cpython/Python/bytecodes.c

4059 lines
157 KiB
C

// This file contains instruction definitions.
// It is read by Tools/cases_generator/generate_cases.py
// to generate Python/generated_cases.c.h.
// Note that there is some dummy C code at the top and bottom of the file
// to fool text editors like VS Code into believing this is valid C code.
// The actual instruction definitions start at // BEGIN BYTECODES //.
// See Tools/cases_generator/README.md for more information.
#include "Python.h"
#include "pycore_abstract.h" // _PyIndex_Check()
#include "pycore_ceval.h" // _PyEval_SignalAsyncExc()
#include "pycore_code.h"
#include "pycore_emscripten_signal.h" // _Py_CHECK_EMSCRIPTEN_SIGNALS
#include "pycore_function.h"
#include "pycore_instruments.h"
#include "pycore_intrinsics.h"
#include "pycore_long.h" // _PyLong_GetZero()
#include "pycore_moduleobject.h" // PyModuleObject
#include "pycore_object.h" // _PyObject_GC_TRACK()
#include "pycore_opcode_metadata.h" // uop names
#include "pycore_opcode_utils.h" // MAKE_FUNCTION_*
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#include "pycore_range.h" // _PyRangeIterObject
#include "pycore_setobject.h" // _PySet_NextEntry()
#include "pycore_sliceobject.h" // _PyBuildSlice_ConsumeRefs
#include "pycore_sysmodule.h" // _PySys_Audit()
#include "pycore_tuple.h" // _PyTuple_ITEMS()
#include "pycore_typeobject.h" // _PySuper_Lookup()
#include "pycore_dict.h"
#include "dictobject.h"
#include "pycore_frame.h"
#include "opcode.h"
#include "optimizer.h"
#include "pydtrace.h"
#include "setobject.h"
#define USE_COMPUTED_GOTOS 0
#include "ceval_macros.h"
/* Flow control macros */
#define GO_TO_INSTRUCTION(instname) ((void)0)
#define inst(name, ...) case name:
#define op(name, ...) /* NAME is ignored */
#define macro(name) static int MACRO_##name
#define super(name) static int SUPER_##name
#define family(name, ...) static int family_##name
#define pseudo(name) static int pseudo_##name
/* Annotations */
#define guard
#define override
#define specializing
// Dummy variables for stack effects.
static PyObject *value, *value1, *value2, *left, *right, *res, *sum, *prod, *sub;
static PyObject *container, *start, *stop, *v, *lhs, *rhs, *res2;
static PyObject *list, *tuple, *dict, *owner, *set, *str, *tup, *map, *keys;
static PyObject *exit_func, *lasti, *val, *retval, *obj, *iter, *exhausted;
static PyObject *aiter, *awaitable, *iterable, *w, *exc_value, *bc, *locals;
static PyObject *orig, *excs, *update, *b, *fromlist, *level, *from;
static PyObject **pieces, **values;
static size_t jump;
// Dummy variables for cache effects
static uint16_t invert, counter, index, hint;
#define unused 0 // Used in a macro def, can't be static
static uint32_t type_version;
static _PyUOpExecutorObject *current_executor;
static PyObject *
dummy_func(
PyThreadState *tstate,
_PyInterpreterFrame *frame,
unsigned char opcode,
unsigned int oparg,
_Py_CODEUNIT *next_instr,
PyObject **stack_pointer,
int throwflag,
PyObject *args[]
)
{
// Dummy labels.
pop_1_error:
// Dummy locals.
PyObject *dummy;
_Py_CODEUNIT *this_instr;
PyObject *attr;
PyObject *attrs;
PyObject *bottom;
PyObject *callable;
PyObject *callargs;
PyObject *codeobj;
PyObject *cond;
PyObject *descr;
_PyInterpreterFrame entry_frame;
PyObject *exc;
PyObject *exit;
PyObject *fget;
PyObject *fmt_spec;
PyObject *func;
uint32_t func_version;
PyObject *getattribute;
PyObject *kwargs;
PyObject *kwdefaults;
PyObject *len_o;
PyObject *match;
PyObject *match_type;
PyObject *method;
PyObject *mgr;
Py_ssize_t min_args;
PyObject *names;
PyObject *new_exc;
PyObject *next;
PyObject *none;
PyObject *null;
PyObject *prev_exc;
PyObject *receiver;
PyObject *rest;
int result;
PyObject *self;
PyObject *seq;
PyObject *slice;
PyObject *step;
PyObject *subject;
PyObject *top;
PyObject *type;
PyObject *typevars;
int values_or_none;
switch (opcode) {
// BEGIN BYTECODES //
inst(NOP, (--)) {
}
family(RESUME, 0) = {
RESUME_CHECK,
};
inst(RESUME, (--)) {
TIER_ONE_ONLY
assert(frame == tstate->current_frame);
uintptr_t global_version =
_Py_atomic_load_uintptr_relaxed(&tstate->interp->ceval.eval_breaker) &
~_PY_EVAL_EVENTS_MASK;
uintptr_t code_version = _PyFrame_GetCode(frame)->_co_instrumentation_version;
assert((code_version & 255) == 0);
if (code_version != global_version) {
int err = _Py_Instrument(_PyFrame_GetCode(frame), tstate->interp);
ERROR_IF(err, error);
next_instr = this_instr;
}
else {
if ((oparg & RESUME_OPARG_LOCATION_MASK) < RESUME_AFTER_YIELD_FROM) {
CHECK_EVAL_BREAKER();
}
this_instr->op.code = RESUME_CHECK;
}
}
inst(RESUME_CHECK, (--)) {
#if defined(__EMSCRIPTEN__)
DEOPT_IF(_Py_emscripten_signal_clock == 0);
_Py_emscripten_signal_clock -= Py_EMSCRIPTEN_SIGNAL_HANDLING;
#endif
uintptr_t eval_breaker = _Py_atomic_load_uintptr_relaxed(&tstate->interp->ceval.eval_breaker);
uintptr_t version = _PyFrame_GetCode(frame)->_co_instrumentation_version;
assert((version & _PY_EVAL_EVENTS_MASK) == 0);
DEOPT_IF(eval_breaker != version);
}
inst(INSTRUMENTED_RESUME, (--)) {
uintptr_t global_version = _Py_atomic_load_uintptr_relaxed(&tstate->interp->ceval.eval_breaker) & ~_PY_EVAL_EVENTS_MASK;
uintptr_t code_version = _PyFrame_GetCode(frame)->_co_instrumentation_version;
if (code_version != global_version) {
if (_Py_Instrument(_PyFrame_GetCode(frame), tstate->interp)) {
GOTO_ERROR(error);
}
next_instr = this_instr;
}
else {
if ((oparg & RESUME_OPARG_LOCATION_MASK) < RESUME_AFTER_YIELD_FROM) {
CHECK_EVAL_BREAKER();
}
_PyFrame_SetStackPointer(frame, stack_pointer);
int err = _Py_call_instrumentation(
tstate, oparg > 0, frame, this_instr);
stack_pointer = _PyFrame_GetStackPointer(frame);
ERROR_IF(err, error);
if (frame->instr_ptr != this_instr) {
/* Instrumentation has jumped */
next_instr = this_instr;
DISPATCH();
}
}
}
pseudo(LOAD_CLOSURE) = {
LOAD_FAST,
};
inst(LOAD_FAST_CHECK, (-- value)) {
value = GETLOCAL(oparg);
ERROR_IF(value == NULL, unbound_local_error);
Py_INCREF(value);
}
inst(LOAD_FAST, (-- value)) {
value = GETLOCAL(oparg);
assert(value != NULL);
Py_INCREF(value);
}
inst(LOAD_FAST_AND_CLEAR, (-- value)) {
value = GETLOCAL(oparg);
// do not use SETLOCAL here, it decrefs the old value
GETLOCAL(oparg) = NULL;
}
inst(LOAD_FAST_LOAD_FAST, ( -- value1, value2)) {
uint32_t oparg1 = oparg >> 4;
uint32_t oparg2 = oparg & 15;
value1 = GETLOCAL(oparg1);
value2 = GETLOCAL(oparg2);
Py_INCREF(value1);
Py_INCREF(value2);
}
inst(LOAD_CONST, (-- value)) {
value = GETITEM(FRAME_CO_CONSTS, oparg);
Py_INCREF(value);
}
inst(STORE_FAST, (value --)) {
SETLOCAL(oparg, value);
}
pseudo(STORE_FAST_MAYBE_NULL) = {
STORE_FAST,
};
inst(STORE_FAST_LOAD_FAST, (value1 -- value2)) {
uint32_t oparg1 = oparg >> 4;
uint32_t oparg2 = oparg & 15;
SETLOCAL(oparg1, value1);
value2 = GETLOCAL(oparg2);
Py_INCREF(value2);
}
inst(STORE_FAST_STORE_FAST, (value2, value1 --)) {
uint32_t oparg1 = oparg >> 4;
uint32_t oparg2 = oparg & 15;
SETLOCAL(oparg1, value1);
SETLOCAL(oparg2, value2);
}
inst(POP_TOP, (value --)) {
DECREF_INPUTS();
}
inst(PUSH_NULL, (-- res)) {
res = NULL;
}
macro(END_FOR) = POP_TOP + POP_TOP;
inst(INSTRUMENTED_END_FOR, (receiver, value --)) {
TIER_ONE_ONLY
/* Need to create a fake StopIteration error here,
* to conform to PEP 380 */
if (PyGen_Check(receiver)) {
PyErr_SetObject(PyExc_StopIteration, value);
if (monitor_stop_iteration(tstate, frame, this_instr)) {
GOTO_ERROR(error);
}
PyErr_SetRaisedException(NULL);
}
DECREF_INPUTS();
}
inst(END_SEND, (receiver, value -- value)) {
Py_DECREF(receiver);
}
inst(INSTRUMENTED_END_SEND, (receiver, value -- value)) {
TIER_ONE_ONLY
if (PyGen_Check(receiver) || PyCoro_CheckExact(receiver)) {
PyErr_SetObject(PyExc_StopIteration, value);
if (monitor_stop_iteration(tstate, frame, this_instr)) {
GOTO_ERROR(error);
}
PyErr_SetRaisedException(NULL);
}
Py_DECREF(receiver);
}
inst(UNARY_NEGATIVE, (value -- res)) {
res = PyNumber_Negative(value);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(UNARY_NOT, (value -- res)) {
assert(PyBool_Check(value));
res = Py_IsFalse(value) ? Py_True : Py_False;
}
family(TO_BOOL, INLINE_CACHE_ENTRIES_TO_BOOL) = {
TO_BOOL_ALWAYS_TRUE,
TO_BOOL_BOOL,
TO_BOOL_INT,
TO_BOOL_LIST,
TO_BOOL_NONE,
TO_BOOL_STR,
};
specializing op(_SPECIALIZE_TO_BOOL, (counter/1, value -- value)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_ToBool(value, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(TO_BOOL, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_TO_BOOL, (unused/2, value -- res)) {
int err = PyObject_IsTrue(value);
DECREF_INPUTS();
ERROR_IF(err < 0, error);
res = err ? Py_True : Py_False;
}
macro(TO_BOOL) = _SPECIALIZE_TO_BOOL + _TO_BOOL;
inst(TO_BOOL_BOOL, (unused/1, unused/2, value -- value)) {
DEOPT_IF(!PyBool_Check(value));
STAT_INC(TO_BOOL, hit);
}
inst(TO_BOOL_INT, (unused/1, unused/2, value -- res)) {
DEOPT_IF(!PyLong_CheckExact(value));
STAT_INC(TO_BOOL, hit);
if (_PyLong_IsZero((PyLongObject *)value)) {
assert(_Py_IsImmortal(value));
res = Py_False;
}
else {
DECREF_INPUTS();
res = Py_True;
}
}
inst(TO_BOOL_LIST, (unused/1, unused/2, value -- res)) {
DEOPT_IF(!PyList_CheckExact(value));
STAT_INC(TO_BOOL, hit);
res = Py_SIZE(value) ? Py_True : Py_False;
DECREF_INPUTS();
}
inst(TO_BOOL_NONE, (unused/1, unused/2, value -- res)) {
// This one is a bit weird, because we expect *some* failures:
DEOPT_IF(!Py_IsNone(value));
STAT_INC(TO_BOOL, hit);
res = Py_False;
}
inst(TO_BOOL_STR, (unused/1, unused/2, value -- res)) {
DEOPT_IF(!PyUnicode_CheckExact(value));
STAT_INC(TO_BOOL, hit);
if (value == &_Py_STR(empty)) {
assert(_Py_IsImmortal(value));
res = Py_False;
}
else {
assert(Py_SIZE(value));
DECREF_INPUTS();
res = Py_True;
}
}
inst(TO_BOOL_ALWAYS_TRUE, (unused/1, version/2, value -- res)) {
// This one is a bit weird, because we expect *some* failures:
assert(version);
DEOPT_IF(Py_TYPE(value)->tp_version_tag != version);
STAT_INC(TO_BOOL, hit);
DECREF_INPUTS();
res = Py_True;
}
inst(UNARY_INVERT, (value -- res)) {
res = PyNumber_Invert(value);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
family(BINARY_OP, INLINE_CACHE_ENTRIES_BINARY_OP) = {
BINARY_OP_MULTIPLY_INT,
BINARY_OP_ADD_INT,
BINARY_OP_SUBTRACT_INT,
BINARY_OP_MULTIPLY_FLOAT,
BINARY_OP_ADD_FLOAT,
BINARY_OP_SUBTRACT_FLOAT,
BINARY_OP_ADD_UNICODE,
// BINARY_OP_INPLACE_ADD_UNICODE, // See comments at that opcode.
};
op(_GUARD_BOTH_INT, (left, right -- left, right)) {
DEOPT_IF(!PyLong_CheckExact(left));
DEOPT_IF(!PyLong_CheckExact(right));
}
op(_BINARY_OP_MULTIPLY_INT, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
res = _PyLong_Multiply((PyLongObject *)left, (PyLongObject *)right);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
ERROR_IF(res == NULL, error);
}
op(_BINARY_OP_ADD_INT, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
res = _PyLong_Add((PyLongObject *)left, (PyLongObject *)right);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
ERROR_IF(res == NULL, error);
}
op(_BINARY_OP_SUBTRACT_INT, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
res = _PyLong_Subtract((PyLongObject *)left, (PyLongObject *)right);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
ERROR_IF(res == NULL, error);
}
macro(BINARY_OP_MULTIPLY_INT) =
_GUARD_BOTH_INT + _BINARY_OP_MULTIPLY_INT;
macro(BINARY_OP_ADD_INT) =
_GUARD_BOTH_INT + _BINARY_OP_ADD_INT;
macro(BINARY_OP_SUBTRACT_INT) =
_GUARD_BOTH_INT + _BINARY_OP_SUBTRACT_INT;
op(_GUARD_BOTH_FLOAT, (left, right -- left, right)) {
DEOPT_IF(!PyFloat_CheckExact(left));
DEOPT_IF(!PyFloat_CheckExact(right));
}
op(_BINARY_OP_MULTIPLY_FLOAT, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left)->ob_fval *
((PyFloatObject *)right)->ob_fval;
DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dres, res);
}
op(_BINARY_OP_ADD_FLOAT, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left)->ob_fval +
((PyFloatObject *)right)->ob_fval;
DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dres, res);
}
op(_BINARY_OP_SUBTRACT_FLOAT, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
double dres =
((PyFloatObject *)left)->ob_fval -
((PyFloatObject *)right)->ob_fval;
DECREF_INPUTS_AND_REUSE_FLOAT(left, right, dres, res);
}
macro(BINARY_OP_MULTIPLY_FLOAT) =
_GUARD_BOTH_FLOAT + _BINARY_OP_MULTIPLY_FLOAT;
macro(BINARY_OP_ADD_FLOAT) =
_GUARD_BOTH_FLOAT + _BINARY_OP_ADD_FLOAT;
macro(BINARY_OP_SUBTRACT_FLOAT) =
_GUARD_BOTH_FLOAT + _BINARY_OP_SUBTRACT_FLOAT;
op(_GUARD_BOTH_UNICODE, (left, right -- left, right)) {
DEOPT_IF(!PyUnicode_CheckExact(left));
DEOPT_IF(!PyUnicode_CheckExact(right));
}
op(_BINARY_OP_ADD_UNICODE, (unused/1, left, right -- res)) {
STAT_INC(BINARY_OP, hit);
res = PyUnicode_Concat(left, right);
_Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc);
_Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc);
ERROR_IF(res == NULL, error);
}
macro(BINARY_OP_ADD_UNICODE) =
_GUARD_BOTH_UNICODE + _BINARY_OP_ADD_UNICODE;
// This is a subtle one. It's a super-instruction for
// BINARY_OP_ADD_UNICODE followed by STORE_FAST
// where the store goes into the left argument.
// So the inputs are the same as for all BINARY_OP
// specializations, but there is no output.
// At the end we just skip over the STORE_FAST.
op(_BINARY_OP_INPLACE_ADD_UNICODE, (unused/1, left, right --)) {
assert(next_instr->op.code == STORE_FAST);
PyObject **target_local = &GETLOCAL(next_instr->op.arg);
DEOPT_IF(*target_local != left);
STAT_INC(BINARY_OP, hit);
/* Handle `left = left + right` or `left += right` for str.
*
* When possible, extend `left` in place rather than
* allocating a new PyUnicodeObject. This attempts to avoid
* quadratic behavior when one neglects to use str.join().
*
* If `left` has only two references remaining (one from
* the stack, one in the locals), DECREFing `left` leaves
* only the locals reference, so PyUnicode_Append knows
* that the string is safe to mutate.
*/
assert(Py_REFCNT(left) >= 2);
_Py_DECREF_NO_DEALLOC(left);
PyUnicode_Append(target_local, right);
_Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc);
ERROR_IF(*target_local == NULL, error);
// The STORE_FAST is already done.
assert(next_instr->op.code == STORE_FAST);
SKIP_OVER(1);
}
macro(BINARY_OP_INPLACE_ADD_UNICODE) =
_GUARD_BOTH_UNICODE + _BINARY_OP_INPLACE_ADD_UNICODE;
family(BINARY_SUBSCR, INLINE_CACHE_ENTRIES_BINARY_SUBSCR) = {
BINARY_SUBSCR_DICT,
BINARY_SUBSCR_GETITEM,
BINARY_SUBSCR_LIST_INT,
BINARY_SUBSCR_STR_INT,
BINARY_SUBSCR_TUPLE_INT,
};
specializing op(_SPECIALIZE_BINARY_SUBSCR, (counter/1, container, sub -- container, sub)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_BinarySubscr(container, sub, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(BINARY_SUBSCR, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_BINARY_SUBSCR, (container, sub -- res)) {
res = PyObject_GetItem(container, sub);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
macro(BINARY_SUBSCR) = _SPECIALIZE_BINARY_SUBSCR + _BINARY_SUBSCR;
inst(BINARY_SLICE, (container, start, stop -- res)) {
PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop);
// Can't use ERROR_IF() here, because we haven't
// DECREF'ed container yet, and we still own slice.
if (slice == NULL) {
res = NULL;
}
else {
res = PyObject_GetItem(container, slice);
Py_DECREF(slice);
}
Py_DECREF(container);
ERROR_IF(res == NULL, error);
}
inst(STORE_SLICE, (v, container, start, stop -- )) {
PyObject *slice = _PyBuildSlice_ConsumeRefs(start, stop);
int err;
if (slice == NULL) {
err = 1;
}
else {
err = PyObject_SetItem(container, slice, v);
Py_DECREF(slice);
}
Py_DECREF(v);
Py_DECREF(container);
ERROR_IF(err, error);
}
inst(BINARY_SUBSCR_LIST_INT, (unused/1, list, sub -- res)) {
DEOPT_IF(!PyLong_CheckExact(sub));
DEOPT_IF(!PyList_CheckExact(list));
// Deopt unless 0 <= sub < PyList_Size(list)
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub));
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
DEOPT_IF(index >= PyList_GET_SIZE(list));
STAT_INC(BINARY_SUBSCR, hit);
res = PyList_GET_ITEM(list, index);
assert(res != NULL);
Py_INCREF(res);
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(list);
}
inst(BINARY_SUBSCR_STR_INT, (unused/1, str, sub -- res)) {
DEOPT_IF(!PyLong_CheckExact(sub));
DEOPT_IF(!PyUnicode_CheckExact(str));
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub));
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
DEOPT_IF(PyUnicode_GET_LENGTH(str) <= index);
// Specialize for reading an ASCII character from any string:
Py_UCS4 c = PyUnicode_READ_CHAR(str, index);
DEOPT_IF(Py_ARRAY_LENGTH(_Py_SINGLETON(strings).ascii) <= c);
STAT_INC(BINARY_SUBSCR, hit);
res = (PyObject*)&_Py_SINGLETON(strings).ascii[c];
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(str);
}
inst(BINARY_SUBSCR_TUPLE_INT, (unused/1, tuple, sub -- res)) {
DEOPT_IF(!PyLong_CheckExact(sub));
DEOPT_IF(!PyTuple_CheckExact(tuple));
// Deopt unless 0 <= sub < PyTuple_Size(list)
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub));
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
DEOPT_IF(index >= PyTuple_GET_SIZE(tuple));
STAT_INC(BINARY_SUBSCR, hit);
res = PyTuple_GET_ITEM(tuple, index);
assert(res != NULL);
Py_INCREF(res);
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(tuple);
}
inst(BINARY_SUBSCR_DICT, (unused/1, dict, sub -- res)) {
DEOPT_IF(!PyDict_CheckExact(dict));
STAT_INC(BINARY_SUBSCR, hit);
int rc = PyDict_GetItemRef(dict, sub, &res);
if (rc == 0) {
_PyErr_SetKeyError(sub);
}
DECREF_INPUTS();
ERROR_IF(rc <= 0, error); // not found or error
}
inst(BINARY_SUBSCR_GETITEM, (unused/1, container, sub -- unused)) {
DEOPT_IF(tstate->interp->eval_frame);
PyTypeObject *tp = Py_TYPE(container);
DEOPT_IF(!PyType_HasFeature(tp, Py_TPFLAGS_HEAPTYPE));
PyHeapTypeObject *ht = (PyHeapTypeObject *)tp;
PyObject *cached = ht->_spec_cache.getitem;
DEOPT_IF(cached == NULL);
assert(PyFunction_Check(cached));
PyFunctionObject *getitem = (PyFunctionObject *)cached;
uint32_t cached_version = ht->_spec_cache.getitem_version;
DEOPT_IF(getitem->func_version != cached_version);
PyCodeObject *code = (PyCodeObject *)getitem->func_code;
assert(code->co_argcount == 2);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize));
STAT_INC(BINARY_SUBSCR, hit);
Py_INCREF(getitem);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, getitem, 2);
STACK_SHRINK(2);
new_frame->localsplus[0] = container;
new_frame->localsplus[1] = sub;
frame->return_offset = (uint16_t)(next_instr - this_instr);
DISPATCH_INLINED(new_frame);
}
inst(LIST_APPEND, (list, unused[oparg-1], v -- list, unused[oparg-1])) {
ERROR_IF(_PyList_AppendTakeRef((PyListObject *)list, v) < 0, error);
}
inst(SET_ADD, (set, unused[oparg-1], v -- set, unused[oparg-1])) {
int err = PySet_Add(set, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
family(STORE_SUBSCR, INLINE_CACHE_ENTRIES_STORE_SUBSCR) = {
STORE_SUBSCR_DICT,
STORE_SUBSCR_LIST_INT,
};
specializing op(_SPECIALIZE_STORE_SUBSCR, (counter/1, container, sub -- container, sub)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_StoreSubscr(container, sub, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(STORE_SUBSCR, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_STORE_SUBSCR, (v, container, sub -- )) {
/* container[sub] = v */
int err = PyObject_SetItem(container, sub, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
macro(STORE_SUBSCR) = _SPECIALIZE_STORE_SUBSCR + _STORE_SUBSCR;
inst(STORE_SUBSCR_LIST_INT, (unused/1, value, list, sub -- )) {
DEOPT_IF(!PyLong_CheckExact(sub));
DEOPT_IF(!PyList_CheckExact(list));
// Ensure nonnegative, zero-or-one-digit ints.
DEOPT_IF(!_PyLong_IsNonNegativeCompact((PyLongObject *)sub));
Py_ssize_t index = ((PyLongObject*)sub)->long_value.ob_digit[0];
// Ensure index < len(list)
DEOPT_IF(index >= PyList_GET_SIZE(list));
STAT_INC(STORE_SUBSCR, hit);
PyObject *old_value = PyList_GET_ITEM(list, index);
PyList_SET_ITEM(list, index, value);
assert(old_value != NULL);
Py_DECREF(old_value);
_Py_DECREF_SPECIALIZED(sub, (destructor)PyObject_Free);
Py_DECREF(list);
}
inst(STORE_SUBSCR_DICT, (unused/1, value, dict, sub -- )) {
DEOPT_IF(!PyDict_CheckExact(dict));
STAT_INC(STORE_SUBSCR, hit);
int err = _PyDict_SetItem_Take2((PyDictObject *)dict, sub, value);
Py_DECREF(dict);
ERROR_IF(err, error);
}
inst(DELETE_SUBSCR, (container, sub --)) {
/* del container[sub] */
int err = PyObject_DelItem(container, sub);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(CALL_INTRINSIC_1, (value -- res)) {
assert(oparg <= MAX_INTRINSIC_1);
res = _PyIntrinsics_UnaryFunctions[oparg].func(tstate, value);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(CALL_INTRINSIC_2, (value2, value1 -- res)) {
assert(oparg <= MAX_INTRINSIC_2);
res = _PyIntrinsics_BinaryFunctions[oparg].func(tstate, value2, value1);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(RAISE_VARARGS, (args[oparg] -- )) {
TIER_ONE_ONLY
PyObject *cause = NULL, *exc = NULL;
switch (oparg) {
case 2:
cause = args[1];
/* fall through */
case 1:
exc = args[0];
/* fall through */
case 0:
if (do_raise(tstate, exc, cause)) {
assert(oparg == 0);
monitor_reraise(tstate, frame, this_instr);
goto exception_unwind;
}
break;
default:
_PyErr_SetString(tstate, PyExc_SystemError,
"bad RAISE_VARARGS oparg");
break;
}
ERROR_IF(true, error);
}
inst(INTERPRETER_EXIT, (retval --)) {
assert(frame == &entry_frame);
assert(_PyFrame_IsIncomplete(frame));
/* Restore previous frame and return. */
tstate->current_frame = frame->previous;
assert(!_PyErr_Occurred(tstate));
tstate->c_recursion_remaining += PY_EVAL_C_STACK_UNITS;
return retval;
}
// The stack effect here is ambiguous.
// We definitely pop the return value off the stack on entry.
// We also push it onto the stack on exit, but that's a
// different frame, and it's accounted for by _PUSH_FRAME.
op(_POP_FRAME, (retval --)) {
#if TIER_ONE
assert(frame != &entry_frame);
#endif
STORE_SP();
assert(EMPTY());
_Py_LeaveRecursiveCallPy(tstate);
// GH-99729: We need to unlink the frame *before* clearing it:
_PyInterpreterFrame *dying = frame;
frame = tstate->current_frame = dying->previous;
_PyEval_FrameClearAndPop(tstate, dying);
_PyFrame_StackPush(frame, retval);
LOAD_SP();
LOAD_IP(frame->return_offset);
#if LLTRACE && TIER_ONE
lltrace = maybe_lltrace_resume_frame(frame, &entry_frame, GLOBALS());
if (lltrace < 0) {
goto exit_unwind;
}
#endif
}
macro(RETURN_VALUE) =
_POP_FRAME;
inst(INSTRUMENTED_RETURN_VALUE, (retval --)) {
int err = _Py_call_instrumentation_arg(
tstate, PY_MONITORING_EVENT_PY_RETURN,
frame, this_instr, retval);
if (err) GOTO_ERROR(error);
STACK_SHRINK(1);
assert(EMPTY());
_PyFrame_SetStackPointer(frame, stack_pointer);
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
// GH-99729: We need to unlink the frame *before* clearing it:
_PyInterpreterFrame *dying = frame;
frame = tstate->current_frame = dying->previous;
_PyEval_FrameClearAndPop(tstate, dying);
_PyFrame_StackPush(frame, retval);
LOAD_IP(frame->return_offset);
goto resume_frame;
}
macro(RETURN_CONST) =
LOAD_CONST +
_POP_FRAME;
inst(INSTRUMENTED_RETURN_CONST, (--)) {
PyObject *retval = GETITEM(FRAME_CO_CONSTS, oparg);
int err = _Py_call_instrumentation_arg(
tstate, PY_MONITORING_EVENT_PY_RETURN,
frame, this_instr, retval);
if (err) GOTO_ERROR(error);
Py_INCREF(retval);
assert(EMPTY());
_PyFrame_SetStackPointer(frame, stack_pointer);
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
// GH-99729: We need to unlink the frame *before* clearing it:
_PyInterpreterFrame *dying = frame;
frame = tstate->current_frame = dying->previous;
_PyEval_FrameClearAndPop(tstate, dying);
_PyFrame_StackPush(frame, retval);
LOAD_IP(frame->return_offset);
goto resume_frame;
}
inst(GET_AITER, (obj -- iter)) {
unaryfunc getter = NULL;
PyTypeObject *type = Py_TYPE(obj);
if (type->tp_as_async != NULL) {
getter = type->tp_as_async->am_aiter;
}
if (getter == NULL) {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' requires an object with "
"__aiter__ method, got %.100s",
type->tp_name);
DECREF_INPUTS();
ERROR_IF(true, error);
}
iter = (*getter)(obj);
DECREF_INPUTS();
ERROR_IF(iter == NULL, error);
if (Py_TYPE(iter)->tp_as_async == NULL ||
Py_TYPE(iter)->tp_as_async->am_anext == NULL) {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' received an object from __aiter__ "
"that does not implement __anext__: %.100s",
Py_TYPE(iter)->tp_name);
Py_DECREF(iter);
ERROR_IF(true, error);
}
}
inst(GET_ANEXT, (aiter -- aiter, awaitable)) {
unaryfunc getter = NULL;
PyObject *next_iter = NULL;
PyTypeObject *type = Py_TYPE(aiter);
if (PyAsyncGen_CheckExact(aiter)) {
awaitable = type->tp_as_async->am_anext(aiter);
if (awaitable == NULL) {
GOTO_ERROR(error);
}
} else {
if (type->tp_as_async != NULL){
getter = type->tp_as_async->am_anext;
}
if (getter != NULL) {
next_iter = (*getter)(aiter);
if (next_iter == NULL) {
GOTO_ERROR(error);
}
}
else {
_PyErr_Format(tstate, PyExc_TypeError,
"'async for' requires an iterator with "
"__anext__ method, got %.100s",
type->tp_name);
GOTO_ERROR(error);
}
awaitable = _PyCoro_GetAwaitableIter(next_iter);
if (awaitable == NULL) {
_PyErr_FormatFromCause(
PyExc_TypeError,
"'async for' received an invalid object "
"from __anext__: %.100s",
Py_TYPE(next_iter)->tp_name);
Py_DECREF(next_iter);
GOTO_ERROR(error);
} else {
Py_DECREF(next_iter);
}
}
}
inst(GET_AWAITABLE, (iterable -- iter)) {
iter = _PyCoro_GetAwaitableIter(iterable);
if (iter == NULL) {
_PyEval_FormatAwaitableError(tstate, Py_TYPE(iterable), oparg);
}
DECREF_INPUTS();
if (iter != NULL && PyCoro_CheckExact(iter)) {
PyObject *yf = _PyGen_yf((PyGenObject*)iter);
if (yf != NULL) {
/* `iter` is a coroutine object that is being
awaited, `yf` is a pointer to the current awaitable
being awaited on. */
Py_DECREF(yf);
Py_CLEAR(iter);
_PyErr_SetString(tstate, PyExc_RuntimeError,
"coroutine is being awaited already");
/* The code below jumps to `error` if `iter` is NULL. */
}
}
ERROR_IF(iter == NULL, error);
}
family(SEND, INLINE_CACHE_ENTRIES_SEND) = {
SEND_GEN,
};
specializing op(_SPECIALIZE_SEND, (counter/1, receiver, unused -- receiver, unused)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_Send(receiver, next_instr);
DISPATCH_SAME_OPARG();
}
STAT_INC(SEND, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_SEND, (receiver, v -- receiver, retval)) {
assert(frame != &entry_frame);
if ((tstate->interp->eval_frame == NULL) &&
(Py_TYPE(receiver) == &PyGen_Type || Py_TYPE(receiver) == &PyCoro_Type) &&
((PyGenObject *)receiver)->gi_frame_state < FRAME_EXECUTING)
{
PyGenObject *gen = (PyGenObject *)receiver;
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
STACK_SHRINK(1);
_PyFrame_StackPush(gen_frame, v);
gen->gi_frame_state = FRAME_EXECUTING;
gen->gi_exc_state.previous_item = tstate->exc_info;
tstate->exc_info = &gen->gi_exc_state;
assert(next_instr - this_instr + oparg <= UINT16_MAX);
frame->return_offset = (uint16_t)(next_instr - this_instr + oparg);
DISPATCH_INLINED(gen_frame);
}
if (Py_IsNone(v) && PyIter_Check(receiver)) {
retval = Py_TYPE(receiver)->tp_iternext(receiver);
}
else {
retval = PyObject_CallMethodOneArg(receiver, &_Py_ID(send), v);
}
if (retval == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)
) {
monitor_raise(tstate, frame, this_instr);
}
if (_PyGen_FetchStopIterationValue(&retval) == 0) {
assert(retval != NULL);
JUMPBY(oparg);
}
else {
GOTO_ERROR(error);
}
}
Py_DECREF(v);
}
macro(SEND) = _SPECIALIZE_SEND + _SEND;
inst(SEND_GEN, (unused/1, receiver, v -- receiver, unused)) {
DEOPT_IF(tstate->interp->eval_frame);
PyGenObject *gen = (PyGenObject *)receiver;
DEOPT_IF(Py_TYPE(gen) != &PyGen_Type && Py_TYPE(gen) != &PyCoro_Type);
DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING);
STAT_INC(SEND, hit);
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
STACK_SHRINK(1);
_PyFrame_StackPush(gen_frame, v);
gen->gi_frame_state = FRAME_EXECUTING;
gen->gi_exc_state.previous_item = tstate->exc_info;
tstate->exc_info = &gen->gi_exc_state;
assert(next_instr - this_instr + oparg <= UINT16_MAX);
frame->return_offset = (uint16_t)(next_instr - this_instr + oparg);
DISPATCH_INLINED(gen_frame);
}
inst(INSTRUMENTED_YIELD_VALUE, (retval -- unused)) {
assert(frame != &entry_frame);
frame->instr_ptr = next_instr;
PyGenObject *gen = _PyFrame_GetGenerator(frame);
assert(FRAME_SUSPENDED_YIELD_FROM == FRAME_SUSPENDED + 1);
assert(oparg == 0 || oparg == 1);
gen->gi_frame_state = FRAME_SUSPENDED + oparg;
_PyFrame_SetStackPointer(frame, stack_pointer - 1);
int err = _Py_call_instrumentation_arg(
tstate, PY_MONITORING_EVENT_PY_YIELD,
frame, this_instr, retval);
if (err) GOTO_ERROR(error);
tstate->exc_info = gen->gi_exc_state.previous_item;
gen->gi_exc_state.previous_item = NULL;
_Py_LeaveRecursiveCallPy(tstate);
_PyInterpreterFrame *gen_frame = frame;
frame = tstate->current_frame = frame->previous;
gen_frame->previous = NULL;
_PyFrame_StackPush(frame, retval);
/* We don't know which of these is relevant here, so keep them equal */
assert(INLINE_CACHE_ENTRIES_SEND == INLINE_CACHE_ENTRIES_FOR_ITER);
LOAD_IP(1 + INLINE_CACHE_ENTRIES_SEND);
goto resume_frame;
}
inst(YIELD_VALUE, (retval -- unused)) {
// NOTE: It's important that YIELD_VALUE never raises an exception!
// The compiler treats any exception raised here as a failed close()
// or throw() call.
assert(frame != &entry_frame);
frame->instr_ptr = next_instr;
PyGenObject *gen = _PyFrame_GetGenerator(frame);
assert(FRAME_SUSPENDED_YIELD_FROM == FRAME_SUSPENDED + 1);
assert(oparg == 0 || oparg == 1);
gen->gi_frame_state = FRAME_SUSPENDED + oparg;
_PyFrame_SetStackPointer(frame, stack_pointer - 1);
tstate->exc_info = gen->gi_exc_state.previous_item;
gen->gi_exc_state.previous_item = NULL;
_Py_LeaveRecursiveCallPy(tstate);
_PyInterpreterFrame *gen_frame = frame;
frame = tstate->current_frame = frame->previous;
gen_frame->previous = NULL;
_PyFrame_StackPush(frame, retval);
/* We don't know which of these is relevant here, so keep them equal */
assert(INLINE_CACHE_ENTRIES_SEND == INLINE_CACHE_ENTRIES_FOR_ITER);
LOAD_IP(1 + INLINE_CACHE_ENTRIES_SEND);
goto resume_frame;
}
inst(POP_EXCEPT, (exc_value -- )) {
_PyErr_StackItem *exc_info = tstate->exc_info;
Py_XSETREF(exc_info->exc_value, exc_value);
}
inst(RERAISE, (values[oparg], exc -- values[oparg])) {
TIER_ONE_ONLY
assert(oparg >= 0 && oparg <= 2);
if (oparg) {
PyObject *lasti = values[0];
if (PyLong_Check(lasti)) {
frame->instr_ptr = _PyCode_CODE(_PyFrame_GetCode(frame)) + PyLong_AsLong(lasti);
assert(!_PyErr_Occurred(tstate));
}
else {
assert(PyLong_Check(lasti));
_PyErr_SetString(tstate, PyExc_SystemError, "lasti is not an int");
GOTO_ERROR(error);
}
}
assert(exc && PyExceptionInstance_Check(exc));
Py_INCREF(exc);
_PyErr_SetRaisedException(tstate, exc);
monitor_reraise(tstate, frame, this_instr);
goto exception_unwind;
}
inst(END_ASYNC_FOR, (awaitable, exc -- )) {
TIER_ONE_ONLY
assert(exc && PyExceptionInstance_Check(exc));
if (PyErr_GivenExceptionMatches(exc, PyExc_StopAsyncIteration)) {
DECREF_INPUTS();
}
else {
Py_INCREF(exc);
_PyErr_SetRaisedException(tstate, exc);
monitor_reraise(tstate, frame, this_instr);
goto exception_unwind;
}
}
inst(CLEANUP_THROW, (sub_iter, last_sent_val, exc_value -- none, value)) {
TIER_ONE_ONLY
assert(throwflag);
assert(exc_value && PyExceptionInstance_Check(exc_value));
if (PyErr_GivenExceptionMatches(exc_value, PyExc_StopIteration)) {
value = Py_NewRef(((PyStopIterationObject *)exc_value)->value);
DECREF_INPUTS();
none = Py_None;
}
else {
_PyErr_SetRaisedException(tstate, Py_NewRef(exc_value));
monitor_reraise(tstate, frame, this_instr);
goto exception_unwind;
}
}
inst(LOAD_ASSERTION_ERROR, ( -- value)) {
value = Py_NewRef(PyExc_AssertionError);
}
inst(LOAD_BUILD_CLASS, ( -- bc)) {
ERROR_IF(PyMapping_GetOptionalItem(BUILTINS(), &_Py_ID(__build_class__), &bc) < 0, error);
if (bc == NULL) {
_PyErr_SetString(tstate, PyExc_NameError,
"__build_class__ not found");
ERROR_IF(true, error);
}
}
inst(STORE_NAME, (v -- )) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
PyObject *ns = LOCALS();
int err;
if (ns == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals found when storing %R", name);
DECREF_INPUTS();
ERROR_IF(true, error);
}
if (PyDict_CheckExact(ns))
err = PyDict_SetItem(ns, name, v);
else
err = PyObject_SetItem(ns, name, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(DELETE_NAME, (--)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
PyObject *ns = LOCALS();
int err;
if (ns == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals when deleting %R", name);
GOTO_ERROR(error);
}
err = PyObject_DelItem(ns, name);
// Can't use ERROR_IF here.
if (err != 0) {
_PyEval_FormatExcCheckArg(tstate, PyExc_NameError,
NAME_ERROR_MSG,
name);
GOTO_ERROR(error);
}
}
family(UNPACK_SEQUENCE, INLINE_CACHE_ENTRIES_UNPACK_SEQUENCE) = {
UNPACK_SEQUENCE_TWO_TUPLE,
UNPACK_SEQUENCE_TUPLE,
UNPACK_SEQUENCE_LIST,
};
specializing op(_SPECIALIZE_UNPACK_SEQUENCE, (counter/1, seq -- seq)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_UnpackSequence(seq, next_instr, oparg);
DISPATCH_SAME_OPARG();
}
STAT_INC(UNPACK_SEQUENCE, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
(void)seq;
(void)counter;
}
op(_UNPACK_SEQUENCE, (seq -- unused[oparg])) {
PyObject **top = stack_pointer + oparg - 1;
int res = _PyEval_UnpackIterable(tstate, seq, oparg, -1, top);
DECREF_INPUTS();
ERROR_IF(res == 0, error);
}
macro(UNPACK_SEQUENCE) = _SPECIALIZE_UNPACK_SEQUENCE + _UNPACK_SEQUENCE;
inst(UNPACK_SEQUENCE_TWO_TUPLE, (unused/1, seq -- values[oparg])) {
DEOPT_IF(!PyTuple_CheckExact(seq));
DEOPT_IF(PyTuple_GET_SIZE(seq) != 2);
assert(oparg == 2);
STAT_INC(UNPACK_SEQUENCE, hit);
values[0] = Py_NewRef(PyTuple_GET_ITEM(seq, 1));
values[1] = Py_NewRef(PyTuple_GET_ITEM(seq, 0));
DECREF_INPUTS();
}
inst(UNPACK_SEQUENCE_TUPLE, (unused/1, seq -- values[oparg])) {
DEOPT_IF(!PyTuple_CheckExact(seq));
DEOPT_IF(PyTuple_GET_SIZE(seq) != oparg);
STAT_INC(UNPACK_SEQUENCE, hit);
PyObject **items = _PyTuple_ITEMS(seq);
for (int i = oparg; --i >= 0; ) {
*values++ = Py_NewRef(items[i]);
}
DECREF_INPUTS();
}
inst(UNPACK_SEQUENCE_LIST, (unused/1, seq -- values[oparg])) {
DEOPT_IF(!PyList_CheckExact(seq));
DEOPT_IF(PyList_GET_SIZE(seq) != oparg);
STAT_INC(UNPACK_SEQUENCE, hit);
PyObject **items = _PyList_ITEMS(seq);
for (int i = oparg; --i >= 0; ) {
*values++ = Py_NewRef(items[i]);
}
DECREF_INPUTS();
}
inst(UNPACK_EX, (seq -- unused[oparg & 0xFF], unused, unused[oparg >> 8])) {
int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8);
PyObject **top = stack_pointer + totalargs - 1;
int res = _PyEval_UnpackIterable(tstate, seq, oparg & 0xFF, oparg >> 8, top);
DECREF_INPUTS();
ERROR_IF(res == 0, error);
}
family(STORE_ATTR, INLINE_CACHE_ENTRIES_STORE_ATTR) = {
STORE_ATTR_INSTANCE_VALUE,
STORE_ATTR_SLOT,
STORE_ATTR_WITH_HINT,
};
specializing op(_SPECIALIZE_STORE_ATTR, (counter/1, owner -- owner)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
next_instr = this_instr;
_Py_Specialize_StoreAttr(owner, next_instr, name);
DISPATCH_SAME_OPARG();
}
STAT_INC(STORE_ATTR, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_STORE_ATTR, (unused/3, v, owner --)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
int err = PyObject_SetAttr(owner, name, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
macro(STORE_ATTR) = _SPECIALIZE_STORE_ATTR + _STORE_ATTR;
inst(DELETE_ATTR, (owner --)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
int err = PyObject_DelAttr(owner, name);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(STORE_GLOBAL, (v --)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
int err = PyDict_SetItem(GLOBALS(), name, v);
DECREF_INPUTS();
ERROR_IF(err, error);
}
inst(DELETE_GLOBAL, (--)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
int err;
err = PyDict_DelItem(GLOBALS(), name);
// Can't use ERROR_IF here.
if (err != 0) {
if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
_PyEval_FormatExcCheckArg(tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
GOTO_ERROR(error);
}
}
inst(LOAD_LOCALS, ( -- locals)) {
locals = LOCALS();
if (locals == NULL) {
_PyErr_SetString(tstate, PyExc_SystemError,
"no locals found");
ERROR_IF(true, error);
}
Py_INCREF(locals);
}
inst(LOAD_FROM_DICT_OR_GLOBALS, (mod_or_class_dict -- v)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
if (PyMapping_GetOptionalItem(mod_or_class_dict, name, &v) < 0) {
GOTO_ERROR(error);
}
if (v == NULL) {
if (PyDict_GetItemRef(GLOBALS(), name, &v) < 0) {
GOTO_ERROR(error);
}
if (v == NULL) {
if (PyMapping_GetOptionalItem(BUILTINS(), name, &v) < 0) {
GOTO_ERROR(error);
}
if (v == NULL) {
_PyEval_FormatExcCheckArg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
GOTO_ERROR(error);
}
}
}
DECREF_INPUTS();
}
inst(LOAD_NAME, (-- v)) {
PyObject *mod_or_class_dict = LOCALS();
if (mod_or_class_dict == NULL) {
_PyErr_SetString(tstate, PyExc_SystemError,
"no locals found");
ERROR_IF(true, error);
}
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
if (PyMapping_GetOptionalItem(mod_or_class_dict, name, &v) < 0) {
GOTO_ERROR(error);
}
if (v == NULL) {
if (PyDict_GetItemRef(GLOBALS(), name, &v) < 0) {
GOTO_ERROR(error);
}
if (v == NULL) {
if (PyMapping_GetOptionalItem(BUILTINS(), name, &v) < 0) {
GOTO_ERROR(error);
}
if (v == NULL) {
_PyEval_FormatExcCheckArg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
GOTO_ERROR(error);
}
}
}
}
family(LOAD_GLOBAL, INLINE_CACHE_ENTRIES_LOAD_GLOBAL) = {
LOAD_GLOBAL_MODULE,
LOAD_GLOBAL_BUILTIN,
};
specializing op(_SPECIALIZE_LOAD_GLOBAL, (counter/1 -- )) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1);
next_instr = this_instr;
_Py_Specialize_LoadGlobal(GLOBALS(), BUILTINS(), next_instr, name);
DISPATCH_SAME_OPARG();
}
STAT_INC(LOAD_GLOBAL, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_LOAD_GLOBAL, (unused/1, unused/1, unused/1 -- res, null if (oparg & 1))) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1);
if (PyDict_CheckExact(GLOBALS())
&& PyDict_CheckExact(BUILTINS()))
{
res = _PyDict_LoadGlobal((PyDictObject *)GLOBALS(),
(PyDictObject *)BUILTINS(),
name);
if (res == NULL) {
if (!_PyErr_Occurred(tstate)) {
/* _PyDict_LoadGlobal() returns NULL without raising
* an exception if the key doesn't exist */
_PyEval_FormatExcCheckArg(tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
}
ERROR_IF(true, error);
}
Py_INCREF(res);
}
else {
/* Slow-path if globals or builtins is not a dict */
/* namespace 1: globals */
ERROR_IF(PyMapping_GetOptionalItem(GLOBALS(), name, &res) < 0, error);
if (res == NULL) {
/* namespace 2: builtins */
ERROR_IF(PyMapping_GetOptionalItem(BUILTINS(), name, &res) < 0, error);
if (res == NULL) {
_PyEval_FormatExcCheckArg(
tstate, PyExc_NameError,
NAME_ERROR_MSG, name);
ERROR_IF(true, error);
}
}
}
null = NULL;
}
macro(LOAD_GLOBAL) = _SPECIALIZE_LOAD_GLOBAL + _LOAD_GLOBAL;
op(_GUARD_GLOBALS_VERSION, (version/1 --)) {
PyDictObject *dict = (PyDictObject *)GLOBALS();
DEOPT_IF(!PyDict_CheckExact(dict));
DEOPT_IF(dict->ma_keys->dk_version != version);
assert(DK_IS_UNICODE(dict->ma_keys));
}
op(_GUARD_BUILTINS_VERSION, (version/1 --)) {
PyDictObject *dict = (PyDictObject *)BUILTINS();
DEOPT_IF(!PyDict_CheckExact(dict));
DEOPT_IF(dict->ma_keys->dk_version != version);
assert(DK_IS_UNICODE(dict->ma_keys));
}
op(_LOAD_GLOBAL_MODULE, (index/1 -- res, null if (oparg & 1))) {
PyDictObject *dict = (PyDictObject *)GLOBALS();
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(dict->ma_keys);
res = entries[index].me_value;
DEOPT_IF(res == NULL);
Py_INCREF(res);
STAT_INC(LOAD_GLOBAL, hit);
null = NULL;
}
op(_LOAD_GLOBAL_BUILTINS, (index/1 -- res, null if (oparg & 1))) {
PyDictObject *bdict = (PyDictObject *)BUILTINS();
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(bdict->ma_keys);
res = entries[index].me_value;
DEOPT_IF(res == NULL);
Py_INCREF(res);
STAT_INC(LOAD_GLOBAL, hit);
null = NULL;
}
macro(LOAD_GLOBAL_MODULE) =
unused/1 + // Skip over the counter
_GUARD_GLOBALS_VERSION +
unused/1 + // Skip over the builtins version
_LOAD_GLOBAL_MODULE;
macro(LOAD_GLOBAL_BUILTIN) =
unused/1 + // Skip over the counter
_GUARD_GLOBALS_VERSION +
_GUARD_BUILTINS_VERSION +
_LOAD_GLOBAL_BUILTINS;
inst(DELETE_FAST, (--)) {
PyObject *v = GETLOCAL(oparg);
ERROR_IF(v == NULL, unbound_local_error);
SETLOCAL(oparg, NULL);
}
inst(MAKE_CELL, (--)) {
// "initial" is probably NULL but not if it's an arg (or set
// via PyFrame_LocalsToFast() before MAKE_CELL has run).
PyObject *initial = GETLOCAL(oparg);
PyObject *cell = PyCell_New(initial);
if (cell == NULL) {
GOTO_ERROR(error);
}
SETLOCAL(oparg, cell);
}
inst(DELETE_DEREF, (--)) {
PyObject *cell = GETLOCAL(oparg);
PyObject *oldobj = PyCell_GET(cell);
// Can't use ERROR_IF here.
// Fortunately we don't need its superpower.
if (oldobj == NULL) {
_PyEval_FormatExcUnbound(tstate, _PyFrame_GetCode(frame), oparg);
GOTO_ERROR(error);
}
PyCell_SET(cell, NULL);
Py_DECREF(oldobj);
}
inst(LOAD_FROM_DICT_OR_DEREF, (class_dict -- value)) {
PyObject *name;
assert(class_dict);
assert(oparg >= 0 && oparg < _PyFrame_GetCode(frame)->co_nlocalsplus);
name = PyTuple_GET_ITEM(_PyFrame_GetCode(frame)->co_localsplusnames, oparg);
if (PyMapping_GetOptionalItem(class_dict, name, &value) < 0) {
GOTO_ERROR(error);
}
if (!value) {
PyObject *cell = GETLOCAL(oparg);
value = PyCell_GET(cell);
if (value == NULL) {
_PyEval_FormatExcUnbound(tstate, _PyFrame_GetCode(frame), oparg);
GOTO_ERROR(error);
}
Py_INCREF(value);
}
Py_DECREF(class_dict);
}
inst(LOAD_DEREF, ( -- value)) {
PyObject *cell = GETLOCAL(oparg);
value = PyCell_GET(cell);
if (value == NULL) {
_PyEval_FormatExcUnbound(tstate, _PyFrame_GetCode(frame), oparg);
ERROR_IF(true, error);
}
Py_INCREF(value);
}
inst(STORE_DEREF, (v --)) {
PyObject *cell = GETLOCAL(oparg);
PyObject *oldobj = PyCell_GET(cell);
PyCell_SET(cell, v);
Py_XDECREF(oldobj);
}
inst(COPY_FREE_VARS, (--)) {
/* Copy closure variables to free variables */
PyCodeObject *co = _PyFrame_GetCode(frame);
assert(PyFunction_Check(frame->f_funcobj));
PyObject *closure = ((PyFunctionObject *)frame->f_funcobj)->func_closure;
assert(oparg == co->co_nfreevars);
int offset = co->co_nlocalsplus - oparg;
for (int i = 0; i < oparg; ++i) {
PyObject *o = PyTuple_GET_ITEM(closure, i);
frame->localsplus[offset + i] = Py_NewRef(o);
}
}
inst(BUILD_STRING, (pieces[oparg] -- str)) {
str = _PyUnicode_JoinArray(&_Py_STR(empty), pieces, oparg);
DECREF_INPUTS();
ERROR_IF(str == NULL, error);
}
inst(BUILD_TUPLE, (values[oparg] -- tup)) {
tup = _PyTuple_FromArraySteal(values, oparg);
ERROR_IF(tup == NULL, error);
}
inst(BUILD_LIST, (values[oparg] -- list)) {
list = _PyList_FromArraySteal(values, oparg);
ERROR_IF(list == NULL, error);
}
inst(LIST_EXTEND, (list, unused[oparg-1], iterable -- list, unused[oparg-1])) {
PyObject *none_val = _PyList_Extend((PyListObject *)list, iterable);
if (none_val == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) &&
(Py_TYPE(iterable)->tp_iter == NULL && !PySequence_Check(iterable)))
{
_PyErr_Clear(tstate);
_PyErr_Format(tstate, PyExc_TypeError,
"Value after * must be an iterable, not %.200s",
Py_TYPE(iterable)->tp_name);
}
DECREF_INPUTS();
ERROR_IF(true, error);
}
assert(Py_IsNone(none_val));
DECREF_INPUTS();
}
inst(SET_UPDATE, (set, unused[oparg-1], iterable -- set, unused[oparg-1])) {
int err = _PySet_Update(set, iterable);
DECREF_INPUTS();
ERROR_IF(err < 0, error);
}
inst(BUILD_SET, (values[oparg] -- set)) {
set = PySet_New(NULL);
if (set == NULL)
GOTO_ERROR(error);
int err = 0;
for (int i = 0; i < oparg; i++) {
PyObject *item = values[i];
if (err == 0)
err = PySet_Add(set, item);
Py_DECREF(item);
}
if (err != 0) {
Py_DECREF(set);
ERROR_IF(true, error);
}
}
inst(BUILD_MAP, (values[oparg*2] -- map)) {
map = _PyDict_FromItems(
values, 2,
values+1, 2,
oparg);
DECREF_INPUTS();
ERROR_IF(map == NULL, error);
}
inst(SETUP_ANNOTATIONS, (--)) {
int err;
PyObject *ann_dict;
if (LOCALS() == NULL) {
_PyErr_Format(tstate, PyExc_SystemError,
"no locals found when setting up annotations");
ERROR_IF(true, error);
}
/* check if __annotations__ in locals()... */
ERROR_IF(PyMapping_GetOptionalItem(LOCALS(), &_Py_ID(__annotations__), &ann_dict) < 0, error);
if (ann_dict == NULL) {
ann_dict = PyDict_New();
ERROR_IF(ann_dict == NULL, error);
err = PyObject_SetItem(LOCALS(), &_Py_ID(__annotations__),
ann_dict);
Py_DECREF(ann_dict);
ERROR_IF(err, error);
}
else {
Py_DECREF(ann_dict);
}
}
inst(BUILD_CONST_KEY_MAP, (values[oparg], keys -- map)) {
if (!PyTuple_CheckExact(keys) ||
PyTuple_GET_SIZE(keys) != (Py_ssize_t)oparg) {
_PyErr_SetString(tstate, PyExc_SystemError,
"bad BUILD_CONST_KEY_MAP keys argument");
GOTO_ERROR(error); // Pop the keys and values.
}
map = _PyDict_FromItems(
&PyTuple_GET_ITEM(keys, 0), 1,
values, 1, oparg);
DECREF_INPUTS();
ERROR_IF(map == NULL, error);
}
inst(DICT_UPDATE, (dict, unused[oparg - 1], update -- dict, unused[oparg - 1])) {
if (PyDict_Update(dict, update) < 0) {
if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object is not a mapping",
Py_TYPE(update)->tp_name);
}
DECREF_INPUTS();
ERROR_IF(true, error);
}
DECREF_INPUTS();
}
inst(DICT_MERGE, (callable, unused, unused, dict, unused[oparg - 1], update -- callable, unused, unused, dict, unused[oparg - 1])) {
if (_PyDict_MergeEx(dict, update, 2) < 0) {
_PyEval_FormatKwargsError(tstate, callable, update);
DECREF_INPUTS();
ERROR_IF(true, error);
}
DECREF_INPUTS();
}
inst(MAP_ADD, (dict, unused[oparg - 1], key, value -- dict, unused[oparg - 1])) {
assert(PyDict_CheckExact(dict));
/* dict[key] = value */
// Do not DECREF INPUTS because the function steals the references
ERROR_IF(_PyDict_SetItem_Take2((PyDictObject *)dict, key, value) != 0, error);
}
inst(INSTRUMENTED_LOAD_SUPER_ATTR, (unused/1, unused, unused, unused -- unused, unused if (oparg & 1))) {
// cancel out the decrement that will happen in LOAD_SUPER_ATTR; we
// don't want to specialize instrumented instructions
INCREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
GO_TO_INSTRUCTION(LOAD_SUPER_ATTR);
}
family(LOAD_SUPER_ATTR, INLINE_CACHE_ENTRIES_LOAD_SUPER_ATTR) = {
LOAD_SUPER_ATTR_ATTR,
LOAD_SUPER_ATTR_METHOD,
};
specializing op(_SPECIALIZE_LOAD_SUPER_ATTR, (counter/1, global_super, class, unused -- global_super, class, unused)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
int load_method = oparg & 1;
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_LoadSuperAttr(global_super, class, next_instr, load_method);
DISPATCH_SAME_OPARG();
}
STAT_INC(LOAD_SUPER_ATTR, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_LOAD_SUPER_ATTR, (global_super, class, self -- attr, null if (oparg & 1))) {
TIER_ONE_ONLY
if (opcode == INSTRUMENTED_LOAD_SUPER_ATTR) {
PyObject *arg = oparg & 2 ? class : &_PyInstrumentation_MISSING;
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_CALL,
frame, this_instr, global_super, arg);
ERROR_IF(err, error);
}
// we make no attempt to optimize here; specializations should
// handle any case whose performance we care about
PyObject *stack[] = {class, self};
PyObject *super = PyObject_Vectorcall(global_super, stack, oparg & 2, NULL);
if (opcode == INSTRUMENTED_LOAD_SUPER_ATTR) {
PyObject *arg = oparg & 2 ? class : &_PyInstrumentation_MISSING;
if (super == NULL) {
_Py_call_instrumentation_exc2(
tstate, PY_MONITORING_EVENT_C_RAISE,
frame, this_instr, global_super, arg);
}
else {
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_C_RETURN,
frame, this_instr, global_super, arg);
if (err < 0) {
Py_CLEAR(super);
}
}
}
DECREF_INPUTS();
ERROR_IF(super == NULL, error);
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 2);
attr = PyObject_GetAttr(super, name);
Py_DECREF(super);
ERROR_IF(attr == NULL, error);
null = NULL;
}
macro(LOAD_SUPER_ATTR) = _SPECIALIZE_LOAD_SUPER_ATTR + _LOAD_SUPER_ATTR;
pseudo(LOAD_SUPER_METHOD) = {
LOAD_SUPER_ATTR,
};
pseudo(LOAD_ZERO_SUPER_METHOD) = {
LOAD_SUPER_ATTR,
};
pseudo(LOAD_ZERO_SUPER_ATTR) = {
LOAD_SUPER_ATTR,
};
inst(LOAD_SUPER_ATTR_ATTR, (unused/1, global_super, class, self -- attr, unused if (0))) {
assert(!(oparg & 1));
DEOPT_IF(global_super != (PyObject *)&PySuper_Type);
DEOPT_IF(!PyType_Check(class));
STAT_INC(LOAD_SUPER_ATTR, hit);
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 2);
attr = _PySuper_Lookup((PyTypeObject *)class, self, name, NULL);
DECREF_INPUTS();
ERROR_IF(attr == NULL, error);
}
inst(LOAD_SUPER_ATTR_METHOD, (unused/1, global_super, class, self -- attr, self_or_null)) {
assert(oparg & 1);
DEOPT_IF(global_super != (PyObject *)&PySuper_Type);
DEOPT_IF(!PyType_Check(class));
STAT_INC(LOAD_SUPER_ATTR, hit);
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 2);
PyTypeObject *cls = (PyTypeObject *)class;
int method_found = 0;
attr = _PySuper_Lookup(cls, self, name,
Py_TYPE(self)->tp_getattro == PyObject_GenericGetAttr ? &method_found : NULL);
Py_DECREF(global_super);
Py_DECREF(class);
if (attr == NULL) {
Py_DECREF(self);
ERROR_IF(true, error);
}
if (method_found) {
self_or_null = self; // transfer ownership
} else {
Py_DECREF(self);
self_or_null = NULL;
}
}
family(LOAD_ATTR, INLINE_CACHE_ENTRIES_LOAD_ATTR) = {
LOAD_ATTR_INSTANCE_VALUE,
LOAD_ATTR_MODULE,
LOAD_ATTR_WITH_HINT,
LOAD_ATTR_SLOT,
LOAD_ATTR_CLASS,
LOAD_ATTR_PROPERTY,
LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN,
LOAD_ATTR_METHOD_WITH_VALUES,
LOAD_ATTR_METHOD_NO_DICT,
LOAD_ATTR_METHOD_LAZY_DICT,
LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES,
LOAD_ATTR_NONDESCRIPTOR_NO_DICT,
};
specializing op(_SPECIALIZE_LOAD_ATTR, (counter/1, owner -- owner)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1);
next_instr = this_instr;
_Py_Specialize_LoadAttr(owner, next_instr, name);
DISPATCH_SAME_OPARG();
}
STAT_INC(LOAD_ATTR, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_LOAD_ATTR, (unused/8, owner -- attr, self_or_null if (oparg & 1))) {
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 1);
if (oparg & 1) {
/* Designed to work in tandem with CALL, pushes two values. */
attr = NULL;
if (_PyObject_GetMethod(owner, name, &attr)) {
/* We can bypass temporary bound method object.
meth is unbound method and obj is self.
meth | self | arg1 | ... | argN
*/
assert(attr != NULL); // No errors on this branch
self_or_null = owner; // Transfer ownership
}
else {
/* meth is not an unbound method (but a regular attr, or
something was returned by a descriptor protocol). Set
the second element of the stack to NULL, to signal
CALL that it's not a method call.
NULL | meth | arg1 | ... | argN
*/
DECREF_INPUTS();
ERROR_IF(attr == NULL, error);
self_or_null = NULL;
}
}
else {
/* Classic, pushes one value. */
attr = PyObject_GetAttr(owner, name);
DECREF_INPUTS();
ERROR_IF(attr == NULL, error);
}
}
macro(LOAD_ATTR) = _SPECIALIZE_LOAD_ATTR + _LOAD_ATTR;
pseudo(LOAD_METHOD) = {
LOAD_ATTR,
};
op(_GUARD_TYPE_VERSION, (type_version/2, owner -- owner)) {
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version);
}
op(_CHECK_MANAGED_OBJECT_HAS_VALUES, (owner -- owner)) {
assert(Py_TYPE(owner)->tp_dictoffset < 0);
assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues *dorv = _PyObject_DictOrValuesPointer(owner);
DEOPT_IF(!_PyDictOrValues_IsValues(*dorv) && !_PyObject_MakeInstanceAttributesFromDict(owner, dorv));
}
op(_LOAD_ATTR_INSTANCE_VALUE, (index/1, owner -- attr, null if (oparg & 1))) {
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
attr = _PyDictOrValues_GetValues(dorv)->values[index];
DEOPT_IF(attr == NULL);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(attr);
null = NULL;
DECREF_INPUTS();
}
macro(LOAD_ATTR_INSTANCE_VALUE) =
unused/1 + // Skip over the counter
_GUARD_TYPE_VERSION +
_CHECK_MANAGED_OBJECT_HAS_VALUES +
_LOAD_ATTR_INSTANCE_VALUE +
unused/5; // Skip over rest of cache
op(_CHECK_ATTR_MODULE, (type_version/2, owner -- owner)) {
DEOPT_IF(!PyModule_CheckExact(owner));
PyDictObject *dict = (PyDictObject *)((PyModuleObject *)owner)->md_dict;
assert(dict != NULL);
DEOPT_IF(dict->ma_keys->dk_version != type_version);
}
op(_LOAD_ATTR_MODULE, (index/1, owner -- attr, null if (oparg & 1))) {
PyDictObject *dict = (PyDictObject *)((PyModuleObject *)owner)->md_dict;
assert(dict->ma_keys->dk_kind == DICT_KEYS_UNICODE);
assert(index < dict->ma_keys->dk_nentries);
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + index;
attr = ep->me_value;
DEOPT_IF(attr == NULL);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(attr);
null = NULL;
DECREF_INPUTS();
}
macro(LOAD_ATTR_MODULE) =
unused/1 +
_CHECK_ATTR_MODULE +
_LOAD_ATTR_MODULE +
unused/5;
op(_CHECK_ATTR_WITH_HINT, (owner -- owner)) {
assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(_PyDictOrValues_IsValues(dorv));
PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv);
DEOPT_IF(dict == NULL);
assert(PyDict_CheckExact((PyObject *)dict));
}
op(_LOAD_ATTR_WITH_HINT, (hint/1, owner -- attr, null if (oparg & 1))) {
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv);
DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries);
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg>>1);
if (DK_IS_UNICODE(dict->ma_keys)) {
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name);
attr = ep->me_value;
}
else {
PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name);
attr = ep->me_value;
}
DEOPT_IF(attr == NULL);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(attr);
null = NULL;
DECREF_INPUTS();
}
macro(LOAD_ATTR_WITH_HINT) =
unused/1 +
_GUARD_TYPE_VERSION +
_CHECK_ATTR_WITH_HINT +
_LOAD_ATTR_WITH_HINT +
unused/5;
op(_LOAD_ATTR_SLOT, (index/1, owner -- attr, null if (oparg & 1))) {
char *addr = (char *)owner + index;
attr = *(PyObject **)addr;
DEOPT_IF(attr == NULL);
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(attr);
null = NULL;
DECREF_INPUTS();
}
macro(LOAD_ATTR_SLOT) =
unused/1 +
_GUARD_TYPE_VERSION +
_LOAD_ATTR_SLOT + // NOTE: This action may also deopt
unused/5;
op(_CHECK_ATTR_CLASS, (type_version/2, owner -- owner)) {
DEOPT_IF(!PyType_Check(owner));
assert(type_version != 0);
DEOPT_IF(((PyTypeObject *)owner)->tp_version_tag != type_version);
}
op(_LOAD_ATTR_CLASS, (descr/4, owner -- attr, null if (oparg & 1))) {
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
attr = Py_NewRef(descr);
null = NULL;
DECREF_INPUTS();
}
macro(LOAD_ATTR_CLASS) =
unused/1 +
_CHECK_ATTR_CLASS +
unused/2 +
_LOAD_ATTR_CLASS;
inst(LOAD_ATTR_PROPERTY, (unused/1, type_version/2, func_version/2, fget/4, owner -- unused, unused if (0))) {
assert((oparg & 1) == 0);
DEOPT_IF(tstate->interp->eval_frame);
PyTypeObject *cls = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(cls->tp_version_tag != type_version);
assert(Py_IS_TYPE(fget, &PyFunction_Type));
PyFunctionObject *f = (PyFunctionObject *)fget;
assert(func_version != 0);
DEOPT_IF(f->func_version != func_version);
PyCodeObject *code = (PyCodeObject *)f->func_code;
assert(code->co_argcount == 1);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize));
STAT_INC(LOAD_ATTR, hit);
Py_INCREF(fget);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 1);
// Manipulate stack directly because we exit with DISPATCH_INLINED().
STACK_SHRINK(1);
new_frame->localsplus[0] = owner;
frame->return_offset = (uint16_t)(next_instr - this_instr);
DISPATCH_INLINED(new_frame);
}
inst(LOAD_ATTR_GETATTRIBUTE_OVERRIDDEN, (unused/1, type_version/2, func_version/2, getattribute/4, owner -- unused, unused if (0))) {
assert((oparg & 1) == 0);
DEOPT_IF(tstate->interp->eval_frame);
PyTypeObject *cls = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(cls->tp_version_tag != type_version);
assert(Py_IS_TYPE(getattribute, &PyFunction_Type));
PyFunctionObject *f = (PyFunctionObject *)getattribute;
assert(func_version != 0);
DEOPT_IF(f->func_version != func_version);
PyCodeObject *code = (PyCodeObject *)f->func_code;
assert(code->co_argcount == 2);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize));
STAT_INC(LOAD_ATTR, hit);
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg >> 1);
Py_INCREF(f);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, f, 2);
// Manipulate stack directly because we exit with DISPATCH_INLINED().
STACK_SHRINK(1);
new_frame->localsplus[0] = owner;
new_frame->localsplus[1] = Py_NewRef(name);
frame->return_offset = (uint16_t)(next_instr - this_instr);
DISPATCH_INLINED(new_frame);
}
op(_GUARD_DORV_VALUES, (owner -- owner)) {
assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(!_PyDictOrValues_IsValues(dorv));
}
op(_STORE_ATTR_INSTANCE_VALUE, (index/1, value, owner --)) {
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
STAT_INC(STORE_ATTR, hit);
PyDictValues *values = _PyDictOrValues_GetValues(dorv);
PyObject *old_value = values->values[index];
values->values[index] = value;
if (old_value == NULL) {
_PyDictValues_AddToInsertionOrder(values, index);
}
else {
Py_DECREF(old_value);
}
Py_DECREF(owner);
}
macro(STORE_ATTR_INSTANCE_VALUE) =
unused/1 +
_GUARD_TYPE_VERSION +
_GUARD_DORV_VALUES +
_STORE_ATTR_INSTANCE_VALUE;
inst(STORE_ATTR_WITH_HINT, (unused/1, type_version/2, hint/1, value, owner --)) {
PyTypeObject *tp = Py_TYPE(owner);
assert(type_version != 0);
DEOPT_IF(tp->tp_version_tag != type_version);
assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues dorv = *_PyObject_DictOrValuesPointer(owner);
DEOPT_IF(_PyDictOrValues_IsValues(dorv));
PyDictObject *dict = (PyDictObject *)_PyDictOrValues_GetDict(dorv);
DEOPT_IF(dict == NULL);
assert(PyDict_CheckExact((PyObject *)dict));
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
DEOPT_IF(hint >= (size_t)dict->ma_keys->dk_nentries);
PyObject *old_value;
uint64_t new_version;
if (DK_IS_UNICODE(dict->ma_keys)) {
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name);
old_value = ep->me_value;
DEOPT_IF(old_value == NULL);
new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value);
ep->me_value = value;
}
else {
PyDictKeyEntry *ep = DK_ENTRIES(dict->ma_keys) + hint;
DEOPT_IF(ep->me_key != name);
old_value = ep->me_value;
DEOPT_IF(old_value == NULL);
new_version = _PyDict_NotifyEvent(tstate->interp, PyDict_EVENT_MODIFIED, dict, name, value);
ep->me_value = value;
}
Py_DECREF(old_value);
STAT_INC(STORE_ATTR, hit);
/* Ensure dict is GC tracked if it needs to be */
if (!_PyObject_GC_IS_TRACKED(dict) && _PyObject_GC_MAY_BE_TRACKED(value)) {
_PyObject_GC_TRACK(dict);
}
/* PEP 509 */
dict->ma_version_tag = new_version;
Py_DECREF(owner);
}
op(_STORE_ATTR_SLOT, (index/1, value, owner --)) {
char *addr = (char *)owner + index;
STAT_INC(STORE_ATTR, hit);
PyObject *old_value = *(PyObject **)addr;
*(PyObject **)addr = value;
Py_XDECREF(old_value);
Py_DECREF(owner);
}
macro(STORE_ATTR_SLOT) =
unused/1 +
_GUARD_TYPE_VERSION +
_STORE_ATTR_SLOT;
family(COMPARE_OP, INLINE_CACHE_ENTRIES_COMPARE_OP) = {
COMPARE_OP_FLOAT,
COMPARE_OP_INT,
COMPARE_OP_STR,
};
specializing op(_SPECIALIZE_COMPARE_OP, (counter/1, left, right -- left, right)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_CompareOp(left, right, next_instr, oparg);
DISPATCH_SAME_OPARG();
}
STAT_INC(COMPARE_OP, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
op(_COMPARE_OP, (left, right -- res)) {
assert((oparg >> 5) <= Py_GE);
res = PyObject_RichCompare(left, right, oparg >> 5);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
if (oparg & 16) {
int res_bool = PyObject_IsTrue(res);
Py_DECREF(res);
ERROR_IF(res_bool < 0, error);
res = res_bool ? Py_True : Py_False;
}
}
macro(COMPARE_OP) = _SPECIALIZE_COMPARE_OP + _COMPARE_OP;
inst(COMPARE_OP_FLOAT, (unused/1, left, right -- res)) {
DEOPT_IF(!PyFloat_CheckExact(left));
DEOPT_IF(!PyFloat_CheckExact(right));
STAT_INC(COMPARE_OP, hit);
double dleft = PyFloat_AS_DOUBLE(left);
double dright = PyFloat_AS_DOUBLE(right);
// 1 if NaN, 2 if <, 4 if >, 8 if ==; this matches low four bits of the oparg
int sign_ish = COMPARISON_BIT(dleft, dright);
_Py_DECREF_SPECIALIZED(left, _PyFloat_ExactDealloc);
_Py_DECREF_SPECIALIZED(right, _PyFloat_ExactDealloc);
res = (sign_ish & oparg) ? Py_True : Py_False;
// It's always a bool, so we don't care about oparg & 16.
}
// Similar to COMPARE_OP_FLOAT
inst(COMPARE_OP_INT, (unused/1, left, right -- res)) {
DEOPT_IF(!PyLong_CheckExact(left));
DEOPT_IF(!PyLong_CheckExact(right));
DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)left));
DEOPT_IF(!_PyLong_IsCompact((PyLongObject *)right));
STAT_INC(COMPARE_OP, hit);
assert(_PyLong_DigitCount((PyLongObject *)left) <= 1 &&
_PyLong_DigitCount((PyLongObject *)right) <= 1);
Py_ssize_t ileft = _PyLong_CompactValue((PyLongObject *)left);
Py_ssize_t iright = _PyLong_CompactValue((PyLongObject *)right);
// 2 if <, 4 if >, 8 if ==; this matches the low 4 bits of the oparg
int sign_ish = COMPARISON_BIT(ileft, iright);
_Py_DECREF_SPECIALIZED(left, (destructor)PyObject_Free);
_Py_DECREF_SPECIALIZED(right, (destructor)PyObject_Free);
res = (sign_ish & oparg) ? Py_True : Py_False;
// It's always a bool, so we don't care about oparg & 16.
}
// Similar to COMPARE_OP_FLOAT, but for ==, != only
inst(COMPARE_OP_STR, (unused/1, left, right -- res)) {
DEOPT_IF(!PyUnicode_CheckExact(left));
DEOPT_IF(!PyUnicode_CheckExact(right));
STAT_INC(COMPARE_OP, hit);
int eq = _PyUnicode_Equal(left, right);
assert((oparg >> 5) == Py_EQ || (oparg >> 5) == Py_NE);
_Py_DECREF_SPECIALIZED(left, _PyUnicode_ExactDealloc);
_Py_DECREF_SPECIALIZED(right, _PyUnicode_ExactDealloc);
assert(eq == 0 || eq == 1);
assert((oparg & 0xf) == COMPARISON_NOT_EQUALS || (oparg & 0xf) == COMPARISON_EQUALS);
assert(COMPARISON_NOT_EQUALS + 1 == COMPARISON_EQUALS);
res = ((COMPARISON_NOT_EQUALS + eq) & oparg) ? Py_True : Py_False;
// It's always a bool, so we don't care about oparg & 16.
}
inst(IS_OP, (left, right -- b)) {
int res = Py_Is(left, right) ^ oparg;
DECREF_INPUTS();
b = res ? Py_True : Py_False;
}
inst(CONTAINS_OP, (left, right -- b)) {
int res = PySequence_Contains(right, left);
DECREF_INPUTS();
ERROR_IF(res < 0, error);
b = (res ^ oparg) ? Py_True : Py_False;
}
inst(CHECK_EG_MATCH, (exc_value, match_type -- rest, match)) {
if (_PyEval_CheckExceptStarTypeValid(tstate, match_type) < 0) {
DECREF_INPUTS();
ERROR_IF(true, error);
}
match = NULL;
rest = NULL;
int res = _PyEval_ExceptionGroupMatch(exc_value, match_type,
&match, &rest);
DECREF_INPUTS();
ERROR_IF(res < 0, error);
assert((match == NULL) == (rest == NULL));
ERROR_IF(match == NULL, error);
if (!Py_IsNone(match)) {
PyErr_SetHandledException(match);
}
}
inst(CHECK_EXC_MATCH, (left, right -- left, b)) {
assert(PyExceptionInstance_Check(left));
if (_PyEval_CheckExceptTypeValid(tstate, right) < 0) {
DECREF_INPUTS();
ERROR_IF(true, error);
}
int res = PyErr_GivenExceptionMatches(left, right);
DECREF_INPUTS();
b = res ? Py_True : Py_False;
}
inst(IMPORT_NAME, (level, fromlist -- res)) {
TIER_ONE_ONLY
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
res = import_name(tstate, frame, name, fromlist, level);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
inst(IMPORT_FROM, (from -- from, res)) {
TIER_ONE_ONLY
PyObject *name = GETITEM(FRAME_CO_NAMES, oparg);
res = import_from(tstate, from, name);
ERROR_IF(res == NULL, error);
}
inst(JUMP_FORWARD, (--)) {
JUMPBY(oparg);
}
inst(JUMP_BACKWARD, (unused/1 --)) {
CHECK_EVAL_BREAKER();
assert(oparg <= INSTR_OFFSET());
JUMPBY(-oparg);
#if ENABLE_SPECIALIZATION
this_instr[1].cache += (1 << OPTIMIZER_BITS_IN_COUNTER);
/* We are using unsigned values, but we really want signed values, so
* do the 2s complement comparison manually */
uint16_t ucounter = this_instr[1].cache + (1 << 15);
uint16_t threshold = tstate->interp->optimizer_backedge_threshold + (1 << 15);
// Double-check that the opcode isn't instrumented or something:
if (ucounter > threshold && this_instr->op.code == JUMP_BACKWARD) {
OPT_STAT_INC(attempts);
int optimized = _PyOptimizer_BackEdge(frame, this_instr, next_instr, stack_pointer);
ERROR_IF(optimized < 0, error);
if (optimized) {
// Rewind and enter the executor:
assert(this_instr->op.code == ENTER_EXECUTOR);
next_instr = this_instr;
this_instr[1].cache &= ((1 << OPTIMIZER_BITS_IN_COUNTER) - 1);
}
else {
int backoff = this_instr[1].cache & ((1 << OPTIMIZER_BITS_IN_COUNTER) - 1);
if (backoff < MINIMUM_TIER2_BACKOFF) {
backoff = MINIMUM_TIER2_BACKOFF;
}
else if (backoff < 15 - OPTIMIZER_BITS_IN_COUNTER) {
backoff++;
}
assert(backoff <= 15 - OPTIMIZER_BITS_IN_COUNTER);
this_instr[1].cache = ((1 << 16) - ((1 << OPTIMIZER_BITS_IN_COUNTER) << backoff)) | backoff;
}
}
#endif /* ENABLE_SPECIALIZATION */
}
pseudo(JUMP) = {
JUMP_FORWARD,
JUMP_BACKWARD,
};
pseudo(JUMP_NO_INTERRUPT) = {
JUMP_FORWARD,
JUMP_BACKWARD_NO_INTERRUPT,
};
inst(ENTER_EXECUTOR, (--)) {
TIER_ONE_ONLY
CHECK_EVAL_BREAKER();
PyCodeObject *code = _PyFrame_GetCode(frame);
_PyExecutorObject *executor = (_PyExecutorObject *)code->co_executors->executors[oparg&255];
Py_INCREF(executor);
if (executor->execute == _PyUOpExecute) {
current_executor = (_PyUOpExecutorObject *)executor;
GOTO_TIER_TWO();
}
next_instr = executor->execute(executor, frame, stack_pointer);
frame = tstate->current_frame;
if (next_instr == NULL) {
goto resume_with_error;
}
stack_pointer = _PyFrame_GetStackPointer(frame);
}
replaced op(_POP_JUMP_IF_FALSE, (unused/1, cond -- )) {
assert(PyBool_Check(cond));
int flag = Py_IsFalse(cond);
#if ENABLE_SPECIALIZATION
this_instr[1].cache = (this_instr[1].cache << 1) | flag;
#endif
JUMPBY(oparg * flag);
}
replaced op(_POP_JUMP_IF_TRUE, (unused/1, cond -- )) {
assert(PyBool_Check(cond));
int flag = Py_IsTrue(cond);
#if ENABLE_SPECIALIZATION
this_instr[1].cache = (this_instr[1].cache << 1) | flag;
#endif
JUMPBY(oparg * flag);
}
op(_IS_NONE, (value -- b)) {
if (Py_IsNone(value)) {
b = Py_True;
}
else {
b = Py_False;
DECREF_INPUTS();
}
}
macro(POP_JUMP_IF_TRUE) = _POP_JUMP_IF_TRUE;
macro(POP_JUMP_IF_FALSE) = _POP_JUMP_IF_FALSE;
macro(POP_JUMP_IF_NONE) = _IS_NONE + _POP_JUMP_IF_TRUE;
macro(POP_JUMP_IF_NOT_NONE) = _IS_NONE + _POP_JUMP_IF_FALSE;
inst(JUMP_BACKWARD_NO_INTERRUPT, (--)) {
/* This bytecode is used in the `yield from` or `await` loop.
* If there is an interrupt, we want it handled in the innermost
* generator or coroutine, so we deliberately do not check it here.
* (see bpo-30039).
*/
JUMPBY(-oparg);
}
inst(GET_LEN, (obj -- obj, len_o)) {
// PUSH(len(TOS))
Py_ssize_t len_i = PyObject_Length(obj);
ERROR_IF(len_i < 0, error);
len_o = PyLong_FromSsize_t(len_i);
ERROR_IF(len_o == NULL, error);
}
inst(MATCH_CLASS, (subject, type, names -- attrs)) {
// Pop TOS and TOS1. Set TOS to a tuple of attributes on success, or
// None on failure.
assert(PyTuple_CheckExact(names));
attrs = _PyEval_MatchClass(tstate, subject, type, oparg, names);
DECREF_INPUTS();
if (attrs) {
assert(PyTuple_CheckExact(attrs)); // Success!
}
else {
ERROR_IF(_PyErr_Occurred(tstate), error); // Error!
attrs = Py_None; // Failure!
}
}
inst(MATCH_MAPPING, (subject -- subject, res)) {
int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_MAPPING;
res = match ? Py_True : Py_False;
}
inst(MATCH_SEQUENCE, (subject -- subject, res)) {
int match = Py_TYPE(subject)->tp_flags & Py_TPFLAGS_SEQUENCE;
res = match ? Py_True : Py_False;
}
inst(MATCH_KEYS, (subject, keys -- subject, keys, values_or_none)) {
// On successful match, PUSH(values). Otherwise, PUSH(None).
values_or_none = _PyEval_MatchKeys(tstate, subject, keys);
ERROR_IF(values_or_none == NULL, error);
}
inst(GET_ITER, (iterable -- iter)) {
/* before: [obj]; after [getiter(obj)] */
iter = PyObject_GetIter(iterable);
DECREF_INPUTS();
ERROR_IF(iter == NULL, error);
}
inst(GET_YIELD_FROM_ITER, (iterable -- iter)) {
/* before: [obj]; after [getiter(obj)] */
if (PyCoro_CheckExact(iterable)) {
/* `iterable` is a coroutine */
if (!(_PyFrame_GetCode(frame)->co_flags & (CO_COROUTINE | CO_ITERABLE_COROUTINE))) {
/* and it is used in a 'yield from' expression of a
regular generator. */
_PyErr_SetString(tstate, PyExc_TypeError,
"cannot 'yield from' a coroutine object "
"in a non-coroutine generator");
GOTO_ERROR(error);
}
iter = iterable;
}
else if (PyGen_CheckExact(iterable)) {
iter = iterable;
}
else {
/* `iterable` is not a generator. */
iter = PyObject_GetIter(iterable);
if (iter == NULL) {
GOTO_ERROR(error);
}
DECREF_INPUTS();
}
}
// Most members of this family are "secretly" super-instructions.
// When the loop is exhausted, they jump, and the jump target is
// always END_FOR, which pops two values off the stack.
// This is optimized by skipping that instruction and combining
// its effect (popping 'iter' instead of pushing 'next'.)
family(FOR_ITER, INLINE_CACHE_ENTRIES_FOR_ITER) = {
FOR_ITER_LIST,
FOR_ITER_TUPLE,
FOR_ITER_RANGE,
FOR_ITER_GEN,
};
specializing op(_SPECIALIZE_FOR_ITER, (counter/1, iter -- iter)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_ForIter(iter, next_instr, oparg);
DISPATCH_SAME_OPARG();
}
STAT_INC(FOR_ITER, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
replaced op(_FOR_ITER, (iter -- iter, next)) {
/* before: [iter]; after: [iter, iter()] *or* [] (and jump over END_FOR.) */
next = (*Py_TYPE(iter)->tp_iternext)(iter);
if (next == NULL) {
if (_PyErr_Occurred(tstate)) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) {
GOTO_ERROR(error);
}
monitor_raise(tstate, frame, this_instr);
_PyErr_Clear(tstate);
}
/* iterator ended normally */
assert(next_instr[oparg].op.code == END_FOR ||
next_instr[oparg].op.code == INSTRUMENTED_END_FOR);
Py_DECREF(iter);
STACK_SHRINK(1);
/* Jump forward oparg, then skip following END_FOR instruction */
JUMPBY(oparg + 1);
DISPATCH();
}
// Common case: no jump, leave it to the code generator
}
op(_FOR_ITER_TIER_TWO, (iter -- iter, next)) {
/* before: [iter]; after: [iter, iter()] *or* [] (and jump over END_FOR.) */
next = (*Py_TYPE(iter)->tp_iternext)(iter);
if (next == NULL) {
if (_PyErr_Occurred(tstate)) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) {
GOTO_ERROR(error);
}
_PyErr_Clear(tstate);
}
/* iterator ended normally */
Py_DECREF(iter);
STACK_SHRINK(1);
/* The translator sets the deopt target just past END_FOR */
DEOPT_IF(true);
}
// Common case: no jump, leave it to the code generator
}
macro(FOR_ITER) = _SPECIALIZE_FOR_ITER + _FOR_ITER;
inst(INSTRUMENTED_FOR_ITER, (unused/1 -- )) {
_Py_CODEUNIT *target;
PyObject *iter = TOP();
PyObject *next = (*Py_TYPE(iter)->tp_iternext)(iter);
if (next != NULL) {
PUSH(next);
target = next_instr;
}
else {
if (_PyErr_Occurred(tstate)) {
if (!_PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) {
GOTO_ERROR(error);
}
monitor_raise(tstate, frame, this_instr);
_PyErr_Clear(tstate);
}
/* iterator ended normally */
assert(next_instr[oparg].op.code == END_FOR ||
next_instr[oparg].op.code == INSTRUMENTED_END_FOR);
STACK_SHRINK(1);
Py_DECREF(iter);
/* Skip END_FOR */
target = next_instr + oparg + 1;
}
INSTRUMENTED_JUMP(this_instr, target, PY_MONITORING_EVENT_BRANCH);
}
op(_ITER_CHECK_LIST, (iter -- iter)) {
DEOPT_IF(Py_TYPE(iter) != &PyListIter_Type);
}
replaced op(_ITER_JUMP_LIST, (iter -- iter)) {
_PyListIterObject *it = (_PyListIterObject *)iter;
assert(Py_TYPE(iter) == &PyListIter_Type);
STAT_INC(FOR_ITER, hit);
PyListObject *seq = it->it_seq;
if (seq == NULL || it->it_index >= PyList_GET_SIZE(seq)) {
if (seq != NULL) {
it->it_seq = NULL;
Py_DECREF(seq);
}
Py_DECREF(iter);
STACK_SHRINK(1);
/* Jump forward oparg, then skip following END_FOR instruction */
JUMPBY(oparg + 1);
DISPATCH();
}
}
// Only used by Tier 2
op(_GUARD_NOT_EXHAUSTED_LIST, (iter -- iter)) {
_PyListIterObject *it = (_PyListIterObject *)iter;
assert(Py_TYPE(iter) == &PyListIter_Type);
PyListObject *seq = it->it_seq;
DEOPT_IF(seq == NULL);
DEOPT_IF(it->it_index >= PyList_GET_SIZE(seq));
}
op(_ITER_NEXT_LIST, (iter -- iter, next)) {
_PyListIterObject *it = (_PyListIterObject *)iter;
assert(Py_TYPE(iter) == &PyListIter_Type);
PyListObject *seq = it->it_seq;
assert(seq);
assert(it->it_index < PyList_GET_SIZE(seq));
next = Py_NewRef(PyList_GET_ITEM(seq, it->it_index++));
}
macro(FOR_ITER_LIST) =
unused/1 + // Skip over the counter
_ITER_CHECK_LIST +
_ITER_JUMP_LIST +
_ITER_NEXT_LIST;
op(_ITER_CHECK_TUPLE, (iter -- iter)) {
DEOPT_IF(Py_TYPE(iter) != &PyTupleIter_Type);
}
replaced op(_ITER_JUMP_TUPLE, (iter -- iter)) {
_PyTupleIterObject *it = (_PyTupleIterObject *)iter;
assert(Py_TYPE(iter) == &PyTupleIter_Type);
STAT_INC(FOR_ITER, hit);
PyTupleObject *seq = it->it_seq;
if (seq == NULL || it->it_index >= PyTuple_GET_SIZE(seq)) {
if (seq != NULL) {
it->it_seq = NULL;
Py_DECREF(seq);
}
Py_DECREF(iter);
STACK_SHRINK(1);
/* Jump forward oparg, then skip following END_FOR instruction */
JUMPBY(oparg + 1);
DISPATCH();
}
}
// Only used by Tier 2
op(_GUARD_NOT_EXHAUSTED_TUPLE, (iter -- iter)) {
_PyTupleIterObject *it = (_PyTupleIterObject *)iter;
assert(Py_TYPE(iter) == &PyTupleIter_Type);
PyTupleObject *seq = it->it_seq;
DEOPT_IF(seq == NULL);
DEOPT_IF(it->it_index >= PyTuple_GET_SIZE(seq));
}
op(_ITER_NEXT_TUPLE, (iter -- iter, next)) {
_PyTupleIterObject *it = (_PyTupleIterObject *)iter;
assert(Py_TYPE(iter) == &PyTupleIter_Type);
PyTupleObject *seq = it->it_seq;
assert(seq);
assert(it->it_index < PyTuple_GET_SIZE(seq));
next = Py_NewRef(PyTuple_GET_ITEM(seq, it->it_index++));
}
macro(FOR_ITER_TUPLE) =
unused/1 + // Skip over the counter
_ITER_CHECK_TUPLE +
_ITER_JUMP_TUPLE +
_ITER_NEXT_TUPLE;
op(_ITER_CHECK_RANGE, (iter -- iter)) {
_PyRangeIterObject *r = (_PyRangeIterObject *)iter;
DEOPT_IF(Py_TYPE(r) != &PyRangeIter_Type);
}
replaced op(_ITER_JUMP_RANGE, (iter -- iter)) {
_PyRangeIterObject *r = (_PyRangeIterObject *)iter;
assert(Py_TYPE(r) == &PyRangeIter_Type);
STAT_INC(FOR_ITER, hit);
if (r->len <= 0) {
STACK_SHRINK(1);
Py_DECREF(r);
// Jump over END_FOR instruction.
JUMPBY(oparg + 1);
DISPATCH();
}
}
// Only used by Tier 2
op(_GUARD_NOT_EXHAUSTED_RANGE, (iter -- iter)) {
_PyRangeIterObject *r = (_PyRangeIterObject *)iter;
assert(Py_TYPE(r) == &PyRangeIter_Type);
DEOPT_IF(r->len <= 0);
}
op(_ITER_NEXT_RANGE, (iter -- iter, next)) {
_PyRangeIterObject *r = (_PyRangeIterObject *)iter;
assert(Py_TYPE(r) == &PyRangeIter_Type);
assert(r->len > 0);
long value = r->start;
r->start = value + r->step;
r->len--;
next = PyLong_FromLong(value);
ERROR_IF(next == NULL, error);
}
macro(FOR_ITER_RANGE) =
unused/1 + // Skip over the counter
_ITER_CHECK_RANGE +
_ITER_JUMP_RANGE +
_ITER_NEXT_RANGE;
inst(FOR_ITER_GEN, (unused/1, iter -- iter, unused)) {
DEOPT_IF(tstate->interp->eval_frame);
PyGenObject *gen = (PyGenObject *)iter;
DEOPT_IF(Py_TYPE(gen) != &PyGen_Type);
DEOPT_IF(gen->gi_frame_state >= FRAME_EXECUTING);
STAT_INC(FOR_ITER, hit);
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
_PyFrame_StackPush(gen_frame, Py_None);
gen->gi_frame_state = FRAME_EXECUTING;
gen->gi_exc_state.previous_item = tstate->exc_info;
tstate->exc_info = &gen->gi_exc_state;
assert(next_instr[oparg].op.code == END_FOR ||
next_instr[oparg].op.code == INSTRUMENTED_END_FOR);
assert(next_instr - this_instr + oparg <= UINT16_MAX);
frame->return_offset = (uint16_t)(next_instr - this_instr + oparg);
DISPATCH_INLINED(gen_frame);
}
inst(BEFORE_ASYNC_WITH, (mgr -- exit, res)) {
PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__aenter__));
if (enter == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"asynchronous context manager protocol",
Py_TYPE(mgr)->tp_name);
}
GOTO_ERROR(error);
}
exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__aexit__));
if (exit == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"asynchronous context manager protocol "
"(missed __aexit__ method)",
Py_TYPE(mgr)->tp_name);
}
Py_DECREF(enter);
GOTO_ERROR(error);
}
DECREF_INPUTS();
res = _PyObject_CallNoArgsTstate(tstate, enter);
Py_DECREF(enter);
if (res == NULL) {
Py_DECREF(exit);
ERROR_IF(true, error);
}
}
inst(BEFORE_WITH, (mgr -- exit, res)) {
/* pop the context manager, push its __exit__ and the
* value returned from calling its __enter__
*/
PyObject *enter = _PyObject_LookupSpecial(mgr, &_Py_ID(__enter__));
if (enter == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"context manager protocol",
Py_TYPE(mgr)->tp_name);
}
GOTO_ERROR(error);
}
exit = _PyObject_LookupSpecial(mgr, &_Py_ID(__exit__));
if (exit == NULL) {
if (!_PyErr_Occurred(tstate)) {
_PyErr_Format(tstate, PyExc_TypeError,
"'%.200s' object does not support the "
"context manager protocol "
"(missed __exit__ method)",
Py_TYPE(mgr)->tp_name);
}
Py_DECREF(enter);
GOTO_ERROR(error);
}
DECREF_INPUTS();
res = _PyObject_CallNoArgsTstate(tstate, enter);
Py_DECREF(enter);
if (res == NULL) {
Py_DECREF(exit);
ERROR_IF(true, error);
}
}
inst(WITH_EXCEPT_START, (exit_func, lasti, unused, val -- exit_func, lasti, unused, val, res)) {
/* At the top of the stack are 4 values:
- val: TOP = exc_info()
- unused: SECOND = previous exception
- lasti: THIRD = lasti of exception in exc_info()
- exit_func: FOURTH = the context.__exit__ bound method
We call FOURTH(type(TOP), TOP, GetTraceback(TOP)).
Then we push the __exit__ return value.
*/
PyObject *exc, *tb;
assert(val && PyExceptionInstance_Check(val));
exc = PyExceptionInstance_Class(val);
tb = PyException_GetTraceback(val);
if (tb == NULL) {
tb = Py_None;
}
else {
Py_DECREF(tb);
}
assert(PyLong_Check(lasti));
(void)lasti; // Shut up compiler warning if asserts are off
PyObject *stack[4] = {NULL, exc, val, tb};
res = PyObject_Vectorcall(exit_func, stack + 1,
3 | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL);
ERROR_IF(res == NULL, error);
}
pseudo(SETUP_FINALLY, (HAS_ARG)) = {
NOP,
};
pseudo(SETUP_CLEANUP, (HAS_ARG)) = {
NOP,
};
pseudo(SETUP_WITH, (HAS_ARG)) = {
NOP,
};
pseudo(POP_BLOCK) = {
NOP,
};
inst(PUSH_EXC_INFO, (new_exc -- prev_exc, new_exc)) {
_PyErr_StackItem *exc_info = tstate->exc_info;
if (exc_info->exc_value != NULL) {
prev_exc = exc_info->exc_value;
}
else {
prev_exc = Py_None;
}
assert(PyExceptionInstance_Check(new_exc));
exc_info->exc_value = Py_NewRef(new_exc);
}
op(_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT, (owner -- owner)) {
assert(Py_TYPE(owner)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
PyDictOrValues *dorv = _PyObject_DictOrValuesPointer(owner);
DEOPT_IF(!_PyDictOrValues_IsValues(*dorv) && !_PyObject_MakeInstanceAttributesFromDict(owner, dorv));
}
op(_GUARD_KEYS_VERSION, (keys_version/2, owner -- owner)) {
PyTypeObject *owner_cls = Py_TYPE(owner);
PyHeapTypeObject *owner_heap_type = (PyHeapTypeObject *)owner_cls;
DEOPT_IF(owner_heap_type->ht_cached_keys->dk_version != keys_version);
}
op(_LOAD_ATTR_METHOD_WITH_VALUES, (descr/4, owner -- attr, self if (1))) {
assert(oparg & 1);
/* Cached method object */
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
attr = Py_NewRef(descr);
assert(_PyType_HasFeature(Py_TYPE(attr), Py_TPFLAGS_METHOD_DESCRIPTOR));
self = owner;
}
macro(LOAD_ATTR_METHOD_WITH_VALUES) =
unused/1 +
_GUARD_TYPE_VERSION +
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT +
_GUARD_KEYS_VERSION +
_LOAD_ATTR_METHOD_WITH_VALUES;
op(_LOAD_ATTR_METHOD_NO_DICT, (descr/4, owner -- attr, self if (1))) {
assert(oparg & 1);
assert(Py_TYPE(owner)->tp_dictoffset == 0);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR));
attr = Py_NewRef(descr);
self = owner;
}
macro(LOAD_ATTR_METHOD_NO_DICT) =
unused/1 +
_GUARD_TYPE_VERSION +
unused/2 +
_LOAD_ATTR_METHOD_NO_DICT;
op(_LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES, (descr/4, owner -- attr, unused if (0))) {
assert((oparg & 1) == 0);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
DECREF_INPUTS();
attr = Py_NewRef(descr);
}
macro(LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES) =
unused/1 +
_GUARD_TYPE_VERSION +
_GUARD_DORV_VALUES_INST_ATTR_FROM_DICT +
_GUARD_KEYS_VERSION +
_LOAD_ATTR_NONDESCRIPTOR_WITH_VALUES;
op(_LOAD_ATTR_NONDESCRIPTOR_NO_DICT, (descr/4, owner -- attr, unused if (0))) {
assert((oparg & 1) == 0);
assert(Py_TYPE(owner)->tp_dictoffset == 0);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
DECREF_INPUTS();
attr = Py_NewRef(descr);
}
macro(LOAD_ATTR_NONDESCRIPTOR_NO_DICT) =
unused/1 +
_GUARD_TYPE_VERSION +
unused/2 +
_LOAD_ATTR_NONDESCRIPTOR_NO_DICT;
op(_CHECK_ATTR_METHOD_LAZY_DICT, (owner -- owner)) {
Py_ssize_t dictoffset = Py_TYPE(owner)->tp_dictoffset;
assert(dictoffset > 0);
PyObject *dict = *(PyObject **)((char *)owner + dictoffset);
/* This object has a __dict__, just not yet created */
DEOPT_IF(dict != NULL);
}
op(_LOAD_ATTR_METHOD_LAZY_DICT, (descr/4, owner -- attr, self if (1))) {
assert(oparg & 1);
STAT_INC(LOAD_ATTR, hit);
assert(descr != NULL);
assert(_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR));
attr = Py_NewRef(descr);
self = owner;
}
macro(LOAD_ATTR_METHOD_LAZY_DICT) =
unused/1 +
_GUARD_TYPE_VERSION +
_CHECK_ATTR_METHOD_LAZY_DICT +
unused/2 +
_LOAD_ATTR_METHOD_LAZY_DICT;
inst(INSTRUMENTED_CALL, (unused/3 -- )) {
int is_meth = PEEK(oparg + 1) != NULL;
int total_args = oparg + is_meth;
PyObject *function = PEEK(oparg + 2);
PyObject *arg = total_args == 0 ?
&_PyInstrumentation_MISSING : PEEK(total_args);
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_CALL,
frame, this_instr, function, arg);
ERROR_IF(err, error);
INCREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
GO_TO_INSTRUCTION(CALL);
}
// Cache layout: counter/1, func_version/2
// CALL_INTRINSIC_1/2, CALL_KW, and CALL_FUNCTION_EX aren't members!
family(CALL, INLINE_CACHE_ENTRIES_CALL) = {
CALL_BOUND_METHOD_EXACT_ARGS,
CALL_PY_EXACT_ARGS,
CALL_PY_WITH_DEFAULTS,
CALL_TYPE_1,
CALL_STR_1,
CALL_TUPLE_1,
CALL_BUILTIN_CLASS,
CALL_BUILTIN_O,
CALL_BUILTIN_FAST,
CALL_BUILTIN_FAST_WITH_KEYWORDS,
CALL_LEN,
CALL_ISINSTANCE,
CALL_LIST_APPEND,
CALL_METHOD_DESCRIPTOR_O,
CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS,
CALL_METHOD_DESCRIPTOR_NOARGS,
CALL_METHOD_DESCRIPTOR_FAST,
CALL_ALLOC_AND_ENTER_INIT,
};
specializing op(_SPECIALIZE_CALL, (counter/1, callable, self_or_null, args[oparg] -- callable, self_or_null, args[oparg])) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_Call(callable, next_instr, oparg + (self_or_null != NULL));
DISPATCH_SAME_OPARG();
}
STAT_INC(CALL, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
}
// When calling Python, inline the call using DISPATCH_INLINED().
op(_CALL, (unused/2, callable, self_or_null, args[oparg] -- res)) {
// oparg counts all of the args, but *not* self:
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
else if (Py_TYPE(callable) == &PyMethod_Type) {
args--;
total_args++;
PyObject *self = ((PyMethodObject *)callable)->im_self;
args[0] = Py_NewRef(self);
PyObject *method = ((PyMethodObject *)callable)->im_func;
args[-1] = Py_NewRef(method);
Py_DECREF(callable);
callable = method;
}
// Check if the call can be inlined or not
if (Py_TYPE(callable) == &PyFunction_Type &&
tstate->interp->eval_frame == NULL &&
((PyFunctionObject *)callable)->vectorcall == _PyFunction_Vectorcall)
{
int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags;
PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable));
_PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit(
tstate, (PyFunctionObject *)callable, locals,
args, total_args, NULL
);
// Manipulate stack directly since we leave using DISPATCH_INLINED().
STACK_SHRINK(oparg + 2);
// The frame has stolen all the arguments from the stack,
// so there is no need to clean them up.
if (new_frame == NULL) {
GOTO_ERROR(error);
}
frame->return_offset = (uint16_t)(next_instr - this_instr);
DISPATCH_INLINED(new_frame);
}
/* Callable is not a normal Python function */
res = PyObject_Vectorcall(
callable, args,
total_args | PY_VECTORCALL_ARGUMENTS_OFFSET,
NULL);
if (opcode == INSTRUMENTED_CALL) {
PyObject *arg = total_args == 0 ?
&_PyInstrumentation_MISSING : args[0];
if (res == NULL) {
_Py_call_instrumentation_exc2(
tstate, PY_MONITORING_EVENT_C_RAISE,
frame, this_instr, callable, arg);
}
else {
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_C_RETURN,
frame, this_instr, callable, arg);
if (err < 0) {
Py_CLEAR(res);
}
}
}
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(callable);
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
macro(CALL) = _SPECIALIZE_CALL + _CALL;
op(_CHECK_CALL_BOUND_METHOD_EXACT_ARGS, (callable, null, unused[oparg] -- callable, null, unused[oparg])) {
DEOPT_IF(null != NULL);
DEOPT_IF(Py_TYPE(callable) != &PyMethod_Type);
}
op(_INIT_CALL_BOUND_METHOD_EXACT_ARGS, (callable, unused, unused[oparg] -- func, self, unused[oparg])) {
STAT_INC(CALL, hit);
self = Py_NewRef(((PyMethodObject *)callable)->im_self);
stack_pointer[-1 - oparg] = self; // Patch stack as it is used by _INIT_CALL_PY_EXACT_ARGS
func = Py_NewRef(((PyMethodObject *)callable)->im_func);
stack_pointer[-2 - oparg] = func; // This is used by CALL, upon deoptimization
Py_DECREF(callable);
}
op(_CHECK_PEP_523, (--)) {
DEOPT_IF(tstate->interp->eval_frame);
}
op(_CHECK_FUNCTION_EXACT_ARGS, (func_version/2, callable, self_or_null, unused[oparg] -- callable, self_or_null, unused[oparg])) {
DEOPT_IF(!PyFunction_Check(callable));
PyFunctionObject *func = (PyFunctionObject *)callable;
DEOPT_IF(func->func_version != func_version);
PyCodeObject *code = (PyCodeObject *)func->func_code;
DEOPT_IF(code->co_argcount != oparg + (self_or_null != NULL));
}
op(_CHECK_STACK_SPACE, (callable, unused, unused[oparg] -- callable, unused, unused[oparg])) {
PyFunctionObject *func = (PyFunctionObject *)callable;
PyCodeObject *code = (PyCodeObject *)func->func_code;
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize));
DEOPT_IF(tstate->py_recursion_remaining <= 1);
}
op(_INIT_CALL_PY_EXACT_ARGS, (callable, self_or_null, args[oparg] -- new_frame: _PyInterpreterFrame*)) {
int argcount = oparg;
if (self_or_null != NULL) {
args--;
argcount++;
}
STAT_INC(CALL, hit);
PyFunctionObject *func = (PyFunctionObject *)callable;
new_frame = _PyFrame_PushUnchecked(tstate, func, argcount);
for (int i = 0; i < argcount; i++) {
new_frame->localsplus[i] = args[i];
}
}
// The 'unused' output effect represents the return value
// (which will be pushed when the frame returns).
// It is needed so CALL_PY_EXACT_ARGS matches its family.
op(_PUSH_FRAME, (new_frame: _PyInterpreterFrame* -- unused if (0))) {
// Write it out explicitly because it's subtly different.
// Eventually this should be the only occurrence of this code.
assert(tstate->interp->eval_frame == NULL);
STORE_SP();
new_frame->previous = frame;
CALL_STAT_INC(inlined_py_calls);
frame = tstate->current_frame = new_frame;
tstate->py_recursion_remaining--;
LOAD_SP();
LOAD_IP(0);
#if LLTRACE && TIER_ONE
lltrace = maybe_lltrace_resume_frame(frame, &entry_frame, GLOBALS());
if (lltrace < 0) {
goto exit_unwind;
}
#endif
}
macro(CALL_BOUND_METHOD_EXACT_ARGS) =
unused/1 + // Skip over the counter
_CHECK_PEP_523 +
_CHECK_CALL_BOUND_METHOD_EXACT_ARGS +
_INIT_CALL_BOUND_METHOD_EXACT_ARGS +
_CHECK_FUNCTION_EXACT_ARGS +
_CHECK_STACK_SPACE +
_INIT_CALL_PY_EXACT_ARGS +
_SAVE_RETURN_OFFSET +
_PUSH_FRAME;
macro(CALL_PY_EXACT_ARGS) =
unused/1 + // Skip over the counter
_CHECK_PEP_523 +
_CHECK_FUNCTION_EXACT_ARGS +
_CHECK_STACK_SPACE +
_INIT_CALL_PY_EXACT_ARGS +
_SAVE_RETURN_OFFSET +
_PUSH_FRAME;
inst(CALL_PY_WITH_DEFAULTS, (unused/1, func_version/2, callable, self_or_null, args[oparg] -- unused)) {
DEOPT_IF(tstate->interp->eval_frame);
int argcount = oparg;
if (self_or_null != NULL) {
args--;
argcount++;
}
DEOPT_IF(!PyFunction_Check(callable));
PyFunctionObject *func = (PyFunctionObject *)callable;
DEOPT_IF(func->func_version != func_version);
PyCodeObject *code = (PyCodeObject *)func->func_code;
assert(func->func_defaults);
assert(PyTuple_CheckExact(func->func_defaults));
int defcount = (int)PyTuple_GET_SIZE(func->func_defaults);
assert(defcount <= code->co_argcount);
int min_args = code->co_argcount - defcount;
DEOPT_IF(argcount > code->co_argcount);
DEOPT_IF(argcount < min_args);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize));
STAT_INC(CALL, hit);
_PyInterpreterFrame *new_frame = _PyFrame_PushUnchecked(tstate, func, code->co_argcount);
for (int i = 0; i < argcount; i++) {
new_frame->localsplus[i] = args[i];
}
for (int i = argcount; i < code->co_argcount; i++) {
PyObject *def = PyTuple_GET_ITEM(func->func_defaults, i - min_args);
new_frame->localsplus[i] = Py_NewRef(def);
}
// Manipulate stack and cache directly since we leave using DISPATCH_INLINED().
STACK_SHRINK(oparg + 2);
frame->return_offset = (uint16_t)(next_instr - this_instr);
DISPATCH_INLINED(new_frame);
}
inst(CALL_TYPE_1, (unused/1, unused/2, callable, null, args[oparg] -- res)) {
assert(oparg == 1);
DEOPT_IF(null != NULL);
PyObject *obj = args[0];
DEOPT_IF(callable != (PyObject *)&PyType_Type);
STAT_INC(CALL, hit);
res = Py_NewRef(Py_TYPE(obj));
Py_DECREF(obj);
Py_DECREF(&PyType_Type); // I.e., callable
}
inst(CALL_STR_1, (unused/1, unused/2, callable, null, args[oparg] -- res)) {
assert(oparg == 1);
DEOPT_IF(null != NULL);
DEOPT_IF(callable != (PyObject *)&PyUnicode_Type);
STAT_INC(CALL, hit);
PyObject *arg = args[0];
res = PyObject_Str(arg);
Py_DECREF(arg);
Py_DECREF(&PyUnicode_Type); // I.e., callable
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_TUPLE_1, (unused/1, unused/2, callable, null, args[oparg] -- res)) {
assert(oparg == 1);
DEOPT_IF(null != NULL);
DEOPT_IF(callable != (PyObject *)&PyTuple_Type);
STAT_INC(CALL, hit);
PyObject *arg = args[0];
res = PySequence_Tuple(arg);
Py_DECREF(arg);
Py_DECREF(&PyTuple_Type); // I.e., tuple
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_ALLOC_AND_ENTER_INIT, (unused/1, unused/2, callable, null, args[oparg] -- unused)) {
/* This instruction does the following:
* 1. Creates the object (by calling ``object.__new__``)
* 2. Pushes a shim frame to the frame stack (to cleanup after ``__init__``)
* 3. Pushes the frame for ``__init__`` to the frame stack
* */
_PyCallCache *cache = (_PyCallCache *)&this_instr[1];
DEOPT_IF(null != NULL);
DEOPT_IF(!PyType_Check(callable));
PyTypeObject *tp = (PyTypeObject *)callable;
DEOPT_IF(tp->tp_version_tag != read_u32(cache->func_version));
PyHeapTypeObject *cls = (PyHeapTypeObject *)callable;
PyFunctionObject *init = (PyFunctionObject *)cls->_spec_cache.init;
PyCodeObject *code = (PyCodeObject *)init->func_code;
DEOPT_IF(code->co_argcount != oparg+1);
DEOPT_IF(!_PyThreadState_HasStackSpace(tstate, code->co_framesize + _Py_InitCleanup.co_framesize));
STAT_INC(CALL, hit);
PyObject *self = _PyType_NewManagedObject(tp);
if (self == NULL) {
GOTO_ERROR(error);
}
Py_DECREF(tp);
_PyInterpreterFrame *shim = _PyFrame_PushTrampolineUnchecked(
tstate, (PyCodeObject *)&_Py_InitCleanup, 1);
assert(_PyCode_CODE((PyCodeObject *)shim->f_executable)[0].op.code == EXIT_INIT_CHECK);
/* Push self onto stack of shim */
Py_INCREF(self);
shim->localsplus[0] = self;
Py_INCREF(init);
_PyInterpreterFrame *init_frame = _PyFrame_PushUnchecked(tstate, init, oparg+1);
/* Copy self followed by args to __init__ frame */
init_frame->localsplus[0] = self;
for (int i = 0; i < oparg; i++) {
init_frame->localsplus[i+1] = args[i];
}
frame->return_offset = (uint16_t)(next_instr - this_instr);
STACK_SHRINK(oparg+2);
_PyFrame_SetStackPointer(frame, stack_pointer);
/* Link frames */
init_frame->previous = shim;
shim->previous = frame;
frame = tstate->current_frame = init_frame;
CALL_STAT_INC(inlined_py_calls);
/* Account for pushing the extra frame.
* We don't check recursion depth here,
* as it will be checked after start_frame */
tstate->py_recursion_remaining--;
goto start_frame;
}
inst(EXIT_INIT_CHECK, (should_be_none -- )) {
assert(STACK_LEVEL() == 2);
if (should_be_none != Py_None) {
PyErr_Format(PyExc_TypeError,
"__init__() should return None, not '%.200s'",
Py_TYPE(should_be_none)->tp_name);
GOTO_ERROR(error);
}
}
inst(CALL_BUILTIN_CLASS, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(!PyType_Check(callable));
PyTypeObject *tp = (PyTypeObject *)callable;
DEOPT_IF(tp->tp_vectorcall == NULL);
STAT_INC(CALL, hit);
res = tp->tp_vectorcall((PyObject *)tp, args, total_args, NULL);
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(tp);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_BUILTIN_O, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
/* Builtin METH_O functions */
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(total_args != 1);
DEOPT_IF(!PyCFunction_CheckExact(callable));
DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_O);
STAT_INC(CALL, hit);
PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable);
// This is slower but CPython promises to check all non-vectorcall
// function calls.
if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) {
GOTO_ERROR(error);
}
PyObject *arg = args[0];
res = _PyCFunction_TrampolineCall(cfunc, PyCFunction_GET_SELF(callable), arg);
_Py_LeaveRecursiveCallTstate(tstate);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(arg);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_BUILTIN_FAST, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
/* Builtin METH_FASTCALL functions, without keywords */
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(!PyCFunction_CheckExact(callable));
DEOPT_IF(PyCFunction_GET_FLAGS(callable) != METH_FASTCALL);
STAT_INC(CALL, hit);
PyCFunction cfunc = PyCFunction_GET_FUNCTION(callable);
/* res = func(self, args, nargs) */
res = ((_PyCFunctionFast)(void(*)(void))cfunc)(
PyCFunction_GET_SELF(callable),
args,
total_args);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
/* Not deopting because this doesn't mean our optimization was
wrong. `res` can be NULL for valid reasons. Eg. getattr(x,
'invalid'). In those cases an exception is set, so we must
handle it.
*/
CHECK_EVAL_BREAKER();
}
inst(CALL_BUILTIN_FAST_WITH_KEYWORDS, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
/* Builtin METH_FASTCALL | METH_KEYWORDS functions */
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(!PyCFunction_CheckExact(callable));
DEOPT_IF(PyCFunction_GET_FLAGS(callable) != (METH_FASTCALL | METH_KEYWORDS));
STAT_INC(CALL, hit);
/* res = func(self, args, nargs, kwnames) */
_PyCFunctionFastWithKeywords cfunc =
(_PyCFunctionFastWithKeywords)(void(*)(void))
PyCFunction_GET_FUNCTION(callable);
res = cfunc(PyCFunction_GET_SELF(callable), args, total_args, NULL);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_LEN, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
/* len(o) */
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(total_args != 1);
PyInterpreterState *interp = tstate->interp;
DEOPT_IF(callable != interp->callable_cache.len);
STAT_INC(CALL, hit);
PyObject *arg = args[0];
Py_ssize_t len_i = PyObject_Length(arg);
if (len_i < 0) {
GOTO_ERROR(error);
}
res = PyLong_FromSsize_t(len_i);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(callable);
Py_DECREF(arg);
ERROR_IF(res == NULL, error);
}
inst(CALL_ISINSTANCE, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
/* isinstance(o, o2) */
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(total_args != 2);
PyInterpreterState *interp = tstate->interp;
DEOPT_IF(callable != interp->callable_cache.isinstance);
STAT_INC(CALL, hit);
PyObject *cls = args[1];
PyObject *inst = args[0];
int retval = PyObject_IsInstance(inst, cls);
if (retval < 0) {
GOTO_ERROR(error);
}
res = PyBool_FromLong(retval);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(inst);
Py_DECREF(cls);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
}
// This is secretly a super-instruction
inst(CALL_LIST_APPEND, (unused/1, unused/2, callable, self, args[oparg] -- unused)) {
assert(oparg == 1);
PyInterpreterState *interp = tstate->interp;
DEOPT_IF(callable != interp->callable_cache.list_append);
assert(self != NULL);
DEOPT_IF(!PyList_Check(self));
STAT_INC(CALL, hit);
if (_PyList_AppendTakeRef((PyListObject *)self, args[0]) < 0) {
goto pop_1_error; // Since arg is DECREF'ed already
}
Py_DECREF(self);
Py_DECREF(callable);
STACK_SHRINK(3);
// Skip POP_TOP
assert(next_instr->op.code == POP_TOP);
SKIP_OVER(1);
DISPATCH();
}
inst(CALL_METHOD_DESCRIPTOR_O, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
PyMethodDescrObject *method = (PyMethodDescrObject *)callable;
DEOPT_IF(total_args != 2);
DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type));
PyMethodDef *meth = method->d_method;
DEOPT_IF(meth->ml_flags != METH_O);
PyObject *arg = args[1];
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, method->d_common.d_type));
STAT_INC(CALL, hit);
PyCFunction cfunc = meth->ml_meth;
// This is slower but CPython promises to check all non-vectorcall
// function calls.
if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) {
GOTO_ERROR(error);
}
res = _PyCFunction_TrampolineCall(cfunc, self, arg);
_Py_LeaveRecursiveCallTstate(tstate);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(self);
Py_DECREF(arg);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_METHOD_DESCRIPTOR_FAST_WITH_KEYWORDS, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
PyMethodDescrObject *method = (PyMethodDescrObject *)callable;
DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type));
PyMethodDef *meth = method->d_method;
DEOPT_IF(meth->ml_flags != (METH_FASTCALL|METH_KEYWORDS));
PyTypeObject *d_type = method->d_common.d_type;
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, d_type));
STAT_INC(CALL, hit);
int nargs = total_args - 1;
_PyCFunctionFastWithKeywords cfunc =
(_PyCFunctionFastWithKeywords)(void(*)(void))meth->ml_meth;
res = cfunc(self, args + 1, nargs, NULL);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
/* Free the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_METHOD_DESCRIPTOR_NOARGS, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
assert(oparg == 0 || oparg == 1);
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
DEOPT_IF(total_args != 1);
PyMethodDescrObject *method = (PyMethodDescrObject *)callable;
DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type));
PyMethodDef *meth = method->d_method;
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, method->d_common.d_type));
DEOPT_IF(meth->ml_flags != METH_NOARGS);
STAT_INC(CALL, hit);
PyCFunction cfunc = meth->ml_meth;
// This is slower but CPython promises to check all non-vectorcall
// function calls.
if (_Py_EnterRecursiveCallTstate(tstate, " while calling a Python object")) {
GOTO_ERROR(error);
}
res = _PyCFunction_TrampolineCall(cfunc, self, NULL);
_Py_LeaveRecursiveCallTstate(tstate);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(self);
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(CALL_METHOD_DESCRIPTOR_FAST, (unused/1, unused/2, callable, self_or_null, args[oparg] -- res)) {
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
PyMethodDescrObject *method = (PyMethodDescrObject *)callable;
/* Builtin METH_FASTCALL methods, without keywords */
DEOPT_IF(!Py_IS_TYPE(method, &PyMethodDescr_Type));
PyMethodDef *meth = method->d_method;
DEOPT_IF(meth->ml_flags != METH_FASTCALL);
PyObject *self = args[0];
DEOPT_IF(!Py_IS_TYPE(self, method->d_common.d_type));
STAT_INC(CALL, hit);
_PyCFunctionFast cfunc =
(_PyCFunctionFast)(void(*)(void))meth->ml_meth;
int nargs = total_args - 1;
res = cfunc(self, args + 1, nargs);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
/* Clear the stack of the arguments. */
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
Py_DECREF(callable);
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(INSTRUMENTED_CALL_KW, ( -- )) {
int is_meth = PEEK(oparg + 2) != NULL;
int total_args = oparg + is_meth;
PyObject *function = PEEK(oparg + 3);
PyObject *arg = total_args == 0 ? &_PyInstrumentation_MISSING
: PEEK(total_args + 1);
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_CALL,
frame, this_instr, function, arg);
ERROR_IF(err, error);
GO_TO_INSTRUCTION(CALL_KW);
}
inst(CALL_KW, (callable, self_or_null, args[oparg], kwnames -- res)) {
// oparg counts all of the args, but *not* self:
int total_args = oparg;
if (self_or_null != NULL) {
args--;
total_args++;
}
if (self_or_null == NULL && Py_TYPE(callable) == &PyMethod_Type) {
args--;
total_args++;
PyObject *self = ((PyMethodObject *)callable)->im_self;
args[0] = Py_NewRef(self);
PyObject *method = ((PyMethodObject *)callable)->im_func;
args[-1] = Py_NewRef(method);
Py_DECREF(callable);
callable = method;
}
int positional_args = total_args - (int)PyTuple_GET_SIZE(kwnames);
// Check if the call can be inlined or not
if (Py_TYPE(callable) == &PyFunction_Type &&
tstate->interp->eval_frame == NULL &&
((PyFunctionObject *)callable)->vectorcall == _PyFunction_Vectorcall)
{
int code_flags = ((PyCodeObject*)PyFunction_GET_CODE(callable))->co_flags;
PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(callable));
_PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit(
tstate, (PyFunctionObject *)callable, locals,
args, positional_args, kwnames
);
Py_DECREF(kwnames);
// Manipulate stack directly since we leave using DISPATCH_INLINED().
STACK_SHRINK(oparg + 3);
// The frame has stolen all the arguments from the stack,
// so there is no need to clean them up.
if (new_frame == NULL) {
GOTO_ERROR(error);
}
assert(next_instr - this_instr == 1);
frame->return_offset = 1;
DISPATCH_INLINED(new_frame);
}
/* Callable is not a normal Python function */
res = PyObject_Vectorcall(
callable, args,
positional_args | PY_VECTORCALL_ARGUMENTS_OFFSET,
kwnames);
if (opcode == INSTRUMENTED_CALL_KW) {
PyObject *arg = total_args == 0 ?
&_PyInstrumentation_MISSING : args[0];
if (res == NULL) {
_Py_call_instrumentation_exc2(
tstate, PY_MONITORING_EVENT_C_RAISE,
frame, this_instr, callable, arg);
}
else {
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_C_RETURN,
frame, this_instr, callable, arg);
if (err < 0) {
Py_CLEAR(res);
}
}
}
Py_DECREF(kwnames);
assert((res != NULL) ^ (_PyErr_Occurred(tstate) != NULL));
Py_DECREF(callable);
for (int i = 0; i < total_args; i++) {
Py_DECREF(args[i]);
}
ERROR_IF(res == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(INSTRUMENTED_CALL_FUNCTION_EX, ( -- )) {
GO_TO_INSTRUCTION(CALL_FUNCTION_EX);
}
inst(CALL_FUNCTION_EX, (func, unused, callargs, kwargs if (oparg & 1) -- result)) {
// DICT_MERGE is called before this opcode if there are kwargs.
// It converts all dict subtypes in kwargs into regular dicts.
assert(kwargs == NULL || PyDict_CheckExact(kwargs));
if (!PyTuple_CheckExact(callargs)) {
if (check_args_iterable(tstate, func, callargs) < 0) {
GOTO_ERROR(error);
}
PyObject *tuple = PySequence_Tuple(callargs);
if (tuple == NULL) {
GOTO_ERROR(error);
}
Py_SETREF(callargs, tuple);
}
assert(PyTuple_CheckExact(callargs));
EVAL_CALL_STAT_INC_IF_FUNCTION(EVAL_CALL_FUNCTION_EX, func);
if (opcode == INSTRUMENTED_CALL_FUNCTION_EX &&
!PyFunction_Check(func) && !PyMethod_Check(func)
) {
PyObject *arg = PyTuple_GET_SIZE(callargs) > 0 ?
PyTuple_GET_ITEM(callargs, 0) : Py_None;
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_CALL,
frame, this_instr, func, arg);
if (err) GOTO_ERROR(error);
result = PyObject_Call(func, callargs, kwargs);
if (result == NULL) {
_Py_call_instrumentation_exc2(
tstate, PY_MONITORING_EVENT_C_RAISE,
frame, this_instr, func, arg);
}
else {
int err = _Py_call_instrumentation_2args(
tstate, PY_MONITORING_EVENT_C_RETURN,
frame, this_instr, func, arg);
if (err < 0) {
Py_CLEAR(result);
}
}
}
else {
if (Py_TYPE(func) == &PyFunction_Type &&
tstate->interp->eval_frame == NULL &&
((PyFunctionObject *)func)->vectorcall == _PyFunction_Vectorcall) {
assert(PyTuple_CheckExact(callargs));
Py_ssize_t nargs = PyTuple_GET_SIZE(callargs);
int code_flags = ((PyCodeObject *)PyFunction_GET_CODE(func))->co_flags;
PyObject *locals = code_flags & CO_OPTIMIZED ? NULL : Py_NewRef(PyFunction_GET_GLOBALS(func));
_PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit_Ex(tstate,
(PyFunctionObject *)func, locals,
nargs, callargs, kwargs);
// Need to manually shrink the stack since we exit with DISPATCH_INLINED.
STACK_SHRINK(oparg + 3);
if (new_frame == NULL) {
GOTO_ERROR(error);
}
assert(next_instr - this_instr == 1);
frame->return_offset = 1;
DISPATCH_INLINED(new_frame);
}
result = PyObject_Call(func, callargs, kwargs);
}
DECREF_INPUTS();
assert(PEEK(2 + (oparg & 1)) == NULL);
ERROR_IF(result == NULL, error);
CHECK_EVAL_BREAKER();
}
inst(MAKE_FUNCTION, (codeobj -- func)) {
PyFunctionObject *func_obj = (PyFunctionObject *)
PyFunction_New(codeobj, GLOBALS());
Py_DECREF(codeobj);
if (func_obj == NULL) {
GOTO_ERROR(error);
}
_PyFunction_SetVersion(
func_obj, ((PyCodeObject *)codeobj)->co_version);
func = (PyObject *)func_obj;
}
inst(SET_FUNCTION_ATTRIBUTE, (attr, func -- func)) {
assert(PyFunction_Check(func));
PyFunctionObject *func_obj = (PyFunctionObject *)func;
switch(oparg) {
case MAKE_FUNCTION_CLOSURE:
assert(func_obj->func_closure == NULL);
func_obj->func_closure = attr;
break;
case MAKE_FUNCTION_ANNOTATIONS:
assert(func_obj->func_annotations == NULL);
func_obj->func_annotations = attr;
break;
case MAKE_FUNCTION_KWDEFAULTS:
assert(PyDict_CheckExact(attr));
assert(func_obj->func_kwdefaults == NULL);
func_obj->func_kwdefaults = attr;
break;
case MAKE_FUNCTION_DEFAULTS:
assert(PyTuple_CheckExact(attr));
assert(func_obj->func_defaults == NULL);
func_obj->func_defaults = attr;
break;
default:
Py_UNREACHABLE();
}
}
inst(RETURN_GENERATOR, (--)) {
assert(PyFunction_Check(frame->f_funcobj));
PyFunctionObject *func = (PyFunctionObject *)frame->f_funcobj;
PyGenObject *gen = (PyGenObject *)_Py_MakeCoro(func);
if (gen == NULL) {
GOTO_ERROR(error);
}
assert(EMPTY());
_PyFrame_SetStackPointer(frame, stack_pointer);
_PyInterpreterFrame *gen_frame = (_PyInterpreterFrame *)gen->gi_iframe;
frame->instr_ptr = next_instr;
_PyFrame_Copy(frame, gen_frame);
assert(frame->frame_obj == NULL);
gen->gi_frame_state = FRAME_CREATED;
gen_frame->owner = FRAME_OWNED_BY_GENERATOR;
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
_PyInterpreterFrame *prev = frame->previous;
_PyThreadState_PopFrame(tstate, frame);
frame = tstate->current_frame = prev;
_PyFrame_StackPush(frame, (PyObject *)gen);
LOAD_IP(frame->return_offset);
goto resume_frame;
}
inst(BUILD_SLICE, (start, stop, step if (oparg == 3) -- slice)) {
slice = PySlice_New(start, stop, step);
DECREF_INPUTS();
ERROR_IF(slice == NULL, error);
}
inst(CONVERT_VALUE, (value -- result)) {
convertion_func_ptr conv_fn;
assert(oparg >= FVC_STR && oparg <= FVC_ASCII);
conv_fn = CONVERSION_FUNCTIONS[oparg];
result = conv_fn(value);
Py_DECREF(value);
ERROR_IF(result == NULL, error);
}
inst(FORMAT_SIMPLE, (value -- res)) {
/* If value is a unicode object, then we know the result
* of format(value) is value itself. */
if (!PyUnicode_CheckExact(value)) {
res = PyObject_Format(value, NULL);
Py_DECREF(value);
ERROR_IF(res == NULL, error);
}
else {
res = value;
}
}
inst(FORMAT_WITH_SPEC, (value, fmt_spec -- res)) {
res = PyObject_Format(value, fmt_spec);
Py_DECREF(value);
Py_DECREF(fmt_spec);
ERROR_IF(res == NULL, error);
}
inst(COPY, (bottom, unused[oparg-1] -- bottom, unused[oparg-1], top)) {
assert(oparg > 0);
top = Py_NewRef(bottom);
}
specializing op(_SPECIALIZE_BINARY_OP, (counter/1, lhs, rhs -- lhs, rhs)) {
TIER_ONE_ONLY
#if ENABLE_SPECIALIZATION
if (ADAPTIVE_COUNTER_IS_ZERO(counter)) {
next_instr = this_instr;
_Py_Specialize_BinaryOp(lhs, rhs, next_instr, oparg, LOCALS_ARRAY);
DISPATCH_SAME_OPARG();
}
STAT_INC(BINARY_OP, deferred);
DECREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
#endif /* ENABLE_SPECIALIZATION */
assert(NB_ADD <= oparg);
assert(oparg <= NB_INPLACE_XOR);
}
op(_BINARY_OP, (lhs, rhs -- res)) {
assert(_PyEval_BinaryOps[oparg]);
res = _PyEval_BinaryOps[oparg](lhs, rhs);
DECREF_INPUTS();
ERROR_IF(res == NULL, error);
}
macro(BINARY_OP) = _SPECIALIZE_BINARY_OP + _BINARY_OP;
inst(SWAP, (bottom, unused[oparg-2], top --
top, unused[oparg-2], bottom)) {
assert(oparg >= 2);
}
inst(INSTRUMENTED_INSTRUCTION, ( -- )) {
int next_opcode = _Py_call_instrumentation_instruction(
tstate, frame, this_instr);
ERROR_IF(next_opcode < 0, error);
next_instr = this_instr;
if (_PyOpcode_Caches[next_opcode]) {
INCREMENT_ADAPTIVE_COUNTER(this_instr[1].cache);
}
assert(next_opcode > 0 && next_opcode < 256);
opcode = next_opcode;
DISPATCH_GOTO();
}
inst(INSTRUMENTED_JUMP_FORWARD, ( -- )) {
INSTRUMENTED_JUMP(this_instr, next_instr + oparg, PY_MONITORING_EVENT_JUMP);
}
inst(INSTRUMENTED_JUMP_BACKWARD, (unused/1 -- )) {
CHECK_EVAL_BREAKER();
INSTRUMENTED_JUMP(this_instr, next_instr - oparg, PY_MONITORING_EVENT_JUMP);
}
inst(INSTRUMENTED_POP_JUMP_IF_TRUE, (unused/1 -- )) {
PyObject *cond = POP();
assert(PyBool_Check(cond));
int flag = Py_IsTrue(cond);
int offset = flag * oparg;
#if ENABLE_SPECIALIZATION
this_instr[1].cache = (this_instr[1].cache << 1) | flag;
#endif
INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH);
}
inst(INSTRUMENTED_POP_JUMP_IF_FALSE, (unused/1 -- )) {
PyObject *cond = POP();
assert(PyBool_Check(cond));
int flag = Py_IsFalse(cond);
int offset = flag * oparg;
#if ENABLE_SPECIALIZATION
this_instr[1].cache = (this_instr[1].cache << 1) | flag;
#endif
INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH);
}
inst(INSTRUMENTED_POP_JUMP_IF_NONE, (unused/1 -- )) {
PyObject *value = POP();
int flag = Py_IsNone(value);
int offset;
if (flag) {
offset = oparg;
}
else {
Py_DECREF(value);
offset = 0;
}
#if ENABLE_SPECIALIZATION
this_instr[1].cache = (this_instr[1].cache << 1) | flag;
#endif
INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH);
}
inst(INSTRUMENTED_POP_JUMP_IF_NOT_NONE, (unused/1 -- )) {
PyObject *value = POP();
int offset;
int nflag = Py_IsNone(value);
if (nflag) {
offset = 0;
}
else {
Py_DECREF(value);
offset = oparg;
}
#if ENABLE_SPECIALIZATION
this_instr[1].cache = (this_instr[1].cache << 1) | !nflag;
#endif
INSTRUMENTED_JUMP(this_instr, next_instr + offset, PY_MONITORING_EVENT_BRANCH);
}
inst(EXTENDED_ARG, ( -- )) {
TIER_ONE_ONLY
assert(oparg);
opcode = next_instr->op.code;
oparg = oparg << 8 | next_instr->op.arg;
PRE_DISPATCH_GOTO();
DISPATCH_GOTO();
}
inst(CACHE, (--)) {
TIER_ONE_ONLY
assert(0 && "Executing a cache.");
Py_UNREACHABLE();
}
inst(RESERVED, (--)) {
TIER_ONE_ONLY
assert(0 && "Executing RESERVED instruction.");
Py_UNREACHABLE();
}
///////// Tier-2 only opcodes /////////
op (_GUARD_IS_TRUE_POP, (flag -- )) {
DEOPT_IF(Py_IsFalse(flag));
assert(Py_IsTrue(flag));
}
op (_GUARD_IS_FALSE_POP, (flag -- )) {
DEOPT_IF(Py_IsTrue(flag));
assert(Py_IsFalse(flag));
}
op (_GUARD_IS_NONE_POP, (val -- )) {
DEOPT_IF(!Py_IsNone(val));
}
op (_GUARD_IS_NOT_NONE_POP, (val -- )) {
DEOPT_IF(Py_IsNone(val));
Py_DECREF(val);
}
op(_JUMP_TO_TOP, (--)) {
next_uop = current_executor->trace;
CHECK_EVAL_BREAKER();
}
op(_SET_IP, (--)) {
TIER_TWO_ONLY
// TODO: Put the code pointer in `operand` to avoid indirection via `frame`
frame->instr_ptr = _PyCode_CODE(_PyFrame_GetCode(frame)) + oparg;
}
op(_SAVE_RETURN_OFFSET, (--)) {
#if TIER_ONE
frame->return_offset = (uint16_t)(next_instr - this_instr);
#endif
#if TIER_TWO
frame->return_offset = oparg;
#endif
}
op(_EXIT_TRACE, (--)) {
TIER_TWO_ONLY
GOTO_TIER_ONE();
}
op(_INSERT, (unused[oparg], top -- top, unused[oparg])) {
// Inserts TOS at position specified by oparg;
memmove(&stack_pointer[-1 - oparg], &stack_pointer[-oparg], oparg * sizeof(stack_pointer[0]));
}
op(_CHECK_VALIDITY, (--)) {
TIER_TWO_ONLY
DEOPT_IF(!current_executor->base.vm_data.valid);
}
// END BYTECODES //
}
dispatch_opcode:
error:
exception_unwind:
exit_unwind:
handle_eval_breaker:
resume_frame:
resume_with_error:
start_frame:
unbound_local_error:
;
}
// Future families go below this point //