]*/
|
|
{
|
|
/* Verify list invariants established by PyType_GenericAlloc() */
|
|
assert(0 <= Py_SIZE(self));
|
|
assert(Py_SIZE(self) <= self->allocated || self->allocated == -1);
|
|
assert(self->ob_item != NULL ||
|
|
self->allocated == 0 || self->allocated == -1);
|
|
|
|
/* Empty previous contents */
|
|
if (self->ob_item != NULL) {
|
|
list_clear(self);
|
|
}
|
|
if (iterable != NULL) {
|
|
if (_list_extend(self, iterable) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
list_vectorcall(PyObject *type, PyObject * const*args,
|
|
size_t nargsf, PyObject *kwnames)
|
|
{
|
|
if (!_PyArg_NoKwnames("list", kwnames)) {
|
|
return NULL;
|
|
}
|
|
Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
|
|
if (!_PyArg_CheckPositional("list", nargs, 0, 1)) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *list = PyType_GenericAlloc(_PyType_CAST(type), 0);
|
|
if (list == NULL) {
|
|
return NULL;
|
|
}
|
|
if (nargs) {
|
|
if (list___init___impl((PyListObject *)list, args[0])) {
|
|
Py_DECREF(list);
|
|
return NULL;
|
|
}
|
|
}
|
|
return list;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
list.__sizeof__
|
|
|
|
Return the size of the list in memory, in bytes.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list___sizeof___impl(PyListObject *self)
|
|
/*[clinic end generated code: output=3417541f95f9a53e input=b8030a5d5ce8a187]*/
|
|
{
|
|
size_t res = _PyObject_SIZE(Py_TYPE(self));
|
|
Py_ssize_t allocated = FT_ATOMIC_LOAD_SSIZE_RELAXED(self->allocated);
|
|
res += (size_t)allocated * sizeof(void*);
|
|
return PyLong_FromSize_t(res);
|
|
}
|
|
|
|
static PyObject *list_iter(PyObject *seq);
|
|
static PyObject *list_subscript(PyObject*, PyObject*);
|
|
|
|
static PyMethodDef list_methods[] = {
|
|
{"__getitem__", list_subscript, METH_O|METH_COEXIST,
|
|
PyDoc_STR("__getitem__($self, index, /)\n--\n\nReturn self[index].")},
|
|
LIST___REVERSED___METHODDEF
|
|
LIST___SIZEOF___METHODDEF
|
|
PY_LIST_CLEAR_METHODDEF
|
|
LIST_COPY_METHODDEF
|
|
LIST_APPEND_METHODDEF
|
|
LIST_INSERT_METHODDEF
|
|
LIST_EXTEND_METHODDEF
|
|
LIST_POP_METHODDEF
|
|
LIST_REMOVE_METHODDEF
|
|
LIST_INDEX_METHODDEF
|
|
LIST_COUNT_METHODDEF
|
|
LIST_REVERSE_METHODDEF
|
|
LIST_SORT_METHODDEF
|
|
{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PySequenceMethods list_as_sequence = {
|
|
list_length, /* sq_length */
|
|
list_concat, /* sq_concat */
|
|
list_repeat, /* sq_repeat */
|
|
list_item, /* sq_item */
|
|
0, /* sq_slice */
|
|
list_ass_item, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
list_contains, /* sq_contains */
|
|
list_inplace_concat, /* sq_inplace_concat */
|
|
list_inplace_repeat, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static inline PyObject *
|
|
list_slice_step_lock_held(PyListObject *a, Py_ssize_t start, Py_ssize_t step, Py_ssize_t len)
|
|
{
|
|
PyListObject *np = (PyListObject *)list_new_prealloc(len);
|
|
if (np == NULL) {
|
|
return NULL;
|
|
}
|
|
size_t cur;
|
|
Py_ssize_t i;
|
|
PyObject **src = a->ob_item;
|
|
PyObject **dest = np->ob_item;
|
|
for (cur = start, i = 0; i < len;
|
|
cur += (size_t)step, i++) {
|
|
PyObject *v = src[cur];
|
|
dest[i] = Py_NewRef(v);
|
|
}
|
|
Py_SET_SIZE(np, len);
|
|
return (PyObject *)np;
|
|
}
|
|
|
|
static PyObject *
|
|
list_slice_wrap(PyListObject *aa, Py_ssize_t start, Py_ssize_t stop, Py_ssize_t step)
|
|
{
|
|
PyObject *res = NULL;
|
|
Py_BEGIN_CRITICAL_SECTION(aa);
|
|
Py_ssize_t len = PySlice_AdjustIndices(Py_SIZE(aa), &start, &stop, step);
|
|
if (len <= 0) {
|
|
res = PyList_New(0);
|
|
}
|
|
else if (step == 1) {
|
|
res = list_slice_lock_held(aa, start, stop);
|
|
}
|
|
else {
|
|
res = list_slice_step_lock_held(aa, start, step, len);
|
|
}
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
list_subscript(PyObject* _self, PyObject* item)
|
|
{
|
|
PyListObject* self = (PyListObject*)_self;
|
|
if (_PyIndex_Check(item)) {
|
|
Py_ssize_t i;
|
|
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
|
|
if (i == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (i < 0)
|
|
i += PyList_GET_SIZE(self);
|
|
return list_item((PyObject *)self, i);
|
|
}
|
|
else if (PySlice_Check(item)) {
|
|
Py_ssize_t start, stop, step;
|
|
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
|
|
return NULL;
|
|
}
|
|
return list_slice_wrap(self, start, stop, step);
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"list indices must be integers or slices, not %.200s",
|
|
Py_TYPE(item)->tp_name);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
list_ass_subscript(PyObject* _self, PyObject* item, PyObject* value)
|
|
{
|
|
PyListObject *self = (PyListObject *)_self;
|
|
if (_PyIndex_Check(item)) {
|
|
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
|
|
if (i == -1 && PyErr_Occurred())
|
|
return -1;
|
|
if (i < 0)
|
|
i += PyList_GET_SIZE(self);
|
|
return list_ass_item((PyObject *)self, i, value);
|
|
}
|
|
else if (PySlice_Check(item)) {
|
|
Py_ssize_t start, stop, step, slicelength;
|
|
|
|
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
|
|
return -1;
|
|
}
|
|
slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop,
|
|
step);
|
|
|
|
if (step == 1)
|
|
return list_ass_slice(self, start, stop, value);
|
|
|
|
/* Make sure s[5:2] = [..] inserts at the right place:
|
|
before 5, not before 2. */
|
|
if ((step < 0 && start < stop) ||
|
|
(step > 0 && start > stop))
|
|
stop = start;
|
|
|
|
if (value == NULL) {
|
|
/* delete slice */
|
|
PyObject **garbage;
|
|
size_t cur;
|
|
Py_ssize_t i;
|
|
int res;
|
|
|
|
if (slicelength <= 0)
|
|
return 0;
|
|
|
|
if (step < 0) {
|
|
stop = start + 1;
|
|
start = stop + step*(slicelength - 1) - 1;
|
|
step = -step;
|
|
}
|
|
|
|
garbage = (PyObject**)
|
|
PyMem_Malloc(slicelength*sizeof(PyObject*));
|
|
if (!garbage) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
|
|
/* drawing pictures might help understand these for
|
|
loops. Basically, we memmove the parts of the
|
|
list that are *not* part of the slice: step-1
|
|
items for each item that is part of the slice,
|
|
and then tail end of the list that was not
|
|
covered by the slice */
|
|
for (cur = start, i = 0;
|
|
cur < (size_t)stop;
|
|
cur += step, i++) {
|
|
Py_ssize_t lim = step - 1;
|
|
|
|
garbage[i] = PyList_GET_ITEM(self, cur);
|
|
|
|
if (cur + step >= (size_t)Py_SIZE(self)) {
|
|
lim = Py_SIZE(self) - cur - 1;
|
|
}
|
|
|
|
memmove(self->ob_item + cur - i,
|
|
self->ob_item + cur + 1,
|
|
lim * sizeof(PyObject *));
|
|
}
|
|
cur = start + (size_t)slicelength * step;
|
|
if (cur < (size_t)Py_SIZE(self)) {
|
|
memmove(self->ob_item + cur - slicelength,
|
|
self->ob_item + cur,
|
|
(Py_SIZE(self) - cur) *
|
|
sizeof(PyObject *));
|
|
}
|
|
|
|
Py_SET_SIZE(self, Py_SIZE(self) - slicelength);
|
|
res = list_resize(self, Py_SIZE(self));
|
|
|
|
for (i = 0; i < slicelength; i++) {
|
|
Py_DECREF(garbage[i]);
|
|
}
|
|
PyMem_Free(garbage);
|
|
|
|
return res;
|
|
}
|
|
else {
|
|
/* assign slice */
|
|
PyObject *ins, *seq;
|
|
PyObject **garbage, **seqitems, **selfitems;
|
|
Py_ssize_t i;
|
|
size_t cur;
|
|
|
|
/* protect against a[::-1] = a */
|
|
if (self == (PyListObject*)value) {
|
|
Py_BEGIN_CRITICAL_SECTION(value);
|
|
seq = list_slice_lock_held((PyListObject*)value, 0,
|
|
Py_SIZE(value));
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
else {
|
|
seq = PySequence_Fast(value,
|
|
"must assign iterable "
|
|
"to extended slice");
|
|
}
|
|
if (!seq)
|
|
return -1;
|
|
|
|
if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"attempt to assign sequence of "
|
|
"size %zd to extended slice of "
|
|
"size %zd",
|
|
PySequence_Fast_GET_SIZE(seq),
|
|
slicelength);
|
|
Py_DECREF(seq);
|
|
return -1;
|
|
}
|
|
|
|
if (!slicelength) {
|
|
Py_DECREF(seq);
|
|
return 0;
|
|
}
|
|
|
|
garbage = (PyObject**)
|
|
PyMem_Malloc(slicelength*sizeof(PyObject*));
|
|
if (!garbage) {
|
|
Py_DECREF(seq);
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
|
|
selfitems = self->ob_item;
|
|
seqitems = PySequence_Fast_ITEMS(seq);
|
|
for (cur = start, i = 0; i < slicelength;
|
|
cur += (size_t)step, i++) {
|
|
garbage[i] = selfitems[cur];
|
|
ins = Py_NewRef(seqitems[i]);
|
|
selfitems[cur] = ins;
|
|
}
|
|
|
|
for (i = 0; i < slicelength; i++) {
|
|
Py_DECREF(garbage[i]);
|
|
}
|
|
|
|
PyMem_Free(garbage);
|
|
Py_DECREF(seq);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"list indices must be integers or slices, not %.200s",
|
|
Py_TYPE(item)->tp_name);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static PyMappingMethods list_as_mapping = {
|
|
list_length,
|
|
list_subscript,
|
|
list_ass_subscript
|
|
};
|
|
|
|
PyTypeObject PyList_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"list",
|
|
sizeof(PyListObject),
|
|
0,
|
|
list_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
list_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&list_as_sequence, /* tp_as_sequence */
|
|
&list_as_mapping, /* tp_as_mapping */
|
|
PyObject_HashNotImplemented, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS |
|
|
_Py_TPFLAGS_MATCH_SELF | Py_TPFLAGS_SEQUENCE, /* tp_flags */
|
|
list___init____doc__, /* tp_doc */
|
|
list_traverse, /* tp_traverse */
|
|
list_clear_slot, /* tp_clear */
|
|
list_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
list_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
list_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
(initproc)list___init__, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
PyType_GenericNew, /* tp_new */
|
|
PyObject_GC_Del, /* tp_free */
|
|
.tp_vectorcall = list_vectorcall,
|
|
};
|
|
|
|
/*********************** List Iterator **************************/
|
|
|
|
static void listiter_dealloc(PyObject *);
|
|
static int listiter_traverse(PyObject *, visitproc, void *);
|
|
static PyObject *listiter_next(PyObject *);
|
|
static PyObject *listiter_len(PyObject *, PyObject *);
|
|
static PyObject *listiter_reduce_general(void *_it, int forward);
|
|
static PyObject *listiter_reduce(PyObject *, PyObject *);
|
|
static PyObject *listiter_setstate(PyObject *, PyObject *state);
|
|
|
|
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
|
|
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
|
|
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
|
|
|
|
static PyMethodDef listiter_methods[] = {
|
|
{"__length_hint__", listiter_len, METH_NOARGS, length_hint_doc},
|
|
{"__reduce__", listiter_reduce, METH_NOARGS, reduce_doc},
|
|
{"__setstate__", listiter_setstate, METH_O, setstate_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyListIter_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"list_iterator", /* tp_name */
|
|
sizeof(_PyListIterObject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
listiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
listiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
listiter_next, /* tp_iternext */
|
|
listiter_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
};
|
|
|
|
|
|
static PyObject *
|
|
list_iter(PyObject *seq)
|
|
{
|
|
_PyListIterObject *it;
|
|
|
|
if (!PyList_Check(seq)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
it = PyObject_GC_New(_PyListIterObject, &PyListIter_Type);
|
|
if (it == NULL)
|
|
return NULL;
|
|
it->it_index = 0;
|
|
it->it_seq = (PyListObject *)Py_NewRef(seq);
|
|
_PyObject_GC_TRACK(it);
|
|
return (PyObject *)it;
|
|
}
|
|
|
|
static void
|
|
listiter_dealloc(PyObject *self)
|
|
{
|
|
_PyListIterObject *it = (_PyListIterObject *)self;
|
|
_PyObject_GC_UNTRACK(it);
|
|
Py_XDECREF(it->it_seq);
|
|
PyObject_GC_Del(it);
|
|
}
|
|
|
|
static int
|
|
listiter_traverse(PyObject *it, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(((_PyListIterObject *)it)->it_seq);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
listiter_next(PyObject *self)
|
|
{
|
|
_PyListIterObject *it = (_PyListIterObject *)self;
|
|
Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
|
|
if (index < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *item = list_get_item_ref(it->it_seq, index);
|
|
if (item == NULL) {
|
|
// out-of-bounds
|
|
FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, -1);
|
|
#ifndef Py_GIL_DISABLED
|
|
PyListObject *seq = it->it_seq;
|
|
it->it_seq = NULL;
|
|
Py_DECREF(seq);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, index + 1);
|
|
return item;
|
|
}
|
|
|
|
static PyObject *
|
|
listiter_len(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
assert(self != NULL);
|
|
_PyListIterObject *it = (_PyListIterObject *)self;
|
|
Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
|
|
if (index >= 0) {
|
|
Py_ssize_t len = PyList_GET_SIZE(it->it_seq) - index;
|
|
if (len >= 0)
|
|
return PyLong_FromSsize_t(len);
|
|
}
|
|
return PyLong_FromLong(0);
|
|
}
|
|
|
|
static PyObject *
|
|
listiter_reduce(PyObject *it, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return listiter_reduce_general(it, 1);
|
|
}
|
|
|
|
static PyObject *
|
|
listiter_setstate(PyObject *self, PyObject *state)
|
|
{
|
|
_PyListIterObject *it = (_PyListIterObject *)self;
|
|
Py_ssize_t index = PyLong_AsSsize_t(state);
|
|
if (index == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (it->it_seq != NULL) {
|
|
if (index < -1)
|
|
index = -1;
|
|
else if (index > PyList_GET_SIZE(it->it_seq))
|
|
index = PyList_GET_SIZE(it->it_seq); /* iterator exhausted */
|
|
it->it_index = index;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/*********************** List Reverse Iterator **************************/
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
Py_ssize_t it_index;
|
|
PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
|
|
} listreviterobject;
|
|
|
|
static void listreviter_dealloc(PyObject *);
|
|
static int listreviter_traverse(PyObject *, visitproc, void *);
|
|
static PyObject *listreviter_next(PyObject *);
|
|
static PyObject *listreviter_len(PyObject *, PyObject *);
|
|
static PyObject *listreviter_reduce(PyObject *, PyObject *);
|
|
static PyObject *listreviter_setstate(PyObject *, PyObject *);
|
|
|
|
static PyMethodDef listreviter_methods[] = {
|
|
{"__length_hint__", listreviter_len, METH_NOARGS, length_hint_doc},
|
|
{"__reduce__", listreviter_reduce, METH_NOARGS, reduce_doc},
|
|
{"__setstate__", listreviter_setstate, METH_O, setstate_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyListRevIter_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"list_reverseiterator", /* tp_name */
|
|
sizeof(listreviterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
listreviter_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
listreviter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
listreviter_next, /* tp_iternext */
|
|
listreviter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
/*[clinic input]
|
|
list.__reversed__
|
|
|
|
Return a reverse iterator over the list.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
list___reversed___impl(PyListObject *self)
|
|
/*[clinic end generated code: output=b166f073208c888c input=eadb6e17f8a6a280]*/
|
|
{
|
|
listreviterobject *it;
|
|
|
|
it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
|
|
if (it == NULL)
|
|
return NULL;
|
|
assert(PyList_Check(self));
|
|
it->it_index = PyList_GET_SIZE(self) - 1;
|
|
it->it_seq = (PyListObject*)Py_NewRef(self);
|
|
PyObject_GC_Track(it);
|
|
return (PyObject *)it;
|
|
}
|
|
|
|
static void
|
|
listreviter_dealloc(PyObject *self)
|
|
{
|
|
listreviterobject *it = (listreviterobject *)self;
|
|
PyObject_GC_UnTrack(it);
|
|
Py_XDECREF(it->it_seq);
|
|
PyObject_GC_Del(it);
|
|
}
|
|
|
|
static int
|
|
listreviter_traverse(PyObject *it, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(((listreviterobject *)it)->it_seq);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
listreviter_next(PyObject *self)
|
|
{
|
|
listreviterobject *it = (listreviterobject *)self;
|
|
assert(it != NULL);
|
|
Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
|
|
if (index < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
PyListObject *seq = it->it_seq;
|
|
assert(PyList_Check(seq));
|
|
PyObject *item = list_get_item_ref(seq, index);
|
|
if (item != NULL) {
|
|
FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, index - 1);
|
|
return item;
|
|
}
|
|
FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, -1);
|
|
#ifndef Py_GIL_DISABLED
|
|
it->it_seq = NULL;
|
|
Py_DECREF(seq);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
listreviter_len(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
listreviterobject *it = (listreviterobject *)self;
|
|
Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
|
|
Py_ssize_t len = index + 1;
|
|
if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
|
|
len = 0;
|
|
return PyLong_FromSsize_t(len);
|
|
}
|
|
|
|
static PyObject *
|
|
listreviter_reduce(PyObject *it, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return listiter_reduce_general(it, 0);
|
|
}
|
|
|
|
static PyObject *
|
|
listreviter_setstate(PyObject *self, PyObject *state)
|
|
{
|
|
listreviterobject *it = (listreviterobject *)self;
|
|
Py_ssize_t index = PyLong_AsSsize_t(state);
|
|
if (index == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (it->it_seq != NULL) {
|
|
if (index < -1)
|
|
index = -1;
|
|
else if (index > PyList_GET_SIZE(it->it_seq) - 1)
|
|
index = PyList_GET_SIZE(it->it_seq) - 1;
|
|
it->it_index = index;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* common pickling support */
|
|
|
|
static PyObject *
|
|
listiter_reduce_general(void *_it, int forward)
|
|
{
|
|
PyObject *list;
|
|
PyObject *iter;
|
|
|
|
/* _PyEval_GetBuiltin can invoke arbitrary code,
|
|
* call must be before access of iterator pointers.
|
|
* see issue #101765 */
|
|
|
|
/* the objects are not the same, index is of different types! */
|
|
if (forward) {
|
|
iter = _PyEval_GetBuiltin(&_Py_ID(iter));
|
|
_PyListIterObject *it = (_PyListIterObject *)_it;
|
|
if (it->it_index >= 0) {
|
|
return Py_BuildValue("N(O)n", iter, it->it_seq, it->it_index);
|
|
}
|
|
} else {
|
|
iter = _PyEval_GetBuiltin(&_Py_ID(reversed));
|
|
listreviterobject *it = (listreviterobject *)_it;
|
|
if (it->it_index >= 0) {
|
|
return Py_BuildValue("N(O)n", iter, it->it_seq, it->it_index);
|
|
}
|
|
}
|
|
/* empty iterator, create an empty list */
|
|
list = PyList_New(0);
|
|
if (list == NULL)
|
|
return NULL;
|
|
return Py_BuildValue("N(N)", iter, list);
|
|
}
|