#include "Python.h" #include "pycore_fileutils.h" // fileutils definitions #include "pycore_runtime.h" // _PyRuntime #include "osdefs.h" // SEP #include // mbstowcs() #ifdef HAVE_UNISTD_H # include // getcwd() #endif #ifdef MS_WINDOWS # include # include # include // FILE_DEVICE_* constants # include "pycore_fileutils_windows.h" // FILE_STAT_BASIC_INFORMATION # if defined(MS_WINDOWS_GAMES) && !defined(MS_WINDOWS_DESKTOP) # define PATHCCH_ALLOW_LONG_PATHS 0x01 # else # include // PathCchCombineEx # endif extern int winerror_to_errno(int); #endif #ifdef HAVE_LANGINFO_H # include // nl_langinfo(CODESET) #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #ifdef HAVE_NON_UNICODE_WCHAR_T_REPRESENTATION # include // iconv_open() #endif #ifdef HAVE_FCNTL_H # include // fcntl(F_GETFD) #endif #ifdef O_CLOEXEC /* Does open() support the O_CLOEXEC flag? Possible values: -1: unknown 0: open() ignores O_CLOEXEC flag, ex: Linux kernel older than 2.6.23 1: open() supports O_CLOEXEC flag, close-on-exec is set The flag is used by _Py_open(), _Py_open_noraise(), io.FileIO and os.open(). */ int _Py_open_cloexec_works = -1; #endif // The value must be the same in unicodeobject.c. #define MAX_UNICODE 0x10ffff // mbstowcs() and mbrtowc() errors static const size_t DECODE_ERROR = ((size_t)-1); static const size_t INCOMPLETE_CHARACTER = (size_t)-2; static int get_surrogateescape(_Py_error_handler errors, int *surrogateescape) { switch (errors) { case _Py_ERROR_STRICT: *surrogateescape = 0; return 0; case _Py_ERROR_SURROGATEESCAPE: *surrogateescape = 1; return 0; default: return -1; } } PyObject * _Py_device_encoding(int fd) { int valid; Py_BEGIN_ALLOW_THREADS _Py_BEGIN_SUPPRESS_IPH valid = isatty(fd); _Py_END_SUPPRESS_IPH Py_END_ALLOW_THREADS if (!valid) Py_RETURN_NONE; #ifdef MS_WINDOWS #ifdef HAVE_WINDOWS_CONSOLE_IO UINT cp; if (fd == 0) cp = GetConsoleCP(); else if (fd == 1 || fd == 2) cp = GetConsoleOutputCP(); else cp = 0; /* GetConsoleCP() and GetConsoleOutputCP() return 0 if the application has no console */ if (cp == 0) { Py_RETURN_NONE; } return PyUnicode_FromFormat("cp%u", (unsigned int)cp); #else Py_RETURN_NONE; #endif /* HAVE_WINDOWS_CONSOLE_IO */ #else if (_PyRuntime.preconfig.utf8_mode) { _Py_DECLARE_STR(utf_8, "utf-8"); return &_Py_STR(utf_8); } return _Py_GetLocaleEncodingObject(); #endif } static int is_valid_wide_char(wchar_t ch) { #ifdef HAVE_NON_UNICODE_WCHAR_T_REPRESENTATION /* Oracle Solaris doesn't use Unicode code points as wchar_t encoding for non-Unicode locales, which makes values higher than MAX_UNICODE possibly valid. */ return 1; #endif if (Py_UNICODE_IS_SURROGATE(ch)) { // Reject lone surrogate characters return 0; } if (ch > MAX_UNICODE) { // bpo-35883: Reject characters outside [U+0000; U+10ffff] range. // The glibc mbstowcs() UTF-8 decoder does not respect the RFC 3629, // it creates characters outside the [U+0000; U+10ffff] range: // https://sourceware.org/bugzilla/show_bug.cgi?id=2373 return 0; } return 1; } static size_t _Py_mbstowcs(wchar_t *dest, const char *src, size_t n) { size_t count = mbstowcs(dest, src, n); if (dest != NULL && count != DECODE_ERROR) { for (size_t i=0; i < count; i++) { wchar_t ch = dest[i]; if (!is_valid_wide_char(ch)) { return DECODE_ERROR; } } } return count; } #ifdef HAVE_MBRTOWC static size_t _Py_mbrtowc(wchar_t *pwc, const char *str, size_t len, mbstate_t *pmbs) { assert(pwc != NULL); size_t count = mbrtowc(pwc, str, len, pmbs); if (count != 0 && count != DECODE_ERROR && count != INCOMPLETE_CHARACTER) { if (!is_valid_wide_char(*pwc)) { return DECODE_ERROR; } } return count; } #endif #if !defined(_Py_FORCE_UTF8_FS_ENCODING) && !defined(MS_WINDOWS) #define USE_FORCE_ASCII extern int _Py_normalize_encoding(const char *, char *, size_t); /* Workaround FreeBSD and OpenIndiana locale encoding issue with the C locale and POSIX locale. nl_langinfo(CODESET) announces an alias of the ASCII encoding, whereas mbstowcs() and wcstombs() functions use the ISO-8859-1 encoding. The problem is that os.fsencode() and os.fsdecode() use locale.getpreferredencoding() codec. For example, if command line arguments are decoded by mbstowcs() and encoded back by os.fsencode(), we get a UnicodeEncodeError instead of retrieving the original byte string. The workaround is enabled if setlocale(LC_CTYPE, NULL) returns "C", nl_langinfo(CODESET) announces "ascii" (or an alias to ASCII), and at least one byte in range 0x80-0xff can be decoded from the locale encoding. The workaround is also enabled on error, for example if getting the locale failed. On HP-UX with the C locale or the POSIX locale, nl_langinfo(CODESET) announces "roman8" but mbstowcs() uses Latin1 in practice. Force also the ASCII encoding in this case. Values of force_ascii: 1: the workaround is used: Py_EncodeLocale() uses encode_ascii_surrogateescape() and Py_DecodeLocale() uses decode_ascii() 0: the workaround is not used: Py_EncodeLocale() uses wcstombs() and Py_DecodeLocale() uses mbstowcs() -1: unknown, need to call check_force_ascii() to get the value */ #define force_ascii (_PyRuntime.fileutils.force_ascii) static int check_force_ascii(void) { char *loc = setlocale(LC_CTYPE, NULL); if (loc == NULL) { goto error; } if (strcmp(loc, "C") != 0 && strcmp(loc, "POSIX") != 0) { /* the LC_CTYPE locale is different than C and POSIX */ return 0; } #if defined(HAVE_LANGINFO_H) && defined(CODESET) const char *codeset = nl_langinfo(CODESET); if (!codeset || codeset[0] == '\0') { /* CODESET is not set or empty */ goto error; } char encoding[20]; /* longest name: "iso_646.irv_1991\0" */ if (!_Py_normalize_encoding(codeset, encoding, sizeof(encoding))) { goto error; } #ifdef __hpux if (strcmp(encoding, "roman8") == 0) { unsigned char ch; wchar_t wch; size_t res; ch = (unsigned char)0xA7; res = _Py_mbstowcs(&wch, (char*)&ch, 1); if (res != DECODE_ERROR && wch == L'\xA7') { /* On HP-UX with C locale or the POSIX locale, nl_langinfo(CODESET) announces "roman8", whereas mbstowcs() uses Latin1 encoding in practice. Force ASCII in this case. Roman8 decodes 0xA7 to U+00CF. Latin1 decodes 0xA7 to U+00A7. */ return 1; } } #else const char* ascii_aliases[] = { "ascii", /* Aliases from Lib/encodings/aliases.py */ "646", "ansi_x3.4_1968", "ansi_x3.4_1986", "ansi_x3_4_1968", "cp367", "csascii", "ibm367", "iso646_us", "iso_646.irv_1991", "iso_ir_6", "us", "us_ascii", NULL }; int is_ascii = 0; for (const char **alias=ascii_aliases; *alias != NULL; alias++) { if (strcmp(encoding, *alias) == 0) { is_ascii = 1; break; } } if (!is_ascii) { /* nl_langinfo(CODESET) is not "ascii" or an alias of ASCII */ return 0; } for (unsigned int i=0x80; i<=0xff; i++) { char ch[1]; wchar_t wch[1]; size_t res; unsigned uch = (unsigned char)i; ch[0] = (char)uch; res = _Py_mbstowcs(wch, ch, 1); if (res != DECODE_ERROR) { /* decoding a non-ASCII character from the locale encoding succeed: the locale encoding is not ASCII, force ASCII */ return 1; } } /* None of the bytes in the range 0x80-0xff can be decoded from the locale encoding: the locale encoding is really ASCII */ #endif /* !defined(__hpux) */ return 0; #else /* nl_langinfo(CODESET) is not available: always force ASCII */ return 1; #endif /* defined(HAVE_LANGINFO_H) && defined(CODESET) */ error: /* if an error occurred, force the ASCII encoding */ return 1; } int _Py_GetForceASCII(void) { if (force_ascii == -1) { force_ascii = check_force_ascii(); } return force_ascii; } void _Py_ResetForceASCII(void) { force_ascii = -1; } static int encode_ascii(const wchar_t *text, char **str, size_t *error_pos, const char **reason, int raw_malloc, _Py_error_handler errors) { char *result = NULL, *out; size_t len, i; wchar_t ch; int surrogateescape; if (get_surrogateescape(errors, &surrogateescape) < 0) { return -3; } len = wcslen(text); /* +1 for NULL byte */ if (raw_malloc) { result = PyMem_RawMalloc(len + 1); } else { result = PyMem_Malloc(len + 1); } if (result == NULL) { return -1; } out = result; for (i=0; i PY_SSIZE_T_MAX / sizeof(wchar_t)) { return -1; } res = PyMem_RawMalloc(argsize * sizeof(wchar_t)); if (!res) { return -1; } out = res; for (in = (unsigned char*)arg; *in; in++) { unsigned char ch = *in; if (ch < 128) { *out++ = ch; } else { if (!surrogateescape) { PyMem_RawFree(res); if (wlen) { *wlen = in - (unsigned char*)arg; } if (reason) { *reason = "decoding error"; } return -2; } *out++ = 0xdc00 + ch; } } *out = 0; if (wlen != NULL) { *wlen = out - res; } *wstr = res; return 0; } #endif /* !HAVE_MBRTOWC */ static int decode_current_locale(const char* arg, wchar_t **wstr, size_t *wlen, const char **reason, _Py_error_handler errors) { wchar_t *res; size_t argsize; size_t count; #ifdef HAVE_MBRTOWC unsigned char *in; wchar_t *out; mbstate_t mbs; #endif int surrogateescape; if (get_surrogateescape(errors, &surrogateescape) < 0) { return -3; } #ifdef HAVE_BROKEN_MBSTOWCS /* Some platforms have a broken implementation of * mbstowcs which does not count the characters that * would result from conversion. Use an upper bound. */ argsize = strlen(arg); #else argsize = _Py_mbstowcs(NULL, arg, 0); #endif if (argsize != DECODE_ERROR) { if (argsize > PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { return -1; } res = (wchar_t *)PyMem_RawMalloc((argsize + 1) * sizeof(wchar_t)); if (!res) { return -1; } count = _Py_mbstowcs(res, arg, argsize + 1); if (count != DECODE_ERROR) { *wstr = res; if (wlen != NULL) { *wlen = count; } return 0; } PyMem_RawFree(res); } /* Conversion failed. Fall back to escaping with surrogateescape. */ #ifdef HAVE_MBRTOWC /* Try conversion with mbrtwoc (C99), and escape non-decodable bytes. */ /* Overallocate; as multi-byte characters are in the argument, the actual output could use less memory. */ argsize = strlen(arg) + 1; if (argsize > PY_SSIZE_T_MAX / sizeof(wchar_t)) { return -1; } res = (wchar_t*)PyMem_RawMalloc(argsize * sizeof(wchar_t)); if (!res) { return -1; } in = (unsigned char*)arg; out = res; memset(&mbs, 0, sizeof mbs); while (argsize) { size_t converted = _Py_mbrtowc(out, (char*)in, argsize, &mbs); if (converted == 0) { /* Reached end of string; null char stored. */ break; } if (converted == INCOMPLETE_CHARACTER) { /* Incomplete character. This should never happen, since we provide everything that we have - unless there is a bug in the C library, or I misunderstood how mbrtowc works. */ goto decode_error; } if (converted == DECODE_ERROR) { if (!surrogateescape) { goto decode_error; } /* Decoding error. Escape as UTF-8b, and start over in the initial shift state. */ *out++ = 0xdc00 + *in++; argsize--; memset(&mbs, 0, sizeof mbs); continue; } // _Py_mbrtowc() reject lone surrogate characters assert(!Py_UNICODE_IS_SURROGATE(*out)); /* successfully converted some bytes */ in += converted; argsize -= converted; out++; } if (wlen != NULL) { *wlen = out - res; } *wstr = res; return 0; decode_error: PyMem_RawFree(res); if (wlen) { *wlen = in - (unsigned char*)arg; } if (reason) { *reason = "decoding error"; } return -2; #else /* HAVE_MBRTOWC */ /* Cannot use C locale for escaping; manually escape as if charset is ASCII (i.e. escape all bytes > 128. This will still roundtrip correctly in the locale's charset, which must be an ASCII superset. */ return decode_ascii(arg, wstr, wlen, reason, errors); #endif /* HAVE_MBRTOWC */ } /* Decode a byte string from the locale encoding. Use the strict error handler if 'surrogateescape' is zero. Use the surrogateescape error handler if 'surrogateescape' is non-zero: undecodable bytes are decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character, escape the bytes using the surrogateescape error handler instead of decoding them. On success, return 0 and write the newly allocated wide character string into *wstr (use PyMem_RawFree() to free the memory). If wlen is not NULL, write the number of wide characters excluding the null character into *wlen. On memory allocation failure, return -1. On decoding error, return -2. If wlen is not NULL, write the start of invalid byte sequence in the input string into *wlen. If reason is not NULL, write the decoding error message into *reason. Return -3 if the error handler 'errors' is not supported. Use the Py_EncodeLocaleEx() function to encode the character string back to a byte string. */ int _Py_DecodeLocaleEx(const char* arg, wchar_t **wstr, size_t *wlen, const char **reason, int current_locale, _Py_error_handler errors) { if (current_locale) { #ifdef _Py_FORCE_UTF8_LOCALE return _Py_DecodeUTF8Ex(arg, strlen(arg), wstr, wlen, reason, errors); #else return decode_current_locale(arg, wstr, wlen, reason, errors); #endif } #ifdef _Py_FORCE_UTF8_FS_ENCODING return _Py_DecodeUTF8Ex(arg, strlen(arg), wstr, wlen, reason, errors); #else int use_utf8 = (_PyRuntime.preconfig.utf8_mode >= 1); #ifdef MS_WINDOWS use_utf8 |= (_PyRuntime.preconfig.legacy_windows_fs_encoding == 0); #endif if (use_utf8) { return _Py_DecodeUTF8Ex(arg, strlen(arg), wstr, wlen, reason, errors); } #ifdef USE_FORCE_ASCII if (force_ascii == -1) { force_ascii = check_force_ascii(); } if (force_ascii) { /* force ASCII encoding to workaround mbstowcs() issue */ return decode_ascii(arg, wstr, wlen, reason, errors); } #endif return decode_current_locale(arg, wstr, wlen, reason, errors); #endif /* !_Py_FORCE_UTF8_FS_ENCODING */ } /* Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character, escape the bytes using the surrogateescape error handler instead of decoding them. Return a pointer to a newly allocated wide character string, use PyMem_RawFree() to free the memory. If size is not NULL, write the number of wide characters excluding the null character into *size Return NULL on decoding error or memory allocation error. If *size* is not NULL, *size is set to (size_t)-1 on memory error or set to (size_t)-2 on decoding error. Decoding errors should never happen, unless there is a bug in the C library. Use the Py_EncodeLocale() function to encode the character string back to a byte string. */ wchar_t* Py_DecodeLocale(const char* arg, size_t *wlen) { wchar_t *wstr; int res = _Py_DecodeLocaleEx(arg, &wstr, wlen, NULL, 0, _Py_ERROR_SURROGATEESCAPE); if (res != 0) { assert(res != -3); if (wlen != NULL) { *wlen = (size_t)res; } return NULL; } return wstr; } static int encode_current_locale(const wchar_t *text, char **str, size_t *error_pos, const char **reason, int raw_malloc, _Py_error_handler errors) { const size_t len = wcslen(text); char *result = NULL, *bytes = NULL; size_t i, size, converted; wchar_t c, buf[2]; int surrogateescape; if (get_surrogateescape(errors, &surrogateescape) < 0) { return -3; } /* The function works in two steps: 1. compute the length of the output buffer in bytes (size) 2. outputs the bytes */ size = 0; buf[1] = 0; while (1) { for (i=0; i < len; i++) { c = text[i]; if (c >= 0xdc80 && c <= 0xdcff) { if (!surrogateescape) { goto encode_error; } /* UTF-8b surrogate */ if (bytes != NULL) { *bytes++ = c - 0xdc00; size--; } else { size++; } continue; } else { buf[0] = c; if (bytes != NULL) { converted = wcstombs(bytes, buf, size); } else { converted = wcstombs(NULL, buf, 0); } if (converted == DECODE_ERROR) { goto encode_error; } if (bytes != NULL) { bytes += converted; size -= converted; } else { size += converted; } } } if (result != NULL) { *bytes = '\0'; break; } size += 1; /* nul byte at the end */ if (raw_malloc) { result = PyMem_RawMalloc(size); } else { result = PyMem_Malloc(size); } if (result == NULL) { return -1; } bytes = result; } *str = result; return 0; encode_error: if (raw_malloc) { PyMem_RawFree(result); } else { PyMem_Free(result); } if (error_pos != NULL) { *error_pos = i; } if (reason) { *reason = "encoding error"; } return -2; } /* Encode a string to the locale encoding. Parameters: * raw_malloc: if non-zero, allocate memory using PyMem_RawMalloc() instead of PyMem_Malloc(). * current_locale: if non-zero, use the current LC_CTYPE, otherwise use Python filesystem encoding. * errors: error handler like "strict" or "surrogateescape". Return value: 0: success, *str is set to a newly allocated decoded string. -1: memory allocation failure -2: encoding error, set *error_pos and *reason (if set). -3: the error handler 'errors' is not supported. */ static int encode_locale_ex(const wchar_t *text, char **str, size_t *error_pos, const char **reason, int raw_malloc, int current_locale, _Py_error_handler errors) { if (current_locale) { #ifdef _Py_FORCE_UTF8_LOCALE return _Py_EncodeUTF8Ex(text, str, error_pos, reason, raw_malloc, errors); #else return encode_current_locale(text, str, error_pos, reason, raw_malloc, errors); #endif } #ifdef _Py_FORCE_UTF8_FS_ENCODING return _Py_EncodeUTF8Ex(text, str, error_pos, reason, raw_malloc, errors); #else int use_utf8 = (_PyRuntime.preconfig.utf8_mode >= 1); #ifdef MS_WINDOWS use_utf8 |= (_PyRuntime.preconfig.legacy_windows_fs_encoding == 0); #endif if (use_utf8) { return _Py_EncodeUTF8Ex(text, str, error_pos, reason, raw_malloc, errors); } #ifdef USE_FORCE_ASCII if (force_ascii == -1) { force_ascii = check_force_ascii(); } if (force_ascii) { return encode_ascii(text, str, error_pos, reason, raw_malloc, errors); } #endif return encode_current_locale(text, str, error_pos, reason, raw_malloc, errors); #endif /* _Py_FORCE_UTF8_FS_ENCODING */ } static char* encode_locale(const wchar_t *text, size_t *error_pos, int raw_malloc, int current_locale) { char *str; int res = encode_locale_ex(text, &str, error_pos, NULL, raw_malloc, current_locale, _Py_ERROR_SURROGATEESCAPE); if (res != -2 && error_pos) { *error_pos = (size_t)-1; } if (res != 0) { return NULL; } return str; } /* Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF. Return a pointer to a newly allocated byte string, use PyMem_Free() to free the memory. Return NULL on encoding or memory allocation error. If error_pos is not NULL, *error_pos is set to (size_t)-1 on success, or set to the index of the invalid character on encoding error. Use the Py_DecodeLocale() function to decode the bytes string back to a wide character string. */ char* Py_EncodeLocale(const wchar_t *text, size_t *error_pos) { return encode_locale(text, error_pos, 0, 0); } /* Similar to Py_EncodeLocale(), but result must be freed by PyMem_RawFree() instead of PyMem_Free(). */ char* _Py_EncodeLocaleRaw(const wchar_t *text, size_t *error_pos) { return encode_locale(text, error_pos, 1, 0); } int _Py_EncodeLocaleEx(const wchar_t *text, char **str, size_t *error_pos, const char **reason, int current_locale, _Py_error_handler errors) { return encode_locale_ex(text, str, error_pos, reason, 1, current_locale, errors); } // Get the current locale encoding name: // // - Return "utf-8" if _Py_FORCE_UTF8_LOCALE macro is defined (ex: on Android) // - Return "utf-8" if the UTF-8 Mode is enabled // - On Windows, return the ANSI code page (ex: "cp1250") // - Return "utf-8" if nl_langinfo(CODESET) returns an empty string. // - Otherwise, return nl_langinfo(CODESET). // // Return NULL on memory allocation failure. // // See also config_get_locale_encoding() wchar_t* _Py_GetLocaleEncoding(void) { #ifdef _Py_FORCE_UTF8_LOCALE // On Android langinfo.h and CODESET are missing, // and UTF-8 is always used in mbstowcs() and wcstombs(). return _PyMem_RawWcsdup(L"utf-8"); #else #ifdef MS_WINDOWS wchar_t encoding[23]; unsigned int ansi_codepage = GetACP(); swprintf(encoding, Py_ARRAY_LENGTH(encoding), L"cp%u", ansi_codepage); encoding[Py_ARRAY_LENGTH(encoding) - 1] = 0; return _PyMem_RawWcsdup(encoding); #else const char *encoding = nl_langinfo(CODESET); if (!encoding || encoding[0] == '\0') { // Use UTF-8 if nl_langinfo() returns an empty string. It can happen on // macOS if the LC_CTYPE locale is not supported. return _PyMem_RawWcsdup(L"utf-8"); } wchar_t *wstr; int res = decode_current_locale(encoding, &wstr, NULL, NULL, _Py_ERROR_SURROGATEESCAPE); if (res < 0) { return NULL; } return wstr; #endif // !MS_WINDOWS #endif // !_Py_FORCE_UTF8_LOCALE } PyObject * _Py_GetLocaleEncodingObject(void) { wchar_t *encoding = _Py_GetLocaleEncoding(); if (encoding == NULL) { PyErr_NoMemory(); return NULL; } PyObject *str = PyUnicode_FromWideChar(encoding, -1); PyMem_RawFree(encoding); return str; } #ifdef HAVE_NON_UNICODE_WCHAR_T_REPRESENTATION /* Check whether current locale uses Unicode as internal wchar_t form. */ int _Py_LocaleUsesNonUnicodeWchar(void) { /* Oracle Solaris uses non-Unicode internal wchar_t form for non-Unicode locales and hence needs conversion to UTF first. */ char* codeset = nl_langinfo(CODESET); if (!codeset) { return 0; } /* 646 refers to ISO/IEC 646 standard that corresponds to ASCII encoding */ return (strcmp(codeset, "UTF-8") != 0 && strcmp(codeset, "646") != 0); } static wchar_t * _Py_ConvertWCharForm(const wchar_t *source, Py_ssize_t size, const char *tocode, const char *fromcode) { static_assert(sizeof(wchar_t) == 4, "wchar_t must be 32-bit"); /* Ensure we won't overflow the size. */ if (size > (PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(wchar_t))) { PyErr_NoMemory(); return NULL; } /* the string doesn't have to be NULL terminated */ wchar_t* target = PyMem_Malloc(size * sizeof(wchar_t)); if (target == NULL) { PyErr_NoMemory(); return NULL; } iconv_t cd = iconv_open(tocode, fromcode); if (cd == (iconv_t)-1) { PyErr_Format(PyExc_ValueError, "iconv_open() failed"); PyMem_Free(target); return NULL; } char *inbuf = (char *) source; char *outbuf = (char *) target; size_t inbytesleft = sizeof(wchar_t) * size; size_t outbytesleft = inbytesleft; size_t ret = iconv(cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft); if (ret == DECODE_ERROR) { PyErr_Format(PyExc_ValueError, "iconv() failed"); PyMem_Free(target); iconv_close(cd); return NULL; } iconv_close(cd); return target; } /* Convert a wide character string to the UCS-4 encoded string. This is necessary on systems where internal form of wchar_t are not Unicode code points (e.g. Oracle Solaris). Return a pointer to a newly allocated string, use PyMem_Free() to free the memory. Return NULL and raise exception on conversion or memory allocation error. */ wchar_t * _Py_DecodeNonUnicodeWchar(const wchar_t *native, Py_ssize_t size) { return _Py_ConvertWCharForm(native, size, "UCS-4-INTERNAL", "wchar_t"); } /* Convert a UCS-4 encoded string to native wide character string. This is necessary on systems where internal form of wchar_t are not Unicode code points (e.g. Oracle Solaris). The conversion is done in place. This can be done because both wchar_t and UCS-4 use 4-byte encoding, and one wchar_t symbol always correspond to a single UCS-4 symbol and vice versa. (This is true for Oracle Solaris, which is currently the only system using these functions; it doesn't have to be for other systems). Return 0 on success. Return -1 and raise exception on conversion or memory allocation error. */ int _Py_EncodeNonUnicodeWchar_InPlace(wchar_t *unicode, Py_ssize_t size) { wchar_t* result = _Py_ConvertWCharForm(unicode, size, "wchar_t", "UCS-4-INTERNAL"); if (!result) { return -1; } memcpy(unicode, result, size * sizeof(wchar_t)); PyMem_Free(result); return 0; } #endif /* HAVE_NON_UNICODE_WCHAR_T_REPRESENTATION */ #ifdef MS_WINDOWS static __int64 secs_between_epochs = 11644473600; /* Seconds between 1.1.1601 and 1.1.1970 */ static void FILE_TIME_to_time_t_nsec(FILETIME *in_ptr, time_t *time_out, int* nsec_out) { /* XXX endianness. Shouldn't matter, as all Windows implementations are little-endian */ /* Cannot simply cast and dereference in_ptr, since it might not be aligned properly */ __int64 in; memcpy(&in, in_ptr, sizeof(in)); *nsec_out = (int)(in % 10000000) * 100; /* FILETIME is in units of 100 nsec. */ *time_out = Py_SAFE_DOWNCAST((in / 10000000) - secs_between_epochs, __int64, time_t); } static void LARGE_INTEGER_to_time_t_nsec(LARGE_INTEGER *in_ptr, time_t *time_out, int* nsec_out) { *nsec_out = (int)(in_ptr->QuadPart % 10000000) * 100; /* FILETIME is in units of 100 nsec. */ *time_out = Py_SAFE_DOWNCAST((in_ptr->QuadPart / 10000000) - secs_between_epochs, __int64, time_t); } void _Py_time_t_to_FILE_TIME(time_t time_in, int nsec_in, FILETIME *out_ptr) { /* XXX endianness */ __int64 out; out = time_in + secs_between_epochs; out = out * 10000000 + nsec_in / 100; memcpy(out_ptr, &out, sizeof(out)); } /* Below, we *know* that ugo+r is 0444 */ #if _S_IREAD != 0400 #error Unsupported C library #endif static int attributes_to_mode(DWORD attr) { int m = 0; if (attr & FILE_ATTRIBUTE_DIRECTORY) m |= _S_IFDIR | 0111; /* IFEXEC for user,group,other */ else m |= _S_IFREG; if (attr & FILE_ATTRIBUTE_READONLY) m |= 0444; else m |= 0666; return m; } typedef union { FILE_ID_128 id; struct { uint64_t st_ino; uint64_t st_ino_high; }; } id_128_to_ino; void _Py_attribute_data_to_stat(BY_HANDLE_FILE_INFORMATION *info, ULONG reparse_tag, FILE_BASIC_INFO *basic_info, FILE_ID_INFO *id_info, struct _Py_stat_struct *result) { memset(result, 0, sizeof(*result)); result->st_mode = attributes_to_mode(info->dwFileAttributes); result->st_size = (((__int64)info->nFileSizeHigh)<<32) + info->nFileSizeLow; result->st_dev = id_info ? id_info->VolumeSerialNumber : info->dwVolumeSerialNumber; result->st_rdev = 0; /* st_ctime is deprecated, but we preserve the legacy value in our caller, not here */ if (basic_info) { LARGE_INTEGER_to_time_t_nsec(&basic_info->CreationTime, &result->st_birthtime, &result->st_birthtime_nsec); LARGE_INTEGER_to_time_t_nsec(&basic_info->ChangeTime, &result->st_ctime, &result->st_ctime_nsec); LARGE_INTEGER_to_time_t_nsec(&basic_info->LastWriteTime, &result->st_mtime, &result->st_mtime_nsec); LARGE_INTEGER_to_time_t_nsec(&basic_info->LastAccessTime, &result->st_atime, &result->st_atime_nsec); } else { FILE_TIME_to_time_t_nsec(&info->ftCreationTime, &result->st_birthtime, &result->st_birthtime_nsec); FILE_TIME_to_time_t_nsec(&info->ftLastWriteTime, &result->st_mtime, &result->st_mtime_nsec); FILE_TIME_to_time_t_nsec(&info->ftLastAccessTime, &result->st_atime, &result->st_atime_nsec); } result->st_nlink = info->nNumberOfLinks; if (id_info) { id_128_to_ino file_id; file_id.id = id_info->FileId; result->st_ino = file_id.st_ino; result->st_ino_high = file_id.st_ino_high; } if (!result->st_ino && !result->st_ino_high) { /* should only occur for DirEntry_from_find_data, in which case the index is likely to be zero anyway. */ result->st_ino = (((uint64_t)info->nFileIndexHigh) << 32) + info->nFileIndexLow; } /* bpo-37834: Only actual symlinks set the S_IFLNK flag. But lstat() will open other name surrogate reparse points without traversing them. To detect/handle these, check st_file_attributes and st_reparse_tag. */ result->st_reparse_tag = reparse_tag; if (info->dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT && reparse_tag == IO_REPARSE_TAG_SYMLINK) { /* set the bits that make this a symlink */ result->st_mode = (result->st_mode & ~S_IFMT) | S_IFLNK; } result->st_file_attributes = info->dwFileAttributes; } void _Py_stat_basic_info_to_stat(FILE_STAT_BASIC_INFORMATION *info, struct _Py_stat_struct *result) { memset(result, 0, sizeof(*result)); result->st_mode = attributes_to_mode(info->FileAttributes); result->st_size = info->EndOfFile.QuadPart; LARGE_INTEGER_to_time_t_nsec(&info->CreationTime, &result->st_birthtime, &result->st_birthtime_nsec); LARGE_INTEGER_to_time_t_nsec(&info->ChangeTime, &result->st_ctime, &result->st_ctime_nsec); LARGE_INTEGER_to_time_t_nsec(&info->LastWriteTime, &result->st_mtime, &result->st_mtime_nsec); LARGE_INTEGER_to_time_t_nsec(&info->LastAccessTime, &result->st_atime, &result->st_atime_nsec); result->st_nlink = info->NumberOfLinks; result->st_dev = info->VolumeSerialNumber.QuadPart; /* File systems with less than 128-bits zero pad into this field */ id_128_to_ino file_id; file_id.id = info->FileId128; result->st_ino = file_id.st_ino; result->st_ino_high = file_id.st_ino_high; /* bpo-37834: Only actual symlinks set the S_IFLNK flag. But lstat() will open other name surrogate reparse points without traversing them. To detect/handle these, check st_file_attributes and st_reparse_tag. */ result->st_reparse_tag = info->ReparseTag; if (info->FileAttributes & FILE_ATTRIBUTE_REPARSE_POINT && info->ReparseTag == IO_REPARSE_TAG_SYMLINK) { /* set the bits that make this a symlink */ result->st_mode = (result->st_mode & ~S_IFMT) | S_IFLNK; } result->st_file_attributes = info->FileAttributes; switch (info->DeviceType) { case FILE_DEVICE_DISK: case FILE_DEVICE_VIRTUAL_DISK: case FILE_DEVICE_DFS: case FILE_DEVICE_CD_ROM: case FILE_DEVICE_CONTROLLER: case FILE_DEVICE_DATALINK: break; case FILE_DEVICE_DISK_FILE_SYSTEM: case FILE_DEVICE_CD_ROM_FILE_SYSTEM: case FILE_DEVICE_NETWORK_FILE_SYSTEM: result->st_mode = (result->st_mode & ~S_IFMT) | 0x6000; /* _S_IFBLK */ break; case FILE_DEVICE_CONSOLE: case FILE_DEVICE_NULL: case FILE_DEVICE_KEYBOARD: case FILE_DEVICE_MODEM: case FILE_DEVICE_MOUSE: case FILE_DEVICE_PARALLEL_PORT: case FILE_DEVICE_PRINTER: case FILE_DEVICE_SCREEN: case FILE_DEVICE_SERIAL_PORT: case FILE_DEVICE_SOUND: result->st_mode = (result->st_mode & ~S_IFMT) | _S_IFCHR; break; case FILE_DEVICE_NAMED_PIPE: result->st_mode = (result->st_mode & ~S_IFMT) | _S_IFIFO; break; default: if (info->FileAttributes & FILE_ATTRIBUTE_DIRECTORY) { result->st_mode = (result->st_mode & ~S_IFMT) | _S_IFDIR; } break; } } #endif /* Return information about a file. On POSIX, use fstat(). On Windows, use GetFileType() and GetFileInformationByHandle() which support files larger than 2 GiB. fstat() may fail with EOVERFLOW on files larger than 2 GiB because the file size type is a signed 32-bit integer: see issue #23152. On Windows, set the last Windows error and return nonzero on error. On POSIX, set errno and return nonzero on error. Fill status and return 0 on success. */ int _Py_fstat_noraise(int fd, struct _Py_stat_struct *status) { #ifdef MS_WINDOWS BY_HANDLE_FILE_INFORMATION info; FILE_BASIC_INFO basicInfo; FILE_ID_INFO idInfo; FILE_ID_INFO *pIdInfo = &idInfo; HANDLE h; int type; h = _Py_get_osfhandle_noraise(fd); if (h == INVALID_HANDLE_VALUE) { /* errno is already set by _get_osfhandle, but we also set the Win32 error for callers who expect that */ SetLastError(ERROR_INVALID_HANDLE); return -1; } memset(status, 0, sizeof(*status)); type = GetFileType(h); if (type == FILE_TYPE_UNKNOWN) { DWORD error = GetLastError(); if (error != 0) { errno = winerror_to_errno(error); return -1; } /* else: valid but unknown file */ } if (type != FILE_TYPE_DISK) { if (type == FILE_TYPE_CHAR) status->st_mode = _S_IFCHR; else if (type == FILE_TYPE_PIPE) status->st_mode = _S_IFIFO; return 0; } if (!GetFileInformationByHandle(h, &info) || !GetFileInformationByHandleEx(h, FileBasicInfo, &basicInfo, sizeof(basicInfo))) { /* The Win32 error is already set, but we also set errno for callers who expect it */ errno = winerror_to_errno(GetLastError()); return -1; } if (!GetFileInformationByHandleEx(h, FileIdInfo, &idInfo, sizeof(idInfo))) { /* Failed to get FileIdInfo, so do not pass it along */ pIdInfo = NULL; } _Py_attribute_data_to_stat(&info, 0, &basicInfo, pIdInfo, status); return 0; #else return fstat(fd, status); #endif } /* Return information about a file. On POSIX, use fstat(). On Windows, use GetFileType() and GetFileInformationByHandle() which support files larger than 2 GiB. fstat() may fail with EOVERFLOW on files larger than 2 GiB because the file size type is a signed 32-bit integer: see issue #23152. Raise an exception and return -1 on error. On Windows, set the last Windows error on error. On POSIX, set errno on error. Fill status and return 0 on success. Release the GIL to call GetFileType() and GetFileInformationByHandle(), or to call fstat(). The caller must hold the GIL. */ int _Py_fstat(int fd, struct _Py_stat_struct *status) { int res; assert(PyGILState_Check()); Py_BEGIN_ALLOW_THREADS res = _Py_fstat_noraise(fd, status); Py_END_ALLOW_THREADS if (res != 0) { #ifdef MS_WINDOWS PyErr_SetFromWindowsErr(0); #else PyErr_SetFromErrno(PyExc_OSError); #endif return -1; } return 0; } /* Like _Py_stat() but with a raw filename. */ int _Py_wstat(const wchar_t* path, struct stat *buf) { int err; #ifdef MS_WINDOWS struct _stat wstatbuf; err = _wstat(path, &wstatbuf); if (!err) { buf->st_mode = wstatbuf.st_mode; } #else char *fname; fname = _Py_EncodeLocaleRaw(path, NULL); if (fname == NULL) { errno = EINVAL; return -1; } err = stat(fname, buf); PyMem_RawFree(fname); #endif return err; } /* Call _wstat() on Windows, or encode the path to the filesystem encoding and call stat() otherwise. Only fill st_mode attribute on Windows. Return 0 on success, -1 on _wstat() / stat() error, -2 if an exception was raised. */ int _Py_stat(PyObject *path, struct stat *statbuf) { #ifdef MS_WINDOWS int err; wchar_t *wpath = PyUnicode_AsWideCharString(path, NULL); if (wpath == NULL) return -2; err = _Py_wstat(wpath, statbuf); PyMem_Free(wpath); return err; #else int ret; PyObject *bytes; char *cpath; bytes = PyUnicode_EncodeFSDefault(path); if (bytes == NULL) return -2; /* check for embedded null bytes */ if (PyBytes_AsStringAndSize(bytes, &cpath, NULL) == -1) { Py_DECREF(bytes); return -2; } ret = stat(cpath, statbuf); Py_DECREF(bytes); return ret; #endif } #ifdef MS_WINDOWS // For some Windows API partitions, SetHandleInformation() is declared // but none of the handle flags are defined. #ifndef HANDLE_FLAG_INHERIT #define HANDLE_FLAG_INHERIT 0x00000001 #endif #endif /* This function MUST be kept async-signal-safe on POSIX when raise=0. */ static int get_inheritable(int fd, int raise) { #ifdef MS_WINDOWS HANDLE handle; DWORD flags; handle = _Py_get_osfhandle_noraise(fd); if (handle == INVALID_HANDLE_VALUE) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } if (!GetHandleInformation(handle, &flags)) { if (raise) PyErr_SetFromWindowsErr(0); return -1; } return (flags & HANDLE_FLAG_INHERIT); #else int flags; flags = fcntl(fd, F_GETFD, 0); if (flags == -1) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } return !(flags & FD_CLOEXEC); #endif } /* Get the inheritable flag of the specified file descriptor. Return 1 if the file descriptor can be inherited, 0 if it cannot, raise an exception and return -1 on error. */ int _Py_get_inheritable(int fd) { return get_inheritable(fd, 1); } /* This function MUST be kept async-signal-safe on POSIX when raise=0. */ static int set_inheritable(int fd, int inheritable, int raise, int *atomic_flag_works) { #ifdef MS_WINDOWS HANDLE handle; DWORD flags; #else #if defined(HAVE_SYS_IOCTL_H) && defined(FIOCLEX) && defined(FIONCLEX) static int ioctl_works = -1; int request; int err; #endif int flags, new_flags; int res; #endif /* atomic_flag_works can only be used to make the file descriptor non-inheritable */ assert(!(atomic_flag_works != NULL && inheritable)); if (atomic_flag_works != NULL && !inheritable) { if (*atomic_flag_works == -1) { int isInheritable = get_inheritable(fd, raise); if (isInheritable == -1) return -1; *atomic_flag_works = !isInheritable; } if (*atomic_flag_works) return 0; } #ifdef MS_WINDOWS handle = _Py_get_osfhandle_noraise(fd); if (handle == INVALID_HANDLE_VALUE) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } if (inheritable) flags = HANDLE_FLAG_INHERIT; else flags = 0; if (!SetHandleInformation(handle, HANDLE_FLAG_INHERIT, flags)) { if (raise) PyErr_SetFromWindowsErr(0); return -1; } return 0; #else #if defined(HAVE_SYS_IOCTL_H) && defined(FIOCLEX) && defined(FIONCLEX) if (ioctl_works != 0 && raise != 0) { /* fast-path: ioctl() only requires one syscall */ /* caveat: raise=0 is an indicator that we must be async-signal-safe * thus avoid using ioctl() so we skip the fast-path. */ if (inheritable) request = FIONCLEX; else request = FIOCLEX; err = ioctl(fd, request, NULL); if (!err) { ioctl_works = 1; return 0; } #ifdef O_PATH if (errno == EBADF) { // bpo-44849: On Linux and FreeBSD, ioctl(FIOCLEX) fails with EBADF // on O_PATH file descriptors. Fall through to the fcntl() // implementation. } else #endif if (errno != ENOTTY && errno != EACCES) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } else { /* Issue #22258: Here, ENOTTY means "Inappropriate ioctl for device". The ioctl is declared but not supported by the kernel. Remember that ioctl() doesn't work. It is the case on Illumos-based OS for example. Issue #27057: When SELinux policy disallows ioctl it will fail with EACCES. While FIOCLEX is safe operation it may be unavailable because ioctl was denied altogether. This can be the case on Android. */ ioctl_works = 0; } /* fallback to fcntl() if ioctl() does not work */ } #endif /* slow-path: fcntl() requires two syscalls */ flags = fcntl(fd, F_GETFD); if (flags < 0) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } if (inheritable) { new_flags = flags & ~FD_CLOEXEC; } else { new_flags = flags | FD_CLOEXEC; } if (new_flags == flags) { /* FD_CLOEXEC flag already set/cleared: nothing to do */ return 0; } res = fcntl(fd, F_SETFD, new_flags); if (res < 0) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } return 0; #endif } /* Make the file descriptor non-inheritable. Return 0 on success, set errno and return -1 on error. */ static int make_non_inheritable(int fd) { return set_inheritable(fd, 0, 0, NULL); } /* Set the inheritable flag of the specified file descriptor. On success: return 0, on error: raise an exception and return -1. If atomic_flag_works is not NULL: * if *atomic_flag_works==-1, check if the inheritable is set on the file descriptor: if yes, set *atomic_flag_works to 1, otherwise set to 0 and set the inheritable flag * if *atomic_flag_works==1: do nothing * if *atomic_flag_works==0: set inheritable flag to False Set atomic_flag_works to NULL if no atomic flag was used to create the file descriptor. atomic_flag_works can only be used to make a file descriptor non-inheritable: atomic_flag_works must be NULL if inheritable=1. */ int _Py_set_inheritable(int fd, int inheritable, int *atomic_flag_works) { return set_inheritable(fd, inheritable, 1, atomic_flag_works); } /* Same as _Py_set_inheritable() but on error, set errno and don't raise an exception. This function is async-signal-safe. */ int _Py_set_inheritable_async_safe(int fd, int inheritable, int *atomic_flag_works) { return set_inheritable(fd, inheritable, 0, atomic_flag_works); } static int _Py_open_impl(const char *pathname, int flags, int gil_held) { int fd; int async_err = 0; #ifndef MS_WINDOWS int *atomic_flag_works; #endif #ifdef MS_WINDOWS flags |= O_NOINHERIT; #elif defined(O_CLOEXEC) atomic_flag_works = &_Py_open_cloexec_works; flags |= O_CLOEXEC; #else atomic_flag_works = NULL; #endif if (gil_held) { PyObject *pathname_obj = PyUnicode_DecodeFSDefault(pathname); if (pathname_obj == NULL) { return -1; } if (PySys_Audit("open", "OOi", pathname_obj, Py_None, flags) < 0) { Py_DECREF(pathname_obj); return -1; } do { Py_BEGIN_ALLOW_THREADS fd = open(pathname, flags); Py_END_ALLOW_THREADS } while (fd < 0 && errno == EINTR && !(async_err = PyErr_CheckSignals())); if (async_err) { Py_DECREF(pathname_obj); return -1; } if (fd < 0) { PyErr_SetFromErrnoWithFilenameObjects(PyExc_OSError, pathname_obj, NULL); Py_DECREF(pathname_obj); return -1; } Py_DECREF(pathname_obj); } else { fd = open(pathname, flags); if (fd < 0) return -1; } #ifndef MS_WINDOWS if (set_inheritable(fd, 0, gil_held, atomic_flag_works) < 0) { close(fd); return -1; } #endif return fd; } /* Open a file with the specified flags (wrapper to open() function). Return a file descriptor on success. Raise an exception and return -1 on error. The file descriptor is created non-inheritable. When interrupted by a signal (open() fails with EINTR), retry the syscall, except if the Python signal handler raises an exception. Release the GIL to call open(). The caller must hold the GIL. */ int _Py_open(const char *pathname, int flags) { /* _Py_open() must be called with the GIL held. */ assert(PyGILState_Check()); return _Py_open_impl(pathname, flags, 1); } /* Open a file with the specified flags (wrapper to open() function). Return a file descriptor on success. Set errno and return -1 on error. The file descriptor is created non-inheritable. If interrupted by a signal, fail with EINTR. */ int _Py_open_noraise(const char *pathname, int flags) { return _Py_open_impl(pathname, flags, 0); } /* Open a file. Use _wfopen() on Windows, encode the path to the locale encoding and use fopen() otherwise. The file descriptor is created non-inheritable. If interrupted by a signal, fail with EINTR. */ FILE * _Py_wfopen(const wchar_t *path, const wchar_t *mode) { FILE *f; if (PySys_Audit("open", "uui", path, mode, 0) < 0) { return NULL; } #ifndef MS_WINDOWS char *cpath; char cmode[10]; size_t r; r = wcstombs(cmode, mode, 10); if (r == DECODE_ERROR || r >= 10) { errno = EINVAL; return NULL; } cpath = _Py_EncodeLocaleRaw(path, NULL); if (cpath == NULL) { return NULL; } f = fopen(cpath, cmode); PyMem_RawFree(cpath); #else f = _wfopen(path, mode); #endif if (f == NULL) return NULL; if (make_non_inheritable(fileno(f)) < 0) { fclose(f); return NULL; } return f; } /* Open a file. Call _wfopen() on Windows, or encode the path to the filesystem encoding and call fopen() otherwise. Return the new file object on success. Raise an exception and return NULL on error. The file descriptor is created non-inheritable. When interrupted by a signal (open() fails with EINTR), retry the syscall, except if the Python signal handler raises an exception. Release the GIL to call _wfopen() or fopen(). The caller must hold the GIL. */ FILE* _Py_fopen_obj(PyObject *path, const char *mode) { FILE *f; int async_err = 0; #ifdef MS_WINDOWS wchar_t wmode[10]; int usize; assert(PyGILState_Check()); if (PySys_Audit("open", "Osi", path, mode, 0) < 0) { return NULL; } if (!PyUnicode_Check(path)) { PyErr_Format(PyExc_TypeError, "str file path expected under Windows, got %R", Py_TYPE(path)); return NULL; } wchar_t *wpath = PyUnicode_AsWideCharString(path, NULL); if (wpath == NULL) return NULL; usize = MultiByteToWideChar(CP_ACP, 0, mode, -1, wmode, Py_ARRAY_LENGTH(wmode)); if (usize == 0) { PyErr_SetFromWindowsErr(0); PyMem_Free(wpath); return NULL; } do { Py_BEGIN_ALLOW_THREADS f = _wfopen(wpath, wmode); Py_END_ALLOW_THREADS } while (f == NULL && errno == EINTR && !(async_err = PyErr_CheckSignals())); int saved_errno = errno; PyMem_Free(wpath); #else PyObject *bytes; const char *path_bytes; assert(PyGILState_Check()); if (!PyUnicode_FSConverter(path, &bytes)) return NULL; path_bytes = PyBytes_AS_STRING(bytes); if (PySys_Audit("open", "Osi", path, mode, 0) < 0) { Py_DECREF(bytes); return NULL; } do { Py_BEGIN_ALLOW_THREADS f = fopen(path_bytes, mode); Py_END_ALLOW_THREADS } while (f == NULL && errno == EINTR && !(async_err = PyErr_CheckSignals())); int saved_errno = errno; Py_DECREF(bytes); #endif if (async_err) return NULL; if (f == NULL) { errno = saved_errno; PyErr_SetFromErrnoWithFilenameObject(PyExc_OSError, path); return NULL; } if (set_inheritable(fileno(f), 0, 1, NULL) < 0) { fclose(f); return NULL; } return f; } /* Read count bytes from fd into buf. On success, return the number of read bytes, it can be lower than count. If the current file offset is at or past the end of file, no bytes are read, and read() returns zero. On error, raise an exception, set errno and return -1. When interrupted by a signal (read() fails with EINTR), retry the syscall. If the Python signal handler raises an exception, the function returns -1 (the syscall is not retried). Release the GIL to call read(). The caller must hold the GIL. */ Py_ssize_t _Py_read(int fd, void *buf, size_t count) { Py_ssize_t n; int err; int async_err = 0; assert(PyGILState_Check()); /* _Py_read() must not be called with an exception set, otherwise the * caller may think that read() was interrupted by a signal and the signal * handler raised an exception. */ assert(!PyErr_Occurred()); if (count > _PY_READ_MAX) { count = _PY_READ_MAX; } _Py_BEGIN_SUPPRESS_IPH do { Py_BEGIN_ALLOW_THREADS errno = 0; #ifdef MS_WINDOWS _doserrno = 0; n = read(fd, buf, (int)count); // read() on a non-blocking empty pipe fails with EINVAL, which is // mapped from the Windows error code ERROR_NO_DATA. if (n < 0 && errno == EINVAL) { if (_doserrno == ERROR_NO_DATA) { errno = EAGAIN; } } #else n = read(fd, buf, count); #endif /* save/restore errno because PyErr_CheckSignals() * and PyErr_SetFromErrno() can modify it */ err = errno; Py_END_ALLOW_THREADS } while (n < 0 && err == EINTR && !(async_err = PyErr_CheckSignals())); _Py_END_SUPPRESS_IPH if (async_err) { /* read() was interrupted by a signal (failed with EINTR) * and the Python signal handler raised an exception */ errno = err; assert(errno == EINTR && PyErr_Occurred()); return -1; } if (n < 0) { PyErr_SetFromErrno(PyExc_OSError); errno = err; return -1; } return n; } static Py_ssize_t _Py_write_impl(int fd, const void *buf, size_t count, int gil_held) { Py_ssize_t n; int err; int async_err = 0; _Py_BEGIN_SUPPRESS_IPH #ifdef MS_WINDOWS if (count > 32767) { /* Issue #11395: the Windows console returns an error (12: not enough space error) on writing into stdout if stdout mode is binary and the length is greater than 66,000 bytes (or less, depending on heap usage). */ if (gil_held) { Py_BEGIN_ALLOW_THREADS if (isatty(fd)) { count = 32767; } Py_END_ALLOW_THREADS } else { if (isatty(fd)) { count = 32767; } } } #endif if (count > _PY_WRITE_MAX) { count = _PY_WRITE_MAX; } if (gil_held) { do { Py_BEGIN_ALLOW_THREADS errno = 0; #ifdef MS_WINDOWS // write() on a non-blocking pipe fails with ENOSPC on Windows if // the pipe lacks available space for the entire buffer. int c = (int)count; do { _doserrno = 0; n = write(fd, buf, c); if (n >= 0 || errno != ENOSPC || _doserrno != 0) { break; } errno = EAGAIN; c /= 2; } while (c > 0); #else n = write(fd, buf, count); #endif /* save/restore errno because PyErr_CheckSignals() * and PyErr_SetFromErrno() can modify it */ err = errno; Py_END_ALLOW_THREADS } while (n < 0 && err == EINTR && !(async_err = PyErr_CheckSignals())); } else { do { errno = 0; #ifdef MS_WINDOWS // write() on a non-blocking pipe fails with ENOSPC on Windows if // the pipe lacks available space for the entire buffer. int c = (int)count; do { _doserrno = 0; n = write(fd, buf, c); if (n >= 0 || errno != ENOSPC || _doserrno != 0) { break; } errno = EAGAIN; c /= 2; } while (c > 0); #else n = write(fd, buf, count); #endif err = errno; } while (n < 0 && err == EINTR); } _Py_END_SUPPRESS_IPH if (async_err) { /* write() was interrupted by a signal (failed with EINTR) and the Python signal handler raised an exception (if gil_held is nonzero). */ errno = err; assert(errno == EINTR && (!gil_held || PyErr_Occurred())); return -1; } if (n < 0) { if (gil_held) PyErr_SetFromErrno(PyExc_OSError); errno = err; return -1; } return n; } /* Write count bytes of buf into fd. On success, return the number of written bytes, it can be lower than count including 0. On error, raise an exception, set errno and return -1. When interrupted by a signal (write() fails with EINTR), retry the syscall. If the Python signal handler raises an exception, the function returns -1 (the syscall is not retried). Release the GIL to call write(). The caller must hold the GIL. */ Py_ssize_t _Py_write(int fd, const void *buf, size_t count) { assert(PyGILState_Check()); /* _Py_write() must not be called with an exception set, otherwise the * caller may think that write() was interrupted by a signal and the signal * handler raised an exception. */ assert(!PyErr_Occurred()); return _Py_write_impl(fd, buf, count, 1); } /* Write count bytes of buf into fd. * * On success, return the number of written bytes, it can be lower than count * including 0. On error, set errno and return -1. * * When interrupted by a signal (write() fails with EINTR), retry the syscall * without calling the Python signal handler. */ Py_ssize_t _Py_write_noraise(int fd, const void *buf, size_t count) { return _Py_write_impl(fd, buf, count, 0); } #ifdef HAVE_READLINK /* Read value of symbolic link. Encode the path to the locale encoding, decode the result from the locale encoding. Return -1 on encoding error, on readlink() error, if the internal buffer is too short, on decoding error, or if 'buf' is too short. */ int _Py_wreadlink(const wchar_t *path, wchar_t *buf, size_t buflen) { char *cpath; char cbuf[MAXPATHLEN]; size_t cbuf_len = Py_ARRAY_LENGTH(cbuf); wchar_t *wbuf; Py_ssize_t res; size_t r1; cpath = _Py_EncodeLocaleRaw(path, NULL); if (cpath == NULL) { errno = EINVAL; return -1; } res = readlink(cpath, cbuf, cbuf_len); PyMem_RawFree(cpath); if (res == -1) { return -1; } if ((size_t)res == cbuf_len) { errno = EINVAL; return -1; } cbuf[res] = '\0'; /* buf will be null terminated */ wbuf = Py_DecodeLocale(cbuf, &r1); if (wbuf == NULL) { errno = EINVAL; return -1; } /* wbuf must have space to store the trailing NUL character */ if (buflen <= r1) { PyMem_RawFree(wbuf); errno = EINVAL; return -1; } wcsncpy(buf, wbuf, buflen); PyMem_RawFree(wbuf); return (int)r1; } #endif #ifdef HAVE_REALPATH /* Return the canonicalized absolute pathname. Encode path to the locale encoding, decode the result from the locale encoding. Return NULL on encoding error, realpath() error, decoding error or if 'resolved_path' is too short. */ wchar_t* _Py_wrealpath(const wchar_t *path, wchar_t *resolved_path, size_t resolved_path_len) { char *cpath; char cresolved_path[MAXPATHLEN]; wchar_t *wresolved_path; char *res; size_t r; cpath = _Py_EncodeLocaleRaw(path, NULL); if (cpath == NULL) { errno = EINVAL; return NULL; } res = realpath(cpath, cresolved_path); PyMem_RawFree(cpath); if (res == NULL) return NULL; wresolved_path = Py_DecodeLocale(cresolved_path, &r); if (wresolved_path == NULL) { errno = EINVAL; return NULL; } /* wresolved_path must have space to store the trailing NUL character */ if (resolved_path_len <= r) { PyMem_RawFree(wresolved_path); errno = EINVAL; return NULL; } wcsncpy(resolved_path, wresolved_path, resolved_path_len); PyMem_RawFree(wresolved_path); return resolved_path; } #endif int _Py_isabs(const wchar_t *path) { #ifdef MS_WINDOWS const wchar_t *tail; HRESULT hr = PathCchSkipRoot(path, &tail); if (FAILED(hr) || path == tail) { return 0; } if (tail == &path[1] && (path[0] == SEP || path[0] == ALTSEP)) { // Exclude paths with leading SEP return 0; } if (tail == &path[2] && path[1] == L':') { // Exclude drive-relative paths (e.g. C:filename.ext) return 0; } return 1; #else return (path[0] == SEP); #endif } /* Get an absolute path. On error (ex: fail to get the current directory), return -1. On memory allocation failure, set *abspath_p to NULL and return 0. On success, return a newly allocated to *abspath_p to and return 0. The string must be freed by PyMem_RawFree(). */ int _Py_abspath(const wchar_t *path, wchar_t **abspath_p) { if (path[0] == '\0' || !wcscmp(path, L".")) { wchar_t cwd[MAXPATHLEN + 1]; cwd[Py_ARRAY_LENGTH(cwd) - 1] = 0; if (!_Py_wgetcwd(cwd, Py_ARRAY_LENGTH(cwd) - 1)) { /* unable to get the current directory */ return -1; } *abspath_p = _PyMem_RawWcsdup(cwd); return 0; } if (_Py_isabs(path)) { *abspath_p = _PyMem_RawWcsdup(path); return 0; } #ifdef MS_WINDOWS return _PyOS_getfullpathname(path, abspath_p); #else wchar_t cwd[MAXPATHLEN + 1]; cwd[Py_ARRAY_LENGTH(cwd) - 1] = 0; if (!_Py_wgetcwd(cwd, Py_ARRAY_LENGTH(cwd) - 1)) { /* unable to get the current directory */ return -1; } size_t cwd_len = wcslen(cwd); size_t path_len = wcslen(path); size_t len = cwd_len + 1 + path_len + 1; if (len <= (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t)) { *abspath_p = PyMem_RawMalloc(len * sizeof(wchar_t)); } else { *abspath_p = NULL; } if (*abspath_p == NULL) { return 0; } wchar_t *abspath = *abspath_p; memcpy(abspath, cwd, cwd_len * sizeof(wchar_t)); abspath += cwd_len; *abspath = (wchar_t)SEP; abspath++; memcpy(abspath, path, path_len * sizeof(wchar_t)); abspath += path_len; *abspath = 0; return 0; #endif } // The Windows Games API family implements the PathCch* APIs in the Xbox OS, // but does not expose them yet. Load them dynamically until // 1) they are officially exposed // 2) we stop supporting older versions of the GDK which do not expose them #if defined(MS_WINDOWS_GAMES) && !defined(MS_WINDOWS_DESKTOP) HRESULT PathCchSkipRoot(const wchar_t *path, const wchar_t **rootEnd) { static int initialized = 0; typedef HRESULT(__stdcall *PPathCchSkipRoot) (PCWSTR pszPath, PCWSTR *ppszRootEnd); static PPathCchSkipRoot _PathCchSkipRoot; if (initialized == 0) { HMODULE pathapi = LoadLibraryExW(L"api-ms-win-core-path-l1-1-0.dll", NULL, LOAD_LIBRARY_SEARCH_SYSTEM32); if (pathapi) { _PathCchSkipRoot = (PPathCchSkipRoot)GetProcAddress( pathapi, "PathCchSkipRoot"); } else { _PathCchSkipRoot = NULL; } initialized = 1; } if (!_PathCchSkipRoot) { return E_NOINTERFACE; } return _PathCchSkipRoot(path, rootEnd); } static HRESULT PathCchCombineEx(wchar_t *buffer, size_t bufsize, const wchar_t *dirname, const wchar_t *relfile, unsigned long flags) { static int initialized = 0; typedef HRESULT(__stdcall *PPathCchCombineEx) (PWSTR pszPathOut, size_t cchPathOut, PCWSTR pszPathIn, PCWSTR pszMore, unsigned long dwFlags); static PPathCchCombineEx _PathCchCombineEx; if (initialized == 0) { HMODULE pathapi = LoadLibraryExW(L"api-ms-win-core-path-l1-1-0.dll", NULL, LOAD_LIBRARY_SEARCH_SYSTEM32); if (pathapi) { _PathCchCombineEx = (PPathCchCombineEx)GetProcAddress( pathapi, "PathCchCombineEx"); } else { _PathCchCombineEx = NULL; } initialized = 1; } if (!_PathCchCombineEx) { return E_NOINTERFACE; } return _PathCchCombineEx(buffer, bufsize, dirname, relfile, flags); } #endif /* defined(MS_WINDOWS_GAMES) && !defined(MS_WINDOWS_DESKTOP) */ void _Py_skiproot(const wchar_t *path, Py_ssize_t size, Py_ssize_t *drvsize, Py_ssize_t *rootsize) { assert(drvsize); assert(rootsize); #ifndef MS_WINDOWS #define IS_SEP(x) (*(x) == SEP) *drvsize = 0; if (!IS_SEP(&path[0])) { // Relative path, e.g.: 'foo' *rootsize = 0; } else if (!IS_SEP(&path[1]) || IS_SEP(&path[2])) { // Absolute path, e.g.: '/foo', '///foo', '////foo', etc. *rootsize = 1; } else { // Precisely two leading slashes, e.g.: '//foo'. Implementation defined per POSIX, see // https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13 *rootsize = 2; } #undef IS_SEP #else const wchar_t *pEnd = size >= 0 ? &path[size] : NULL; #define IS_END(x) (pEnd ? (x) == pEnd : !*(x)) #define IS_SEP(x) (*(x) == SEP || *(x) == ALTSEP) #define SEP_OR_END(x) (IS_SEP(x) || IS_END(x)) if (IS_SEP(&path[0])) { if (IS_SEP(&path[1])) { // Device drives, e.g. \\.\device or \\?\device // UNC drives, e.g. \\server\share or \\?\UNC\server\share Py_ssize_t idx; if (path[2] == L'?' && IS_SEP(&path[3]) && (path[4] == L'U' || path[4] == L'u') && (path[5] == L'N' || path[5] == L'n') && (path[6] == L'C' || path[6] == L'c') && IS_SEP(&path[7])) { idx = 8; } else { idx = 2; } while (!SEP_OR_END(&path[idx])) { idx++; } if (IS_END(&path[idx])) { *drvsize = idx; *rootsize = 0; } else { idx++; while (!SEP_OR_END(&path[idx])) { idx++; } *drvsize = idx; if (IS_END(&path[idx])) { *rootsize = 0; } else { *rootsize = 1; } } } else { // Relative path with root, e.g. \Windows *drvsize = 0; *rootsize = 1; } } else if (!IS_END(&path[0]) && path[1] == L':') { *drvsize = 2; if (IS_SEP(&path[2])) { // Absolute drive-letter path, e.g. X:\Windows *rootsize = 1; } else { // Relative path with drive, e.g. X:Windows *rootsize = 0; } } else { // Relative path, e.g. Windows *drvsize = 0; *rootsize = 0; } #undef SEP_OR_END #undef IS_SEP #undef IS_END #endif } // The caller must ensure "buffer" is big enough. static int join_relfile(wchar_t *buffer, size_t bufsize, const wchar_t *dirname, const wchar_t *relfile) { #ifdef MS_WINDOWS if (FAILED(PathCchCombineEx(buffer, bufsize, dirname, relfile, PATHCCH_ALLOW_LONG_PATHS))) { return -1; } #else assert(!_Py_isabs(relfile)); size_t dirlen = wcslen(dirname); size_t rellen = wcslen(relfile); size_t maxlen = bufsize - 1; if (maxlen > MAXPATHLEN || dirlen >= maxlen || rellen >= maxlen - dirlen) { return -1; } if (dirlen == 0) { // We do not add a leading separator. wcscpy(buffer, relfile); } else { if (dirname != buffer) { wcscpy(buffer, dirname); } size_t relstart = dirlen; if (dirlen > 1 && dirname[dirlen - 1] != SEP) { buffer[dirlen] = SEP; relstart += 1; } wcscpy(&buffer[relstart], relfile); } #endif return 0; } /* Join the two paths together, like os.path.join(). Return NULL if memory could not be allocated. The caller is responsible for calling PyMem_RawFree() on the result. */ wchar_t * _Py_join_relfile(const wchar_t *dirname, const wchar_t *relfile) { assert(dirname != NULL && relfile != NULL); #ifndef MS_WINDOWS assert(!_Py_isabs(relfile)); #endif size_t maxlen = wcslen(dirname) + 1 + wcslen(relfile); size_t bufsize = maxlen + 1; wchar_t *filename = PyMem_RawMalloc(bufsize * sizeof(wchar_t)); if (filename == NULL) { return NULL; } assert(wcslen(dirname) < MAXPATHLEN); assert(wcslen(relfile) < MAXPATHLEN - wcslen(dirname)); if (join_relfile(filename, bufsize, dirname, relfile) < 0) { PyMem_RawFree(filename); return NULL; } return filename; } /* Join the two paths together, like os.path.join(). dirname: the target buffer with the dirname already in place, including trailing NUL relfile: this must be a relative path bufsize: total allocated size of the buffer Return -1 if anything is wrong with the path lengths. */ int _Py_add_relfile(wchar_t *dirname, const wchar_t *relfile, size_t bufsize) { assert(dirname != NULL && relfile != NULL); assert(bufsize > 0); return join_relfile(dirname, bufsize, dirname, relfile); } size_t _Py_find_basename(const wchar_t *filename) { for (size_t i = wcslen(filename); i > 0; --i) { if (filename[i] == SEP) { return i + 1; } } return 0; } /* In-place path normalisation. Returns the start of the normalized path, which will be within the original buffer. Guaranteed to not make the path longer, and will not fail. 'size' is the length of the path, if known. If -1, the first null character will be assumed to be the end of the path. 'normsize' will be set to contain the length of the resulting normalized path. */ wchar_t * _Py_normpath_and_size(wchar_t *path, Py_ssize_t size, Py_ssize_t *normsize) { assert(path != NULL); if ((size < 0 && !path[0]) || size == 0) { *normsize = 0; return path; } wchar_t *pEnd = size >= 0 ? &path[size] : NULL; wchar_t *p1 = path; // sequentially scanned address in the path wchar_t *p2 = path; // destination of a scanned character to be ljusted wchar_t *minP2 = path; // the beginning of the destination range wchar_t lastC = L'\0'; // the last ljusted character, p2[-1] in most cases #define IS_END(x) (pEnd ? (x) == pEnd : !*(x)) #ifdef ALTSEP #define IS_SEP(x) (*(x) == SEP || *(x) == ALTSEP) #else #define IS_SEP(x) (*(x) == SEP) #endif #define SEP_OR_END(x) (IS_SEP(x) || IS_END(x)) if (p1[0] == L'.' && IS_SEP(&p1[1])) { // Skip leading '.\' path = &path[2]; while (IS_SEP(path)) { path++; } p1 = p2 = minP2 = path; lastC = SEP; } else { Py_ssize_t drvsize, rootsize; _Py_skiproot(path, size, &drvsize, &rootsize); if (drvsize || rootsize) { // Skip past root and update minP2 p1 = &path[drvsize + rootsize]; #ifndef ALTSEP p2 = p1; #else for (; p2 < p1; ++p2) { if (*p2 == ALTSEP) { *p2 = SEP; } } #endif minP2 = p2 - 1; lastC = *minP2; #ifdef MS_WINDOWS if (lastC != SEP) { minP2++; } #endif } } /* if pEnd is specified, check that. Else, check for null terminator */ for (; !IS_END(p1); ++p1) { wchar_t c = *p1; #ifdef ALTSEP if (c == ALTSEP) { c = SEP; } #endif if (lastC == SEP) { if (c == L'.') { int sep_at_1 = SEP_OR_END(&p1[1]); int sep_at_2 = !sep_at_1 && SEP_OR_END(&p1[2]); if (sep_at_2 && p1[1] == L'.') { wchar_t *p3 = p2; while (p3 != minP2 && *--p3 == SEP) { } while (p3 != minP2 && *(p3 - 1) != SEP) { --p3; } if (p2 == minP2 || (p3[0] == L'.' && p3[1] == L'.' && IS_SEP(&p3[2]))) { // Previous segment is also ../, so append instead. // Relative path does not absorb ../ at minP2 as well. *p2++ = L'.'; *p2++ = L'.'; lastC = L'.'; } else if (p3[0] == SEP) { // Absolute path, so absorb segment p2 = p3 + 1; } else { p2 = p3; } p1 += 1; } else if (sep_at_1) { } else { *p2++ = lastC = c; } } else if (c == SEP) { } else { *p2++ = lastC = c; } } else { *p2++ = lastC = c; } } *p2 = L'\0'; if (p2 != minP2) { while (--p2 != minP2 && *p2 == SEP) { *p2 = L'\0'; } } else { --p2; } *normsize = p2 - path + 1; #undef SEP_OR_END #undef IS_SEP #undef IS_END return path; } /* In-place path normalisation. Returns the start of the normalized path, which will be within the original buffer. Guaranteed to not make the path longer, and will not fail. 'size' is the length of the path, if known. If -1, the first null character will be assumed to be the end of the path. */ wchar_t * _Py_normpath(wchar_t *path, Py_ssize_t size) { Py_ssize_t norm_length; return _Py_normpath_and_size(path, size, &norm_length); } /* Get the current directory. buflen is the buffer size in wide characters including the null character. Decode the path from the locale encoding. Return NULL on getcwd() error, on decoding error, or if 'buf' is too short. */ wchar_t* _Py_wgetcwd(wchar_t *buf, size_t buflen) { #ifdef MS_WINDOWS int ibuflen = (int)Py_MIN(buflen, INT_MAX); return _wgetcwd(buf, ibuflen); #else char fname[MAXPATHLEN]; wchar_t *wname; size_t len; if (getcwd(fname, Py_ARRAY_LENGTH(fname)) == NULL) return NULL; wname = Py_DecodeLocale(fname, &len); if (wname == NULL) return NULL; /* wname must have space to store the trailing NUL character */ if (buflen <= len) { PyMem_RawFree(wname); return NULL; } wcsncpy(buf, wname, buflen); PyMem_RawFree(wname); return buf; #endif } /* Duplicate a file descriptor. The new file descriptor is created as non-inheritable. Return a new file descriptor on success, raise an OSError exception and return -1 on error. The GIL is released to call dup(). The caller must hold the GIL. */ int _Py_dup(int fd) { #ifdef MS_WINDOWS HANDLE handle; #endif assert(PyGILState_Check()); #ifdef MS_WINDOWS handle = _Py_get_osfhandle(fd); if (handle == INVALID_HANDLE_VALUE) return -1; Py_BEGIN_ALLOW_THREADS _Py_BEGIN_SUPPRESS_IPH fd = dup(fd); _Py_END_SUPPRESS_IPH Py_END_ALLOW_THREADS if (fd < 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } if (_Py_set_inheritable(fd, 0, NULL) < 0) { _Py_BEGIN_SUPPRESS_IPH close(fd); _Py_END_SUPPRESS_IPH return -1; } #elif defined(HAVE_FCNTL_H) && defined(F_DUPFD_CLOEXEC) Py_BEGIN_ALLOW_THREADS _Py_BEGIN_SUPPRESS_IPH fd = fcntl(fd, F_DUPFD_CLOEXEC, 0); _Py_END_SUPPRESS_IPH Py_END_ALLOW_THREADS if (fd < 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } #elif HAVE_DUP Py_BEGIN_ALLOW_THREADS _Py_BEGIN_SUPPRESS_IPH fd = dup(fd); _Py_END_SUPPRESS_IPH Py_END_ALLOW_THREADS if (fd < 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } if (_Py_set_inheritable(fd, 0, NULL) < 0) { _Py_BEGIN_SUPPRESS_IPH close(fd); _Py_END_SUPPRESS_IPH return -1; } #else errno = ENOTSUP; PyErr_SetFromErrno(PyExc_OSError); return -1; #endif return fd; } #ifndef MS_WINDOWS /* Get the blocking mode of the file descriptor. Return 0 if the O_NONBLOCK flag is set, 1 if the flag is cleared, raise an exception and return -1 on error. */ int _Py_get_blocking(int fd) { int flags; _Py_BEGIN_SUPPRESS_IPH flags = fcntl(fd, F_GETFL, 0); _Py_END_SUPPRESS_IPH if (flags < 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } return !(flags & O_NONBLOCK); } /* Set the blocking mode of the specified file descriptor. Set the O_NONBLOCK flag if blocking is False, clear the O_NONBLOCK flag otherwise. Return 0 on success, raise an exception and return -1 on error. */ int _Py_set_blocking(int fd, int blocking) { /* bpo-41462: On VxWorks, ioctl(FIONBIO) only works on sockets. Use fcntl() instead. */ #if defined(HAVE_SYS_IOCTL_H) && defined(FIONBIO) && !defined(__VXWORKS__) int arg = !blocking; if (ioctl(fd, FIONBIO, &arg) < 0) goto error; #else int flags, res; _Py_BEGIN_SUPPRESS_IPH flags = fcntl(fd, F_GETFL, 0); if (flags >= 0) { if (blocking) flags = flags & (~O_NONBLOCK); else flags = flags | O_NONBLOCK; res = fcntl(fd, F_SETFL, flags); } else { res = -1; } _Py_END_SUPPRESS_IPH if (res < 0) goto error; #endif return 0; error: PyErr_SetFromErrno(PyExc_OSError); return -1; } #else /* MS_WINDOWS */ int _Py_get_blocking(int fd) { HANDLE handle; DWORD mode; BOOL success; handle = _Py_get_osfhandle(fd); if (handle == INVALID_HANDLE_VALUE) { return -1; } Py_BEGIN_ALLOW_THREADS success = GetNamedPipeHandleStateW(handle, &mode, NULL, NULL, NULL, NULL, 0); Py_END_ALLOW_THREADS if (!success) { PyErr_SetFromWindowsErr(0); return -1; } return !(mode & PIPE_NOWAIT); } int _Py_set_blocking(int fd, int blocking) { HANDLE handle; DWORD mode; BOOL success; handle = _Py_get_osfhandle(fd); if (handle == INVALID_HANDLE_VALUE) { return -1; } Py_BEGIN_ALLOW_THREADS success = GetNamedPipeHandleStateW(handle, &mode, NULL, NULL, NULL, NULL, 0); if (success) { if (blocking) { mode &= ~PIPE_NOWAIT; } else { mode |= PIPE_NOWAIT; } success = SetNamedPipeHandleState(handle, &mode, NULL, NULL); } Py_END_ALLOW_THREADS if (!success) { PyErr_SetFromWindowsErr(0); return -1; } return 0; } void* _Py_get_osfhandle_noraise(int fd) { void *handle; _Py_BEGIN_SUPPRESS_IPH handle = (void*)_get_osfhandle(fd); _Py_END_SUPPRESS_IPH return handle; } void* _Py_get_osfhandle(int fd) { void *handle = _Py_get_osfhandle_noraise(fd); if (handle == INVALID_HANDLE_VALUE) PyErr_SetFromErrno(PyExc_OSError); return handle; } int _Py_open_osfhandle_noraise(void *handle, int flags) { int fd; _Py_BEGIN_SUPPRESS_IPH fd = _open_osfhandle((intptr_t)handle, flags); _Py_END_SUPPRESS_IPH return fd; } int _Py_open_osfhandle(void *handle, int flags) { int fd = _Py_open_osfhandle_noraise(handle, flags); if (fd == -1) PyErr_SetFromErrno(PyExc_OSError); return fd; } #endif /* MS_WINDOWS */ int _Py_GetLocaleconvNumeric(struct lconv *lc, PyObject **decimal_point, PyObject **thousands_sep) { assert(decimal_point != NULL); assert(thousands_sep != NULL); #ifndef MS_WINDOWS int change_locale = 0; if ((strlen(lc->decimal_point) > 1 || ((unsigned char)lc->decimal_point[0]) > 127)) { change_locale = 1; } if ((strlen(lc->thousands_sep) > 1 || ((unsigned char)lc->thousands_sep[0]) > 127)) { change_locale = 1; } /* Keep a copy of the LC_CTYPE locale */ char *oldloc = NULL, *loc = NULL; if (change_locale) { oldloc = setlocale(LC_CTYPE, NULL); if (!oldloc) { PyErr_SetString(PyExc_RuntimeWarning, "failed to get LC_CTYPE locale"); return -1; } oldloc = _PyMem_Strdup(oldloc); if (!oldloc) { PyErr_NoMemory(); return -1; } loc = setlocale(LC_NUMERIC, NULL); if (loc != NULL && strcmp(loc, oldloc) == 0) { loc = NULL; } if (loc != NULL) { /* Only set the locale temporarily the LC_CTYPE locale if LC_NUMERIC locale is different than LC_CTYPE locale and decimal_point and/or thousands_sep are non-ASCII or longer than 1 byte */ setlocale(LC_CTYPE, loc); } } #define GET_LOCALE_STRING(ATTR) PyUnicode_DecodeLocale(lc->ATTR, NULL) #else /* MS_WINDOWS */ /* Use _W_* fields of Windows strcut lconv */ #define GET_LOCALE_STRING(ATTR) PyUnicode_FromWideChar(lc->_W_ ## ATTR, -1) #endif /* MS_WINDOWS */ int res = -1; *decimal_point = GET_LOCALE_STRING(decimal_point); if (*decimal_point == NULL) { goto done; } *thousands_sep = GET_LOCALE_STRING(thousands_sep); if (*thousands_sep == NULL) { goto done; } res = 0; done: #ifndef MS_WINDOWS if (loc != NULL) { setlocale(LC_CTYPE, oldloc); } PyMem_Free(oldloc); #endif return res; #undef GET_LOCALE_STRING } /* Our selection logic for which function to use is as follows: * 1. If close_range(2) is available, always prefer that; it's better for * contiguous ranges like this than fdwalk(3) which entails iterating over * the entire fd space and simply doing nothing for those outside the range. * 2. If closefrom(2) is available, we'll attempt to use that next if we're * closing up to sysconf(_SC_OPEN_MAX). * 2a. Fallback to fdwalk(3) if we're not closing up to sysconf(_SC_OPEN_MAX), * as that will be more performant if the range happens to have any chunk of * non-opened fd in the middle. * 2b. If fdwalk(3) isn't available, just do a plain close(2) loop. */ #ifdef HAVE_CLOSEFROM # define USE_CLOSEFROM #endif /* HAVE_CLOSEFROM */ #ifdef HAVE_FDWALK # define USE_FDWALK #endif /* HAVE_FDWALK */ #ifdef USE_FDWALK static int _fdwalk_close_func(void *lohi, int fd) { int lo = ((int *)lohi)[0]; int hi = ((int *)lohi)[1]; if (fd >= hi) { return 1; } else if (fd >= lo) { /* Ignore errors */ (void)close(fd); } return 0; } #endif /* USE_FDWALK */ /* Closes all file descriptors in [first, last], ignoring errors. */ void _Py_closerange(int first, int last) { first = Py_MAX(first, 0); _Py_BEGIN_SUPPRESS_IPH #ifdef HAVE_CLOSE_RANGE if (close_range(first, last, 0) == 0) { /* close_range() ignores errors when it closes file descriptors. * Possible reasons of an error return are lack of kernel support * or denial of the underlying syscall by a seccomp sandbox on Linux. * Fallback to other methods in case of any error. */ } else #endif /* HAVE_CLOSE_RANGE */ #ifdef USE_CLOSEFROM if (last >= sysconf(_SC_OPEN_MAX)) { /* Any errors encountered while closing file descriptors are ignored */ (void)closefrom(first); } else #endif /* USE_CLOSEFROM */ #ifdef USE_FDWALK { int lohi[2]; lohi[0] = first; lohi[1] = last + 1; fdwalk(_fdwalk_close_func, lohi); } #else { for (int i = first; i <= last; i++) { /* Ignore errors */ (void)close(i); } } #endif /* USE_FDWALK */ _Py_END_SUPPRESS_IPH } #ifndef MS_WINDOWS // Ticks per second used by clock() and times() functions. // See os.times() and time.process_time() implementations. int _Py_GetTicksPerSecond(long *ticks_per_second) { #if defined(HAVE_SYSCONF) && defined(_SC_CLK_TCK) long value = sysconf(_SC_CLK_TCK); if (value < 1) { return -1; } *ticks_per_second = value; #elif defined(HZ) assert(HZ >= 1); *ticks_per_second = HZ; #else // Magic fallback value; may be bogus *ticks_per_second = 60; #endif return 0; } #endif /* Check if a file descriptor is valid or not. Return 0 if the file descriptor is invalid, return non-zero otherwise. */ int _Py_IsValidFD(int fd) { /* dup() is faster than fstat(): fstat() can require input/output operations, whereas dup() doesn't. There is a low risk of EMFILE/ENFILE at Python startup. Problem: dup() doesn't check if the file descriptor is valid on some platforms. fcntl(fd, F_GETFD) is even faster, because it only checks the process table. It is preferred over dup() when available, since it cannot fail with the "too many open files" error (EMFILE). bpo-30225: On macOS Tiger, when stdout is redirected to a pipe and the other side of the pipe is closed, dup(1) succeed, whereas fstat(1, &st) fails with EBADF. FreeBSD has similar issue (bpo-32849). Only use dup() on Linux where dup() is enough to detect invalid FD (bpo-32849). */ if (fd < 0) { return 0; } #if defined(F_GETFD) && ( \ defined(__linux__) || \ defined(__APPLE__) || \ (defined(__wasm__) && !defined(__wasi__))) return fcntl(fd, F_GETFD) >= 0; #elif defined(__linux__) int fd2 = dup(fd); if (fd2 >= 0) { close(fd2); } return (fd2 >= 0); #elif defined(MS_WINDOWS) HANDLE hfile; _Py_BEGIN_SUPPRESS_IPH hfile = (HANDLE)_get_osfhandle(fd); _Py_END_SUPPRESS_IPH return (hfile != INVALID_HANDLE_VALUE && GetFileType(hfile) != FILE_TYPE_UNKNOWN); #else struct stat st; return (fstat(fd, &st) == 0); #endif }