Merged revisions 60441-60474 via svnmerge from

svn+ssh://pythondev@svn.python.org/python/trunk

........
  r60441 | christian.heimes | 2008-01-30 12:46:00 +0100 (Wed, 30 Jan 2008) | 1 line

  Removed unused var
........
  r60448 | christian.heimes | 2008-01-30 18:21:22 +0100 (Wed, 30 Jan 2008) | 1 line

  Fixed some references leaks in sys.
........
  r60450 | christian.heimes | 2008-01-30 19:58:29 +0100 (Wed, 30 Jan 2008) | 1 line

  The previous change was causing a segfault after multiple calls to Py_Initialize() and Py_Finalize().
........
  r60463 | raymond.hettinger | 2008-01-30 23:17:31 +0100 (Wed, 30 Jan 2008) | 1 line

  Update itertool recipes
........
  r60464 | christian.heimes | 2008-01-30 23:54:18 +0100 (Wed, 30 Jan 2008) | 1 line

  Bug #1234: Fixed semaphore errors on AIX 5.2
........
  r60469 | raymond.hettinger | 2008-01-31 02:38:15 +0100 (Thu, 31 Jan 2008) | 6 lines

  Fix defect in __ixor__ which would get the wrong
  answer if the input iterable had a duplicate element
  (two calls to toggle() reverse each other).  Borrow
  the correct code from sets.py.
........
  r60470 | raymond.hettinger | 2008-01-31 02:42:11 +0100 (Thu, 31 Jan 2008) | 1 line

  Missing return
........
  r60471 | jeffrey.yasskin | 2008-01-31 08:44:11 +0100 (Thu, 31 Jan 2008) | 4 lines

  Added more documentation on how mixed-mode arithmetic should be implemented. I
  also noticed and fixed a bug in Rational's forward operators (they were
  claiming all instances of numbers.Rational instead of just the concrete types).
........
This commit is contained in:
Christian Heimes 2008-01-31 14:31:45 +00:00
parent 4b8db419c2
commit 7b3ce6a17e
11 changed files with 275 additions and 60 deletions

View file

@ -511,5 +511,16 @@ which incur interpreter overhead. ::
"grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
def roundrobin(*iterables):
"roundrobin('abc', 'd', 'ef') --> 'a', 'd', 'e', 'b', 'f', 'c'"
# Recipe contributed by George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).next for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))

View file

@ -97,3 +97,144 @@ The numeric tower
3-argument form of :func:`pow`, and the bit-string operations: ``<<``,
``>>``, ``&``, ``^``, ``|``, ``~``. Provides defaults for :func:`float`,
:attr:`Rational.numerator`, and :attr:`Rational.denominator`.
Notes for type implementors
---------------------------
Implementors should be careful to make equal numbers equal and hash
them to the same values. This may be subtle if there are two different
extensions of the real numbers. For example, :class:`rational.Rational`
implements :func:`hash` as follows::
def __hash__(self):
if self.denominator == 1:
# Get integers right.
return hash(self.numerator)
# Expensive check, but definitely correct.
if self == float(self):
return hash(float(self))
else:
# Use tuple's hash to avoid a high collision rate on
# simple fractions.
return hash((self.numerator, self.denominator))
Adding More Numeric ABCs
~~~~~~~~~~~~~~~~~~~~~~~~
There are, of course, more possible ABCs for numbers, and this would
be a poor hierarchy if it precluded the possibility of adding
those. You can add ``MyFoo`` between :class:`Complex` and
:class:`Real` with::
class MyFoo(Complex): ...
MyFoo.register(Real)
Implementing the arithmetic operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to implement the arithmetic operations so that mixed-mode
operations either call an implementation whose author knew about the
types of both arguments, or convert both to the nearest built in type
and do the operation there. For subtypes of :class:`Integral`, this
means that :meth:`__add__` and :meth:`__radd__` should be defined as::
class MyIntegral(Integral):
def __add__(self, other):
if isinstance(other, MyIntegral):
return do_my_adding_stuff(self, other)
elif isinstance(other, OtherTypeIKnowAbout):
return do_my_other_adding_stuff(self, other)
else:
return NotImplemented
def __radd__(self, other):
if isinstance(other, MyIntegral):
return do_my_adding_stuff(other, self)
elif isinstance(other, OtherTypeIKnowAbout):
return do_my_other_adding_stuff(other, self)
elif isinstance(other, Integral):
return int(other) + int(self)
elif isinstance(other, Real):
return float(other) + float(self)
elif isinstance(other, Complex):
return complex(other) + complex(self)
else:
return NotImplemented
There are 5 different cases for a mixed-type operation on subclasses
of :class:`Complex`. I'll refer to all of the above code that doesn't
refer to ``MyIntegral`` and ``OtherTypeIKnowAbout`` as
"boilerplate". ``a`` will be an instance of ``A``, which is a subtype
of :class:`Complex` (``a : A <: Complex``), and ``b : B <:
Complex``. I'll consider ``a + b``:
1. If ``A`` defines an :meth:`__add__` which accepts ``b``, all is
well.
2. If ``A`` falls back to the boilerplate code, and it were to
return a value from :meth:`__add__`, we'd miss the possibility
that ``B`` defines a more intelligent :meth:`__radd__`, so the
boilerplate should return :const:`NotImplemented` from
:meth:`__add__`. (Or ``A`` may not implement :meth:`__add__` at
all.)
3. Then ``B``'s :meth:`__radd__` gets a chance. If it accepts
``a``, all is well.
4. If it falls back to the boilerplate, there are no more possible
methods to try, so this is where the default implementation
should live.
5. If ``B <: A``, Python tries ``B.__radd__`` before
``A.__add__``. This is ok, because it was implemented with
knowledge of ``A``, so it can handle those instances before
delegating to :class:`Complex`.
If ``A<:Complex`` and ``B<:Real`` without sharing any other knowledge,
then the appropriate shared operation is the one involving the built
in :class:`complex`, and both :meth:`__radd__` s land there, so ``a+b
== b+a``.
Because most of the operations on any given type will be very similar,
it can be useful to define a helper function which generates the
forward and reverse instances of any given operator. For example,
:class:`rational.Rational` uses::
def _operator_fallbacks(monomorphic_operator, fallback_operator):
def forward(a, b):
if isinstance(b, (int, long, Rational)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
"""a + b"""
return Rational(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
# ...

View file

@ -300,16 +300,6 @@ def pop(self):
self.discard(value)
return value
def toggle(self, value):
"""Return True if it was added, False if deleted."""
# XXX This implementation is not thread-safe
if value in self:
self.discard(value)
return False
else:
self.add(value)
return True
def clear(self):
"""This is slow (creates N new iterators!) but effective."""
try:
@ -330,9 +320,13 @@ def __iand__(self, c: Container):
return self
def __ixor__(self, it: Iterable):
# This calls toggle(), so if that is overridded, we call the override
if not isinstance(it, Set):
it = self._from_iterable(it)
for value in it:
self.toggle(it)
if value in self:
self.discard(value)
else:
self.add(value)
return self
def __isub__(self, it: Iterable):

View file

@ -291,7 +291,13 @@ def denominator(self):
# Concrete implementation of Real's conversion to float.
def __float__(self):
"""float(self) = self.numerator / self.denominator"""
"""float(self) = self.numerator / self.denominator
It's important that this conversion use the integer's "true"
division rather than casting one side to float before dividing
so that ratios of huge integers convert without overflowing.
"""
return self.numerator / self.denominator

View file

@ -178,16 +178,6 @@ def __str__(self):
else:
return '%s/%s' % (self.numerator, self.denominator)
""" XXX This section needs a lot more commentary
* Explain the typical sequence of checks, calls, and fallbacks.
* Explain the subtle reasons why this logic was needed.
* It is not clear how common cases are handled (for example, how
does the ratio of two huge integers get converted to a float
without overflowing the long-->float conversion.
"""
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
@ -195,10 +185,82 @@ def _operator_fallbacks(monomorphic_operator, fallback_operator):
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
In general, we want to implement the arithmetic operations so
that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both
to the nearest built in type and do the operation there. In
Rational, that means that we define __add__ and __radd__ as:
def __add__(self, other):
if isinstance(other, (int, Rational)):
# Do the real operation.
return Rational(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
# float and complex don't follow this protocol, and
# Rational knows about them, so special case them.
elif isinstance(other, float):
return float(self) + other
elif isinstance(other, complex):
return complex(self) + other
else:
# Let the other type take over.
return NotImplemented
def __radd__(self, other):
# radd handles more types than add because there's
# nothing left to fall back to.
if isinstance(other, RationalAbc):
return Rational(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
elif isinstance(other, Real):
return float(other) + float(self)
elif isinstance(other, Complex):
return complex(other) + complex(self)
else:
return NotImplemented
There are 5 different cases for a mixed-type addition on
Rational. I'll refer to all of the above code that doesn't
refer to Rational, float, or complex as "boilerplate". 'r'
will be an instance of Rational, which is a subtype of
RationalAbc (r : Rational <: RationalAbc), and b : B <:
Complex. The first three involve 'r + b':
1. If B <: Rational, int, float, or complex, we handle
that specially, and all is well.
2. If Rational falls back to the boilerplate code, and it
were to return a value from __add__, we'd miss the
possibility that B defines a more intelligent __radd__,
so the boilerplate should return NotImplemented from
__add__. In particular, we don't handle RationalAbc
here, even though we could get an exact answer, in case
the other type wants to do something special.
3. If B <: Rational, Python tries B.__radd__ before
Rational.__add__. This is ok, because it was
implemented with knowledge of Rational, so it can
handle those instances before delegating to Real or
Complex.
The next two situations describe 'b + r'. We assume that b
didn't know about Rational in its implementation, and that it
uses similar boilerplate code:
4. If B <: RationalAbc, then __radd_ converts both to the
builtin rational type (hey look, that's us) and
proceeds.
5. Otherwise, __radd__ tries to find the nearest common
base ABC, and fall back to its builtin type. Since this
class doesn't subclass a concrete type, there's no
implementation to fall back to, so we need to try as
hard as possible to return an actual value, or the user
will get a TypeError.
"""
def forward(a, b):
if isinstance(b, RationalAbc):
# Includes ints.
if isinstance(b, (int, Rational)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)

View file

@ -106,15 +106,9 @@ static PyStructSequence_Desc floatinfo_desc = {
PyObject *
PyFloat_GetInfo(void)
{
static PyObject* floatinfo;
PyObject* floatinfo;
int pos = 0;
if (floatinfo != NULL) {
Py_INCREF(floatinfo);
return floatinfo;
}
PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
floatinfo = PyStructSequence_New(&FloatInfoType);
if (floatinfo == NULL) {
return NULL;
@ -143,8 +137,6 @@ PyFloat_GetInfo(void)
Py_CLEAR(floatinfo);
return NULL;
}
Py_INCREF(floatinfo);
return floatinfo;
}
@ -1601,6 +1593,9 @@ _PyFloat_Init(void)
/* Initialize floating point repr */
_PyFloat_DigitsInit();
#endif
/* Init float info */
if (FloatInfoType.tp_name == 0)
PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
}
void

View file

@ -371,6 +371,8 @@ static char* sys_deletes[] = {
"path", "argv", "ps1", "ps2",
"last_type", "last_value", "last_traceback",
"path_hooks", "path_importer_cache", "meta_path",
/* misc stuff */
"flags", "float_info",
NULL
};

View file

@ -482,7 +482,7 @@ r_object(RFILE *p)
{
/* NULL is a valid return value, it does not necessarily means that
an exception is set. */
PyObject *v, *v2, *v3;
PyObject *v, *v2;
long i, n;
int type = r_byte(p);
PyObject *retval;

View file

@ -1131,8 +1131,6 @@ make_flags(void)
if (PyErr_Occurred()) {
return NULL;
}
Py_INCREF(seq);
return seq;
}
@ -1146,6 +1144,11 @@ _PySys_Init(void)
if (m == NULL)
return NULL;
sysdict = PyModule_GetDict(m);
#define SET_SYS_FROM_STRING(key, value) \
v = value; \
if (v != NULL) \
PyDict_SetItemString(sysdict, key, v); \
Py_XDECREF(v)
{
/* XXX: does this work on Win/Win64? (see posix_fstat) */
@ -1165,19 +1168,16 @@ _PySys_Init(void)
PyDict_GetItemString(sysdict, "displayhook"));
PyDict_SetItemString(sysdict, "__excepthook__",
PyDict_GetItemString(sysdict, "excepthook"));
PyDict_SetItemString(sysdict, "version",
v = PyUnicode_FromString(Py_GetVersion()));
Py_XDECREF(v);
PyDict_SetItemString(sysdict, "hexversion",
v = PyLong_FromLong(PY_VERSION_HEX));
Py_XDECREF(v);
SET_SYS_FROM_STRING("version",
PyUnicode_FromString(Py_GetVersion()));
SET_SYS_FROM_STRING("hexversion",
PyLong_FromLong(PY_VERSION_HEX));
svnversion_init();
v = Py_BuildValue("(UUU)", "CPython", branch, svn_revision);
PyDict_SetItemString(sysdict, "subversion", v);
Py_XDECREF(v);
PyDict_SetItemString(sysdict, "dont_write_bytecode",
v = PyBool_FromLong(Py_DontWriteBytecodeFlag));
Py_XDECREF(v);
SET_SYS_FROM_STRING("subversion",
Py_BuildValue("(UUU)", "CPython", branch,
svn_revision));
SET_SYS_FROM_STRING("dont_write_bytecode",
PyBool_FromLong(Py_DontWriteBytecodeFlag));
/*
* These release level checks are mutually exclusive and cover
* the field, so don't get too fancy with the pre-processor!
@ -1192,12 +1192,6 @@ _PySys_Init(void)
s = "final";
#endif
#define SET_SYS_FROM_STRING(key, value) \
v = value; \
if (v != NULL) \
PyDict_SetItemString(sysdict, key, v); \
Py_XDECREF(v)
SET_SYS_FROM_STRING("version_info",
Py_BuildValue("iiiUi", PY_MAJOR_VERSION,
PY_MINOR_VERSION,
@ -1244,7 +1238,6 @@ _PySys_Init(void)
SET_SYS_FROM_STRING("winver",
PyUnicode_FromString(PyWin_DLLVersionString));
#endif
#undef SET_SYS_FROM_STRING
if (warnoptions == NULL) {
warnoptions = PyList_New(0);
}
@ -1255,12 +1248,14 @@ _PySys_Init(void)
PyDict_SetItemString(sysdict, "warnoptions", warnoptions);
}
PyStructSequence_InitType(&FlagsType, &flags_desc);
PyDict_SetItemString(sysdict, "flags", make_flags());
if (FlagsType.tp_name == 0)
PyStructSequence_InitType(&FlagsType, &flags_desc);
SET_SYS_FROM_STRING("flags", make_flags());
/* prevent user from creating new instances */
FlagsType.tp_init = NULL;
FlagsType.tp_new = NULL;
#undef SET_SYS_FROM_STRING
if (PyErr_Occurred())
return NULL;
return m;

8
configure vendored
View file

@ -1,5 +1,5 @@
#! /bin/sh
# From configure.in Revision: 59829 .
# From configure.in Revision: 60144 .
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.61 for python 3.0.
#
@ -14600,6 +14600,12 @@ _ACEOF
SunOS/5.8)
cat >>confdefs.h <<\_ACEOF
#define HAVE_BROKEN_POSIX_SEMAPHORES 1
_ACEOF
;;
AIX/5)
cat >>confdefs.h <<\_ACEOF
#define HAVE_BROKEN_POSIX_SEMAPHORES 1
_ACEOF
;;

View file

@ -1965,6 +1965,9 @@ if test "$posix_threads" = "yes"; then
SunOS/5.8) AC_DEFINE(HAVE_BROKEN_POSIX_SEMAPHORES, 1,
Define if the Posix semaphores do not work on your system)
;;
AIX/5) AC_DEFINE(HAVE_BROKEN_POSIX_SEMAPHORES, 1,
Define if the Posix semaphores do not work on your system)
;;
esac
AC_MSG_CHECKING(if PTHREAD_SCOPE_SYSTEM is supported)