gimp/plug-ins/common/gauss_iir.c
Sven Neumann 811d30548c removed COMPAT_CRUFT.
2000-08-22  Sven Neumann  <sven@gimp.org>

        * plug-ins/common/*.c: removed COMPAT_CRUFT.
2000-08-22 01:26:57 +00:00

905 lines
24 KiB
C

/* The GIMP -- an image manipulation program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gtk/gtk.h>
#include <libgimp/gimp.h>
#include <libgimp/gimpui.h>
#include "libgimp/stdplugins-intl.h"
typedef struct
{
gdouble radius;
gint horizontal;
gint vertical;
} BlurValues;
typedef struct
{
gdouble horizontal;
gdouble vertical;
} Blur2Values;
typedef struct
{
GtkWidget *size;
gint run;
} BlurInterface;
/* Declare local functions.
*/
static void query (void);
static void run (gchar *name,
gint nparams,
GimpParam *param,
gint *nreturn_vals,
GimpParam **return_vals);
static void gauss_iir (GimpDrawable *drawable,
gdouble horizontal,
gdouble vertical);
/*
* Gaussian blur interface
*/
static gint gauss_iir_dialog (void);
static gint gauss_iir2_dialog (gint32 image_ID,
GimpDrawable *drawable);
/*
* Gaussian blur helper functions
*/
static void find_constants (gdouble n_p[],
gdouble n_m[],
gdouble d_p[],
gdouble d_m[],
gdouble bd_p[],
gdouble bd_m[],
gdouble std_dev);
static void transfer_pixels (gdouble * src1,
gdouble * src2,
guchar * dest,
gint bytes,
gint width);
static void gauss_ok_callback (GtkWidget *widget,
gpointer data);
GimpPlugInInfo PLUG_IN_INFO =
{
NULL, /* init_proc */
NULL, /* quit_proc */
query, /* query_proc */
run, /* run_proc */
};
static BlurValues bvals =
{
5.0, /* radius */
TRUE, /* horizontal blur */
TRUE /* vertical blur */
};
static Blur2Values b2vals =
{
5.0, /* x radius */
5.0 /* y radius */
};
static BlurInterface bint =
{
FALSE /* run */
};
MAIN ()
static void
query (void)
{
static GimpParamDef args[] =
{
{ GIMP_PDB_INT32, "run_mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image (unused)" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "radius", "Radius of gaussian blur (in pixels > 1.0)" },
{ GIMP_PDB_INT32, "horizontal", "Blur in horizontal direction" },
{ GIMP_PDB_INT32, "vertical", "Blur in vertical direction" }
};
static gint nargs = sizeof (args) / sizeof (args[0]);
static GimpParamDef args2[] =
{
{ GIMP_PDB_INT32, "run_mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "horizontal", "Horizontal radius of gaussian blur (in pixels)" },
{ GIMP_PDB_FLOAT, "vertical", "Vertical radius of gaussian blur (in pixels)" }
};
static gint nargs2 = sizeof (args2) / sizeof (args2[0]);
gimp_install_procedure ("plug_in_gauss_iir",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The IIR gaussian blurring works best for "
"large radius values and for images which are not "
"computer-generated. Values for radius less than "
"1.0 are invalid as they will generate spurious "
"results.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
nargs, 0,
args, NULL);
gimp_install_procedure ("plug_in_gauss_iir2",
"Applies a gaussian blur to the specified drawable.",
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"This radius can be specified indepently on for the "
"horizontal and the vertical direction. The IIR "
"gaussian blurring works best for large radius "
"values and for images which are not "
"computer-generated. Values for radii less than "
"1.0 would generate spurious results. Therefore "
"they are interpreted as 0.0, which means that the "
"computation for this orientation is skipped.",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"1995-2000",
N_("<Image>/Filters/Blur/Gaussian Blur (IIR)..."),
"RGB*, GRAY*",
GIMP_PLUGIN,
nargs2, 0,
args2, NULL);
}
static void
run (gchar *name,
gint nparams,
GimpParam *param,
gint *nreturn_vals,
GimpParam **return_vals)
{
static GimpParam values[1];
gint32 image_ID;
GimpDrawable *drawable;
GimpRunModeType run_mode;
GimpPDBStatusType status = GIMP_PDB_SUCCESS;
run_mode = param[0].data.d_int32;
*nreturn_vals = 1;
*return_vals = values;
values[0].type = GIMP_PDB_STATUS;
values[0].data.d_status = status;
/* Get the specified image and drawable */
image_ID = param[1].data.d_image;
drawable = gimp_drawable_get (param[2].data.d_drawable);
if (strcmp (name, "plug_in_gauss_iir") == 0) /* the old-fashioned way of calling it */
{
switch (run_mode)
{
case GIMP_RUN_INTERACTIVE:
INIT_I18N_UI();
/* Possibly retrieve data */
gimp_get_data ("plug_in_gauss_iir", &bvals);
/* First acquire information with a dialog */
if (! gauss_iir_dialog ())
return;
break;
case GIMP_RUN_NONINTERACTIVE:
/* Make sure all the arguments are there! */
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.radius = param[3].data.d_float;
bvals.horizontal = (param[4].data.d_int32) ? TRUE : FALSE;
bvals.vertical = (param[5].data.d_int32) ? TRUE : FALSE;
}
if (status == GIMP_PDB_SUCCESS && (bvals.radius < 1.0))
status = GIMP_PDB_CALLING_ERROR;
INIT_I18N();
break;
case GIMP_RUN_WITH_LAST_VALS:
INIT_I18N();
/* Possibly retrieve data */
gimp_get_data ("plug_in_gauss_iir", &bvals);
break;
default:
break;
}
if (!(bvals.horizontal || bvals.vertical))
{
gimp_message ( _("gauss_iir: you must specify either horizontal or vertical (or both)"));
status = GIMP_PDB_CALLING_ERROR;
}
}
else if (strcmp (name, "plug_in_gauss_iir2") == 0)
{
switch (run_mode)
{
case GIMP_RUN_INTERACTIVE:
INIT_I18N_UI();
/* Possibly retrieve data */
gimp_get_data ("plug_in_gauss_iir2", &b2vals);
/* First acquire information with a dialog */
if (! gauss_iir2_dialog (image_ID, drawable))
return;
break;
case GIMP_RUN_NONINTERACTIVE:
INIT_I18N();
/* Make sure all the arguments are there! */
if (nparams != 5)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
b2vals.horizontal = param[3].data.d_float;
b2vals.vertical = param[4].data.d_float;
}
if (status == GIMP_PDB_SUCCESS && (b2vals.horizontal < 1.0 && b2vals.vertical < 1.0))
status = GIMP_PDB_CALLING_ERROR;
break;
case GIMP_RUN_WITH_LAST_VALS:
INIT_I18N();
/* Possibly retrieve data */
gimp_get_data ("plug_in_gauss_iir2", &b2vals);
break;
default:
break;
}
}
else
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
/* Make sure that the drawable is gray or RGB color */
if (gimp_drawable_is_rgb (drawable->id) ||
gimp_drawable_is_gray (drawable->id))
{
gimp_progress_init ( _("IIR Gaussian Blur"));
/* set the tile cache size so that the gaussian blur works well */
gimp_tile_cache_ntiles (2 * (MAX (drawable->width, drawable->height) /
gimp_tile_width () + 1));
/* run the gaussian blur */
if (strcmp (name, "plug_in_gauss_iir") == 0)
{
gauss_iir (drawable, (bvals.horizontal ? bvals.radius : 0.0),
(bvals.vertical ? bvals.radius : 0.0));
/* Store data */
if (run_mode == GIMP_RUN_INTERACTIVE)
gimp_set_data ("plug_in_gauss_iir", &bvals, sizeof (BlurValues));
}
else
{
gauss_iir (drawable, b2vals.horizontal, b2vals.vertical);
/* Store data */
if (run_mode == GIMP_RUN_INTERACTIVE)
gimp_set_data ("plug_in_gauss_iir2", &b2vals, sizeof (Blur2Values));
}
if (run_mode != GIMP_RUN_NONINTERACTIVE)
gimp_displays_flush ();
}
else
{
gimp_message ( "gauss_iir: cannot operate on indexed color images");
status = GIMP_PDB_EXECUTION_ERROR;
}
gimp_drawable_detach (drawable);
}
values[0].data.d_status = status;
}
static gint
gauss_iir_dialog (void)
{
GtkWidget *dlg;
GtkWidget *label;
GtkWidget *spinbutton;
GtkObject *adj;
GtkWidget *toggle;
GtkWidget *frame;
GtkWidget *vbox;
GtkWidget *hbox;
gimp_ui_init ("gauss_iir", FALSE);
dlg = gimp_dialog_new (_("IIR Gaussian Blur"), "gauss_iir",
gimp_standard_help_func, "filters/gauss_iir.html",
GTK_WIN_POS_MOUSE,
FALSE, TRUE, FALSE,
_("OK"), gauss_ok_callback,
NULL, NULL, NULL, TRUE, FALSE,
_("Cancel"), gtk_widget_destroy,
NULL, 1, NULL, FALSE, TRUE,
NULL);
gtk_signal_connect (GTK_OBJECT (dlg), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit),
NULL);
/* parameter settings */
frame = gtk_frame_new (_("Parameter Settings"));
gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_ETCHED_IN);
gtk_container_set_border_width (GTK_CONTAINER (frame), 6);
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (dlg)->vbox), frame, TRUE, TRUE, 0);
vbox = gtk_vbox_new (FALSE, 2);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 4);
gtk_container_add (GTK_CONTAINER (frame), vbox);
toggle = gtk_check_button_new_with_label (_("Blur Horizontally"));
gtk_box_pack_start (GTK_BOX (vbox), toggle, FALSE, FALSE, 0);
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
(GtkSignalFunc) gimp_toggle_button_update,
&bvals.horizontal);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle), bvals.horizontal);
gtk_widget_show (toggle);
toggle = gtk_check_button_new_with_label (_("Blur Vertically"));
gtk_box_pack_start (GTK_BOX (vbox), toggle, FALSE, FALSE, 0);
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
(GtkSignalFunc) gimp_toggle_button_update,
&bvals.vertical);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle), bvals.vertical);
gtk_widget_show (toggle);
hbox = gtk_hbox_new (FALSE, 4);
gtk_box_pack_start (GTK_BOX (vbox), hbox, TRUE, TRUE, 0);
label = gtk_label_new (_("Blur Radius:"));
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, FALSE, 0);
gtk_widget_show (label);
spinbutton = gimp_spin_button_new (&adj,
bvals.radius, 1.0, GIMP_MAX_IMAGE_SIZE,
1.0, 5.0, 0, 1, 2);
gtk_box_pack_start (GTK_BOX (hbox), spinbutton, TRUE, TRUE, 0);
gtk_signal_connect (GTK_OBJECT (adj), "value_changed",
GTK_SIGNAL_FUNC (gimp_double_adjustment_update),
&bvals.radius);
gtk_widget_show (spinbutton);
gtk_widget_show (hbox);
gtk_widget_show (vbox);
gtk_widget_show (frame);
gtk_widget_show (dlg);
gtk_main ();
gdk_flush ();
return bint.run;
}
static gint
gauss_iir2_dialog (gint32 image_ID,
GimpDrawable *drawable)
{
GtkWidget *dlg;
GtkWidget *frame;
GtkWidget *size;
GimpUnit unit;
gdouble xres;
gdouble yres;
gimp_ui_init ("gauss_iir2", FALSE);
dlg = gimp_dialog_new (_("IIR Gaussian Blur"), "gauss_iir",
gimp_standard_help_func, "filters/gauss_iir.html",
GTK_WIN_POS_MOUSE,
FALSE, TRUE, FALSE,
_("OK"), gauss_ok_callback,
NULL, NULL, NULL, TRUE, FALSE,
_("Cancel"), gtk_widget_destroy,
NULL, 1, NULL, FALSE, TRUE,
NULL);
gtk_signal_connect (GTK_OBJECT (dlg), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit),
NULL);
/* parameter settings */
frame = gtk_frame_new (_("Blur Radius"));
gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_ETCHED_IN);
gtk_container_set_border_width (GTK_CONTAINER (frame), 6);
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (dlg)->vbox), frame, TRUE, TRUE, 0);
/* Get the image resolution and unit */
gimp_image_get_resolution (image_ID, &xres, &yres);
unit = gimp_image_get_unit (image_ID);
size = gimp_coordinates_new (unit, "%a", TRUE, FALSE, 75,
GIMP_SIZE_ENTRY_UPDATE_SIZE,
b2vals.horizontal == b2vals.vertical,
FALSE,
_("Horizontal:"), b2vals.horizontal, xres,
0, 8 * MAX (drawable->width, drawable->height),
0, 0,
_("Vertical:"), b2vals.vertical, yres,
0, 8 * MAX (drawable->width, drawable->height),
0, 0);
gtk_container_set_border_width (GTK_CONTAINER (size), 4);
gtk_container_add (GTK_CONTAINER (frame), size);
gtk_widget_show (size);
gtk_widget_show (frame);
gtk_widget_show (dlg);
bint.size = size;
gtk_main ();
gdk_flush ();
return bint.run;
}
static void
gauss_ok_callback (GtkWidget *widget,
gpointer data)
{
b2vals.horizontal =
gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (bint.size), 0);
b2vals.vertical =
gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (bint.size), 1);
bint.run = TRUE;
gtk_widget_destroy (GTK_WIDGET (data));
}
/* Convert from separated to premultiplied alpha, on a single scan line. */
static void
multiply_alpha (guchar *buf,
gint width,
gint bytes)
{
gint i, j;
gdouble alpha;
for (i = 0; i < width * bytes; i += bytes)
{
alpha = buf[i + bytes - 1] * (1.0 / 255.0);
for (j = 0; j < bytes - 1; j++)
buf[i + j] *= alpha;
}
}
/* Convert from premultiplied to separated alpha, on a single scan
line. */
static void
separate_alpha (guchar *buf,
gint width,
gint bytes)
{
gint i, j;
guchar alpha;
gdouble recip_alpha;
gint new_val;
for (i = 0; i < width * bytes; i += bytes)
{
alpha = buf[i + bytes - 1];
if (alpha != 0 && alpha != 255)
{
recip_alpha = 255.0 / alpha;
for (j = 0; j < bytes - 1; j++)
{
new_val = buf[i + j] * recip_alpha;
buf[i + j] = MIN (255, new_val);
}
}
}
}
static void
gauss_iir (GimpDrawable *drawable,
gdouble horz,
gdouble vert)
{
GimpPixelRgn src_rgn, dest_rgn;
gint width, height;
gint bytes;
gint has_alpha;
guchar *dest;
guchar *src, *sp_p, *sp_m;
gdouble n_p[5], n_m[5];
gdouble d_p[5], d_m[5];
gdouble bd_p[5], bd_m[5];
gdouble *val_p, *val_m, *vp, *vm;
gint x1, y1, x2, y2;
gint i, j;
gint row, col, b;
gint terms;
gint progress, max_progress;
gint initial_p[4];
gint initial_m[4];
guchar *guc_tmp1, *guc_tmp2;
gint *gi_tmp1, *gi_tmp2;
gdouble std_dev;
gimp_drawable_mask_bounds (drawable->id, &x1, &y1, &x2, &y2);
if (horz < 1.0 && vert < 1.0)
return;
width = (x2 - x1);
height = (y2 - y1);
bytes = drawable->bpp;
has_alpha = gimp_drawable_has_alpha(drawable->id);
val_p = g_new (gdouble, MAX (width, height) * bytes);
val_m = g_new (gdouble, MAX (width, height) * bytes);
src = g_new (guchar, MAX (width, height) * bytes);
dest = g_new (guchar, MAX (width, height) * bytes);
gimp_pixel_rgn_init (&src_rgn, drawable, 0, 0, drawable->width, drawable->height, FALSE, FALSE);
gimp_pixel_rgn_init (&dest_rgn, drawable, 0, 0, drawable->width, drawable->height, TRUE, TRUE);
progress = 0;
max_progress = (horz < 1.0 ) ? 0 : width * height * horz;
max_progress += (vert < 1.0 ) ? 0 : width * height * vert;
/* First the vertical pass */
if (vert >= 1.0)
{
vert = fabs (vert) + 1.0;
std_dev = sqrt (-(vert * vert) / (2 * log (1.0 / 255.0)));
/* derive the constants for calculating the gaussian from the std dev */
find_constants (n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
for (col = 0; col < width; col++)
{
memset(val_p, 0, height * bytes * sizeof (gdouble));
memset(val_m, 0, height * bytes * sizeof (gdouble));
gimp_pixel_rgn_get_col (&src_rgn, src, col + x1, y1, (y2 - y1));
if (has_alpha)
multiply_alpha (src, height, bytes);
sp_p = src;
sp_m = src + (height - 1) * bytes;
vp = val_p;
vm = val_m + (height - 1) * bytes;
/* Set up the first vals */
#ifndef ORIGINAL_READABLE_CODE
for(guc_tmp1 = sp_p, guc_tmp2 = sp_m,
gi_tmp1 = initial_p, gi_tmp2 = initial_m;
(guc_tmp1 - sp_p) < bytes;)
{
*gi_tmp1++ = *guc_tmp1++;
*gi_tmp2++ = *guc_tmp2++;
}
#else
for (i = 0; i < bytes; i++)
{
initial_p[i] = sp_p[i];
initial_m[i] = sp_m[i];
}
#endif
for (row = 0; row < height; row++)
{
gdouble *vpptr, *vmptr;
terms = (row < 4) ? row : 4;
for (b = 0; b < bytes; b++)
{
vpptr = vp + b; vmptr = vm + b;
for (i = 0; i <= terms; i++)
{
*vpptr += n_p[i] * sp_p[(-i * bytes) + b] -
d_p[i] * vp[(-i * bytes) + b];
*vmptr += n_m[i] * sp_m[(i * bytes) + b] -
d_m[i] * vm[(i * bytes) + b];
}
for (j = i; j <= 4; j++)
{
*vpptr += (n_p[j] - bd_p[j]) * initial_p[b];
*vmptr += (n_m[j] - bd_m[j]) * initial_m[b];
}
}
sp_p += bytes;
sp_m -= bytes;
vp += bytes;
vm -= bytes;
}
transfer_pixels (val_p, val_m, dest, bytes, height);
if (has_alpha && !horz)
separate_alpha (dest, height, bytes);
gimp_pixel_rgn_set_col (&dest_rgn, dest, col + x1, y1, (y2 - y1));
progress += height * vert;
if ((col % 5) == 0)
gimp_progress_update ((double) progress / (double) max_progress);
}
/* prepare for the horizontal pass */
gimp_pixel_rgn_init (&src_rgn, drawable, 0, 0, drawable->width, drawable->height, FALSE, TRUE);
}
/* Now the horizontal pass */
if (horz >= 1.0)
{
horz = fabs (horz) + 1.0;
if (horz != vert)
{
std_dev = sqrt (-(horz * horz) / (2 * log (1.0 / 255.0)));
/* derive the constants for calculating the gaussian from the std dev */
find_constants (n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
}
for (row = 0; row < height; row++)
{
memset(val_p, 0, width * bytes * sizeof (gdouble));
memset(val_m, 0, width * bytes * sizeof (gdouble));
gimp_pixel_rgn_get_row (&src_rgn, src, x1, row + y1, (x2 - x1));
if (has_alpha && !vert)
multiply_alpha (src, height, bytes);
sp_p = src;
sp_m = src + (width - 1) * bytes;
vp = val_p;
vm = val_m + (width - 1) * bytes;
/* Set up the first vals */
#ifndef ORIGINAL_READABLE_CODE
for(guc_tmp1 = sp_p, guc_tmp2 = sp_m,
gi_tmp1 = initial_p, gi_tmp2 = initial_m;
(guc_tmp1 - sp_p) < bytes;)
{
*gi_tmp1++ = *guc_tmp1++;
*gi_tmp2++ = *guc_tmp2++;
}
#else
for (i = 0; i < bytes; i++)
{
initial_p[i] = sp_p[i];
initial_m[i] = sp_m[i];
}
#endif
for (col = 0; col < width; col++)
{
gdouble *vpptr, *vmptr;
terms = (col < 4) ? col : 4;
for (b = 0; b < bytes; b++)
{
vpptr = vp + b; vmptr = vm + b;
for (i = 0; i <= terms; i++)
{
*vpptr += n_p[i] * sp_p[(-i * bytes) + b] -
d_p[i] * vp[(-i * bytes) + b];
*vmptr += n_m[i] * sp_m[(i * bytes) + b] -
d_m[i] * vm[(i * bytes) + b];
}
for (j = i; j <= 4; j++)
{
*vpptr += (n_p[j] - bd_p[j]) * initial_p[b];
*vmptr += (n_m[j] - bd_m[j]) * initial_m[b];
}
}
sp_p += bytes;
sp_m -= bytes;
vp += bytes;
vm -= bytes;
}
transfer_pixels (val_p, val_m, dest, bytes, width);
if (has_alpha)
separate_alpha (dest, width, bytes);
gimp_pixel_rgn_set_row (&dest_rgn, dest, x1, row + y1, (x2 - x1));
progress += width * horz;
if ((row % 5) == 0)
gimp_progress_update ((double) progress / (double) max_progress);
}
}
/* merge the shadow, update the drawable */
gimp_drawable_flush (drawable);
gimp_drawable_merge_shadow (drawable->id, TRUE);
gimp_drawable_update (drawable->id, x1, y1, (x2 - x1), (y2 - y1));
/* free up buffers */
g_free (val_p);
g_free (val_m);
g_free (src);
g_free (dest);
}
static void
transfer_pixels (gdouble *src1,
gdouble *src2,
guchar *dest,
gint bytes,
gint width)
{
gint b;
gint bend = bytes * width;
gdouble sum;
for(b = 0; b < bend; b++)
{
sum = *src1++ + *src2++;
if (sum > 255) sum = 255;
else if(sum < 0) sum = 0;
*dest++ = (guchar) sum;
}
}
static void
find_constants (gdouble n_p[],
gdouble n_m[],
gdouble d_p[],
gdouble d_m[],
gdouble bd_p[],
gdouble bd_m[],
gdouble std_dev)
{
gint i;
gdouble constants [8];
gdouble div;
/* The constants used in the implemenation of a casual sequence
* using a 4th order approximation of the gaussian operator
*/
div = sqrt(2 * G_PI) * std_dev;
constants [0] = -1.783 / std_dev;
constants [1] = -1.723 / std_dev;
constants [2] = 0.6318 / std_dev;
constants [3] = 1.997 / std_dev;
constants [4] = 1.6803 / div;
constants [5] = 3.735 / div;
constants [6] = -0.6803 / div;
constants [7] = -0.2598 / div;
n_p [0] = constants[4] + constants[6];
n_p [1] = exp (constants[1]) *
(constants[7] * sin (constants[3]) -
(constants[6] + 2 * constants[4]) * cos (constants[3])) +
exp (constants[0]) *
(constants[5] * sin (constants[2]) -
(2 * constants[6] + constants[4]) * cos (constants[2]));
n_p [2] = 2 * exp (constants[0] + constants[1]) *
((constants[4] + constants[6]) * cos (constants[3]) * cos (constants[2]) -
constants[5] * cos (constants[3]) * sin (constants[2]) -
constants[7] * cos (constants[2]) * sin (constants[3])) +
constants[6] * exp (2 * constants[0]) +
constants[4] * exp (2 * constants[1]);
n_p [3] = exp (constants[1] + 2 * constants[0]) *
(constants[7] * sin (constants[3]) - constants[6] * cos (constants[3])) +
exp (constants[0] + 2 * constants[1]) *
(constants[5] * sin (constants[2]) - constants[4] * cos (constants[2]));
n_p [4] = 0.0;
d_p [0] = 0.0;
d_p [1] = -2 * exp (constants[1]) * cos (constants[3]) -
2 * exp (constants[0]) * cos (constants[2]);
d_p [2] = 4 * cos (constants[3]) * cos (constants[2]) * exp (constants[0] + constants[1]) +
exp (2 * constants[1]) + exp (2 * constants[0]);
d_p [3] = -2 * cos (constants[2]) * exp (constants[0] + 2 * constants[1]) -
2 * cos (constants[3]) * exp (constants[1] + 2 * constants[0]);
d_p [4] = exp (2 * constants[0] + 2 * constants[1]);
#ifndef ORIGINAL_READABLE_CODE
memcpy(d_m, d_p, 5 * sizeof(gdouble));
#else
for (i = 0; i <= 4; i++)
d_m [i] = d_p [i];
#endif
n_m[0] = 0.0;
for (i = 1; i <= 4; i++)
n_m [i] = n_p[i] - d_p[i] * n_p[0];
{
gdouble sum_n_p, sum_n_m, sum_d;
gdouble a, b;
sum_n_p = 0.0;
sum_n_m = 0.0;
sum_d = 0.0;
for (i = 0; i <= 4; i++)
{
sum_n_p += n_p[i];
sum_n_m += n_m[i];
sum_d += d_p[i];
}
#ifndef ORIGINAL_READABLE_CODE
sum_d++;
a = sum_n_p / sum_d;
b = sum_n_m / sum_d;
#else
a = sum_n_p / (1 + sum_d);
b = sum_n_m / (1 + sum_d);
#endif
for (i = 0; i <= 4; i++)
{
bd_p[i] = d_p[i] * a;
bd_m[i] = d_m[i] * b;
}
}
}