mirror of
https://github.com/python/cpython
synced 2024-11-02 08:37:57 +00:00
559e7f165a
* bpo-39648: Expand math.gcd() and math.lcm() to handle multiple arguments. * Simplify fast path. * Difine lcm() without arguments returning 1. * Apply suggestions from code review Co-Authored-By: Mark Dickinson <dickinsm@gmail.com> Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
868 lines
21 KiB
C
Generated
868 lines
21 KiB
C
Generated
/*[clinic input]
|
|
preserve
|
|
[clinic start generated code]*/
|
|
|
|
PyDoc_STRVAR(math_ceil__doc__,
|
|
"ceil($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the ceiling of x as an Integral.\n"
|
|
"\n"
|
|
"This is the smallest integer >= x.");
|
|
|
|
#define MATH_CEIL_METHODDEF \
|
|
{"ceil", (PyCFunction)math_ceil, METH_O, math_ceil__doc__},
|
|
|
|
PyDoc_STRVAR(math_floor__doc__,
|
|
"floor($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the floor of x as an Integral.\n"
|
|
"\n"
|
|
"This is the largest integer <= x.");
|
|
|
|
#define MATH_FLOOR_METHODDEF \
|
|
{"floor", (PyCFunction)math_floor, METH_O, math_floor__doc__},
|
|
|
|
PyDoc_STRVAR(math_fsum__doc__,
|
|
"fsum($module, seq, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return an accurate floating point sum of values in the iterable seq.\n"
|
|
"\n"
|
|
"Assumes IEEE-754 floating point arithmetic.");
|
|
|
|
#define MATH_FSUM_METHODDEF \
|
|
{"fsum", (PyCFunction)math_fsum, METH_O, math_fsum__doc__},
|
|
|
|
PyDoc_STRVAR(math_isqrt__doc__,
|
|
"isqrt($module, n, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the integer part of the square root of the input.");
|
|
|
|
#define MATH_ISQRT_METHODDEF \
|
|
{"isqrt", (PyCFunction)math_isqrt, METH_O, math_isqrt__doc__},
|
|
|
|
PyDoc_STRVAR(math_factorial__doc__,
|
|
"factorial($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Find x!.\n"
|
|
"\n"
|
|
"Raise a ValueError if x is negative or non-integral.");
|
|
|
|
#define MATH_FACTORIAL_METHODDEF \
|
|
{"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__},
|
|
|
|
PyDoc_STRVAR(math_trunc__doc__,
|
|
"trunc($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Truncates the Real x to the nearest Integral toward 0.\n"
|
|
"\n"
|
|
"Uses the __trunc__ magic method.");
|
|
|
|
#define MATH_TRUNC_METHODDEF \
|
|
{"trunc", (PyCFunction)math_trunc, METH_O, math_trunc__doc__},
|
|
|
|
PyDoc_STRVAR(math_frexp__doc__,
|
|
"frexp($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the mantissa and exponent of x, as pair (m, e).\n"
|
|
"\n"
|
|
"m is a float and e is an int, such that x = m * 2.**e.\n"
|
|
"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
|
|
|
|
#define MATH_FREXP_METHODDEF \
|
|
{"frexp", (PyCFunction)math_frexp, METH_O, math_frexp__doc__},
|
|
|
|
static PyObject *
|
|
math_frexp_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_frexp(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_frexp_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_ldexp__doc__,
|
|
"ldexp($module, x, i, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return x * (2**i).\n"
|
|
"\n"
|
|
"This is essentially the inverse of frexp().");
|
|
|
|
#define MATH_LDEXP_METHODDEF \
|
|
{"ldexp", (PyCFunction)(void(*)(void))math_ldexp, METH_FASTCALL, math_ldexp__doc__},
|
|
|
|
static PyObject *
|
|
math_ldexp_impl(PyObject *module, double x, PyObject *i);
|
|
|
|
static PyObject *
|
|
math_ldexp(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
PyObject *i;
|
|
|
|
if (!_PyArg_CheckPositional("ldexp", nargs, 2, 2)) {
|
|
goto exit;
|
|
}
|
|
if (PyFloat_CheckExact(args[0])) {
|
|
x = PyFloat_AS_DOUBLE(args[0]);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(args[0]);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
i = args[1];
|
|
return_value = math_ldexp_impl(module, x, i);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_modf__doc__,
|
|
"modf($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the fractional and integer parts of x.\n"
|
|
"\n"
|
|
"Both results carry the sign of x and are floats.");
|
|
|
|
#define MATH_MODF_METHODDEF \
|
|
{"modf", (PyCFunction)math_modf, METH_O, math_modf__doc__},
|
|
|
|
static PyObject *
|
|
math_modf_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_modf(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_modf_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_log__doc__,
|
|
"log(x, [base=math.e])\n"
|
|
"Return the logarithm of x to the given base.\n"
|
|
"\n"
|
|
"If the base not specified, returns the natural logarithm (base e) of x.");
|
|
|
|
#define MATH_LOG_METHODDEF \
|
|
{"log", (PyCFunction)math_log, METH_VARARGS, math_log__doc__},
|
|
|
|
static PyObject *
|
|
math_log_impl(PyObject *module, PyObject *x, int group_right_1,
|
|
PyObject *base);
|
|
|
|
static PyObject *
|
|
math_log(PyObject *module, PyObject *args)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
PyObject *x;
|
|
int group_right_1 = 0;
|
|
PyObject *base = NULL;
|
|
|
|
switch (PyTuple_GET_SIZE(args)) {
|
|
case 1:
|
|
if (!PyArg_ParseTuple(args, "O:log", &x)) {
|
|
goto exit;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (!PyArg_ParseTuple(args, "OO:log", &x, &base)) {
|
|
goto exit;
|
|
}
|
|
group_right_1 = 1;
|
|
break;
|
|
default:
|
|
PyErr_SetString(PyExc_TypeError, "math.log requires 1 to 2 arguments");
|
|
goto exit;
|
|
}
|
|
return_value = math_log_impl(module, x, group_right_1, base);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_log2__doc__,
|
|
"log2($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the base 2 logarithm of x.");
|
|
|
|
#define MATH_LOG2_METHODDEF \
|
|
{"log2", (PyCFunction)math_log2, METH_O, math_log2__doc__},
|
|
|
|
PyDoc_STRVAR(math_log10__doc__,
|
|
"log10($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the base 10 logarithm of x.");
|
|
|
|
#define MATH_LOG10_METHODDEF \
|
|
{"log10", (PyCFunction)math_log10, METH_O, math_log10__doc__},
|
|
|
|
PyDoc_STRVAR(math_fmod__doc__,
|
|
"fmod($module, x, y, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return fmod(x, y), according to platform C.\n"
|
|
"\n"
|
|
"x % y may differ.");
|
|
|
|
#define MATH_FMOD_METHODDEF \
|
|
{"fmod", (PyCFunction)(void(*)(void))math_fmod, METH_FASTCALL, math_fmod__doc__},
|
|
|
|
static PyObject *
|
|
math_fmod_impl(PyObject *module, double x, double y);
|
|
|
|
static PyObject *
|
|
math_fmod(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
double y;
|
|
|
|
if (!_PyArg_CheckPositional("fmod", nargs, 2, 2)) {
|
|
goto exit;
|
|
}
|
|
if (PyFloat_CheckExact(args[0])) {
|
|
x = PyFloat_AS_DOUBLE(args[0]);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(args[0]);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
if (PyFloat_CheckExact(args[1])) {
|
|
y = PyFloat_AS_DOUBLE(args[1]);
|
|
}
|
|
else
|
|
{
|
|
y = PyFloat_AsDouble(args[1]);
|
|
if (y == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_fmod_impl(module, x, y);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_dist__doc__,
|
|
"dist($module, p, q, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the Euclidean distance between two points p and q.\n"
|
|
"\n"
|
|
"The points should be specified as sequences (or iterables) of\n"
|
|
"coordinates. Both inputs must have the same dimension.\n"
|
|
"\n"
|
|
"Roughly equivalent to:\n"
|
|
" sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))");
|
|
|
|
#define MATH_DIST_METHODDEF \
|
|
{"dist", (PyCFunction)(void(*)(void))math_dist, METH_FASTCALL, math_dist__doc__},
|
|
|
|
static PyObject *
|
|
math_dist_impl(PyObject *module, PyObject *p, PyObject *q);
|
|
|
|
static PyObject *
|
|
math_dist(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
PyObject *p;
|
|
PyObject *q;
|
|
|
|
if (!_PyArg_CheckPositional("dist", nargs, 2, 2)) {
|
|
goto exit;
|
|
}
|
|
p = args[0];
|
|
q = args[1];
|
|
return_value = math_dist_impl(module, p, q);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_pow__doc__,
|
|
"pow($module, x, y, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return x**y (x to the power of y).");
|
|
|
|
#define MATH_POW_METHODDEF \
|
|
{"pow", (PyCFunction)(void(*)(void))math_pow, METH_FASTCALL, math_pow__doc__},
|
|
|
|
static PyObject *
|
|
math_pow_impl(PyObject *module, double x, double y);
|
|
|
|
static PyObject *
|
|
math_pow(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
double y;
|
|
|
|
if (!_PyArg_CheckPositional("pow", nargs, 2, 2)) {
|
|
goto exit;
|
|
}
|
|
if (PyFloat_CheckExact(args[0])) {
|
|
x = PyFloat_AS_DOUBLE(args[0]);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(args[0]);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
if (PyFloat_CheckExact(args[1])) {
|
|
y = PyFloat_AS_DOUBLE(args[1]);
|
|
}
|
|
else
|
|
{
|
|
y = PyFloat_AsDouble(args[1]);
|
|
if (y == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_pow_impl(module, x, y);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_degrees__doc__,
|
|
"degrees($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Convert angle x from radians to degrees.");
|
|
|
|
#define MATH_DEGREES_METHODDEF \
|
|
{"degrees", (PyCFunction)math_degrees, METH_O, math_degrees__doc__},
|
|
|
|
static PyObject *
|
|
math_degrees_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_degrees(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_degrees_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_radians__doc__,
|
|
"radians($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Convert angle x from degrees to radians.");
|
|
|
|
#define MATH_RADIANS_METHODDEF \
|
|
{"radians", (PyCFunction)math_radians, METH_O, math_radians__doc__},
|
|
|
|
static PyObject *
|
|
math_radians_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_radians(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_radians_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_isfinite__doc__,
|
|
"isfinite($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return True if x is neither an infinity nor a NaN, and False otherwise.");
|
|
|
|
#define MATH_ISFINITE_METHODDEF \
|
|
{"isfinite", (PyCFunction)math_isfinite, METH_O, math_isfinite__doc__},
|
|
|
|
static PyObject *
|
|
math_isfinite_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_isfinite(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_isfinite_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_isnan__doc__,
|
|
"isnan($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return True if x is a NaN (not a number), and False otherwise.");
|
|
|
|
#define MATH_ISNAN_METHODDEF \
|
|
{"isnan", (PyCFunction)math_isnan, METH_O, math_isnan__doc__},
|
|
|
|
static PyObject *
|
|
math_isnan_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_isnan(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_isnan_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_isinf__doc__,
|
|
"isinf($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return True if x is a positive or negative infinity, and False otherwise.");
|
|
|
|
#define MATH_ISINF_METHODDEF \
|
|
{"isinf", (PyCFunction)math_isinf, METH_O, math_isinf__doc__},
|
|
|
|
static PyObject *
|
|
math_isinf_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_isinf(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_isinf_impl(module, x);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_isclose__doc__,
|
|
"isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Determine whether two floating point numbers are close in value.\n"
|
|
"\n"
|
|
" rel_tol\n"
|
|
" maximum difference for being considered \"close\", relative to the\n"
|
|
" magnitude of the input values\n"
|
|
" abs_tol\n"
|
|
" maximum difference for being considered \"close\", regardless of the\n"
|
|
" magnitude of the input values\n"
|
|
"\n"
|
|
"Return True if a is close in value to b, and False otherwise.\n"
|
|
"\n"
|
|
"For the values to be considered close, the difference between them\n"
|
|
"must be smaller than at least one of the tolerances.\n"
|
|
"\n"
|
|
"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n"
|
|
"is, NaN is not close to anything, even itself. inf and -inf are\n"
|
|
"only close to themselves.");
|
|
|
|
#define MATH_ISCLOSE_METHODDEF \
|
|
{"isclose", (PyCFunction)(void(*)(void))math_isclose, METH_FASTCALL|METH_KEYWORDS, math_isclose__doc__},
|
|
|
|
static int
|
|
math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
|
|
double abs_tol);
|
|
|
|
static PyObject *
|
|
math_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
|
|
static _PyArg_Parser _parser = {NULL, _keywords, "isclose", 0};
|
|
PyObject *argsbuf[4];
|
|
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
|
|
double a;
|
|
double b;
|
|
double rel_tol = 1e-09;
|
|
double abs_tol = 0.0;
|
|
int _return_value;
|
|
|
|
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf);
|
|
if (!args) {
|
|
goto exit;
|
|
}
|
|
if (PyFloat_CheckExact(args[0])) {
|
|
a = PyFloat_AS_DOUBLE(args[0]);
|
|
}
|
|
else
|
|
{
|
|
a = PyFloat_AsDouble(args[0]);
|
|
if (a == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
if (PyFloat_CheckExact(args[1])) {
|
|
b = PyFloat_AS_DOUBLE(args[1]);
|
|
}
|
|
else
|
|
{
|
|
b = PyFloat_AsDouble(args[1]);
|
|
if (b == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
if (!noptargs) {
|
|
goto skip_optional_kwonly;
|
|
}
|
|
if (args[2]) {
|
|
if (PyFloat_CheckExact(args[2])) {
|
|
rel_tol = PyFloat_AS_DOUBLE(args[2]);
|
|
}
|
|
else
|
|
{
|
|
rel_tol = PyFloat_AsDouble(args[2]);
|
|
if (rel_tol == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
if (!--noptargs) {
|
|
goto skip_optional_kwonly;
|
|
}
|
|
}
|
|
if (PyFloat_CheckExact(args[3])) {
|
|
abs_tol = PyFloat_AS_DOUBLE(args[3]);
|
|
}
|
|
else
|
|
{
|
|
abs_tol = PyFloat_AsDouble(args[3]);
|
|
if (abs_tol == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
skip_optional_kwonly:
|
|
_return_value = math_isclose_impl(module, a, b, rel_tol, abs_tol);
|
|
if ((_return_value == -1) && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
return_value = PyBool_FromLong((long)_return_value);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_prod__doc__,
|
|
"prod($module, iterable, /, *, start=1)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Calculate the product of all the elements in the input iterable.\n"
|
|
"\n"
|
|
"The default start value for the product is 1.\n"
|
|
"\n"
|
|
"When the iterable is empty, return the start value. This function is\n"
|
|
"intended specifically for use with numeric values and may reject\n"
|
|
"non-numeric types.");
|
|
|
|
#define MATH_PROD_METHODDEF \
|
|
{"prod", (PyCFunction)(void(*)(void))math_prod, METH_FASTCALL|METH_KEYWORDS, math_prod__doc__},
|
|
|
|
static PyObject *
|
|
math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start);
|
|
|
|
static PyObject *
|
|
math_prod(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
static const char * const _keywords[] = {"", "start", NULL};
|
|
static _PyArg_Parser _parser = {NULL, _keywords, "prod", 0};
|
|
PyObject *argsbuf[2];
|
|
Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1;
|
|
PyObject *iterable;
|
|
PyObject *start = NULL;
|
|
|
|
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf);
|
|
if (!args) {
|
|
goto exit;
|
|
}
|
|
iterable = args[0];
|
|
if (!noptargs) {
|
|
goto skip_optional_kwonly;
|
|
}
|
|
start = args[1];
|
|
skip_optional_kwonly:
|
|
return_value = math_prod_impl(module, iterable, start);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_perm__doc__,
|
|
"perm($module, n, k=None, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Number of ways to choose k items from n items without repetition and with order.\n"
|
|
"\n"
|
|
"Evaluates to n! / (n - k)! when k <= n and evaluates\n"
|
|
"to zero when k > n.\n"
|
|
"\n"
|
|
"If k is not specified or is None, then k defaults to n\n"
|
|
"and the function returns n!.\n"
|
|
"\n"
|
|
"Raises TypeError if either of the arguments are not integers.\n"
|
|
"Raises ValueError if either of the arguments are negative.");
|
|
|
|
#define MATH_PERM_METHODDEF \
|
|
{"perm", (PyCFunction)(void(*)(void))math_perm, METH_FASTCALL, math_perm__doc__},
|
|
|
|
static PyObject *
|
|
math_perm_impl(PyObject *module, PyObject *n, PyObject *k);
|
|
|
|
static PyObject *
|
|
math_perm(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
PyObject *n;
|
|
PyObject *k = Py_None;
|
|
|
|
if (!_PyArg_CheckPositional("perm", nargs, 1, 2)) {
|
|
goto exit;
|
|
}
|
|
n = args[0];
|
|
if (nargs < 2) {
|
|
goto skip_optional;
|
|
}
|
|
k = args[1];
|
|
skip_optional:
|
|
return_value = math_perm_impl(module, n, k);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_comb__doc__,
|
|
"comb($module, n, k, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Number of ways to choose k items from n items without repetition and without order.\n"
|
|
"\n"
|
|
"Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates\n"
|
|
"to zero when k > n.\n"
|
|
"\n"
|
|
"Also called the binomial coefficient because it is equivalent\n"
|
|
"to the coefficient of k-th term in polynomial expansion of the\n"
|
|
"expression (1 + x)**n.\n"
|
|
"\n"
|
|
"Raises TypeError if either of the arguments are not integers.\n"
|
|
"Raises ValueError if either of the arguments are negative.");
|
|
|
|
#define MATH_COMB_METHODDEF \
|
|
{"comb", (PyCFunction)(void(*)(void))math_comb, METH_FASTCALL, math_comb__doc__},
|
|
|
|
static PyObject *
|
|
math_comb_impl(PyObject *module, PyObject *n, PyObject *k);
|
|
|
|
static PyObject *
|
|
math_comb(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
PyObject *n;
|
|
PyObject *k;
|
|
|
|
if (!_PyArg_CheckPositional("comb", nargs, 2, 2)) {
|
|
goto exit;
|
|
}
|
|
n = args[0];
|
|
k = args[1];
|
|
return_value = math_comb_impl(module, n, k);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_nextafter__doc__,
|
|
"nextafter($module, x, y, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the next floating-point value after x towards y.");
|
|
|
|
#define MATH_NEXTAFTER_METHODDEF \
|
|
{"nextafter", (PyCFunction)(void(*)(void))math_nextafter, METH_FASTCALL, math_nextafter__doc__},
|
|
|
|
static PyObject *
|
|
math_nextafter_impl(PyObject *module, double x, double y);
|
|
|
|
static PyObject *
|
|
math_nextafter(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
double y;
|
|
|
|
if (!_PyArg_CheckPositional("nextafter", nargs, 2, 2)) {
|
|
goto exit;
|
|
}
|
|
if (PyFloat_CheckExact(args[0])) {
|
|
x = PyFloat_AS_DOUBLE(args[0]);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(args[0]);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
if (PyFloat_CheckExact(args[1])) {
|
|
y = PyFloat_AS_DOUBLE(args[1]);
|
|
}
|
|
else
|
|
{
|
|
y = PyFloat_AsDouble(args[1]);
|
|
if (y == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
return_value = math_nextafter_impl(module, x, y);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_ulp__doc__,
|
|
"ulp($module, x, /)\n"
|
|
"--\n"
|
|
"\n"
|
|
"Return the value of the least significant bit of the float x.");
|
|
|
|
#define MATH_ULP_METHODDEF \
|
|
{"ulp", (PyCFunction)math_ulp, METH_O, math_ulp__doc__},
|
|
|
|
static double
|
|
math_ulp_impl(PyObject *module, double x);
|
|
|
|
static PyObject *
|
|
math_ulp(PyObject *module, PyObject *arg)
|
|
{
|
|
PyObject *return_value = NULL;
|
|
double x;
|
|
double _return_value;
|
|
|
|
if (PyFloat_CheckExact(arg)) {
|
|
x = PyFloat_AS_DOUBLE(arg);
|
|
}
|
|
else
|
|
{
|
|
x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
}
|
|
_return_value = math_ulp_impl(module, x);
|
|
if ((_return_value == -1.0) && PyErr_Occurred()) {
|
|
goto exit;
|
|
}
|
|
return_value = PyFloat_FromDouble(_return_value);
|
|
|
|
exit:
|
|
return return_value;
|
|
}
|
|
/*[clinic end generated code: output=1eae2b3ef19568fa input=a9049054013a1b77]*/
|