gimp/plug-ins/unsharp/unsharp.c
Sven Neumann 979bab8ddc added dots to all menu entries of interactive plug-ins and did the usual
action area fixes on lots of them



--Sven
1999-11-23 23:49:45 +00:00

903 lines
25 KiB
C

/* $Id$
*
* unsharp.c 0.8 -- This is a plug-in for the GIMP 1.0
* http://www.steppe.com/~winston/gimp/unsharp.html
*
* Copyright (C) 1999 Winston Chang
* <wchang3@students.wisc.edu>
* <winston@steppe.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "libgimp/gimp.h"
#include "gtk/gtk.h"
#include "dialog_f.h"
#include "dialog_i.h"
#define PLUG_IN_VERSION "0.8"
/* to show both pretty unoptimized code and ugly optimized code blocks
There's really no reason to define this, unless you want to see how
much pointer aritmetic can speed things up. I find that it is about
45% faster with the optimized code. */
/* #define READABLE_CODE */
/* uncomment this line to get a rough feel of how long the
plug-in takes to run */
/* #define TIMER */
#ifdef TIMER
#include <sys/time.h>
#include <unistd.h>
static void timerstart();
static void timerstop();
static struct timeval time_start,time_stop;
#endif
typedef struct {
gdouble radius;
gdouble amount;
gint threshold;
} UnsharpMaskParams;
typedef struct {
gint run;
} UnsharpMaskInterface;
/* local function prototypes */
static inline void blur_line(gdouble* ctable, gdouble* cmatrix, gint cmatrix_length,
guchar* cur_col, guchar* dest_col,
gint y, glong bytes);
static int gen_convolve_matrix(double std_dev, double** cmatrix);
static gdouble* gen_lookup_table(gdouble* cmatrix, gint cmatrix_length);
static inline gint round2int(gdouble i);
static void unsharp_region (GPixelRgn srcPTR, GPixelRgn dstPTR,
gint width, gint height, gint bytes,
gdouble radius, gdouble amount,
gint x1, gint x2, gint y1, gint y2);
static void query(void);
static void run (gchar *name,
gint nparams,
GParam *param,
gint *nreturn_vals,
GParam **return_vals);
static void unsharp_mask(GDrawable *drawable, gint radius, gdouble amount);
static void unsharp_cancel_callback (GtkWidget *widget, gpointer data);
static void unsharp_ok_callback (GtkWidget *widget, gpointer data);
static gint unsharp_mask_dialog();
/* preview shit -- not finished yet */
#undef PREVIEW
#ifdef PREVIEW
static void preview_scroll_callback(void);
static void preview_init(void);
static void preview_exit(void);
static void preview_update(void);
static void dialog_create_ivalue(char *title, /* I - Label for control */
GtkTable *table, /* I - Table container to use */
int row, /* I - Row # for container */
gint *value, /* I - Value holder */
int left, /* I - Minimum value for slider */
int right); /* I - Maximum value for slider */
static GtkWidget* preview;
static int preview_width; /* Width of preview widget */
static int preview_height; /* Height of preview widget */
static int preview_x1; /* Upper-left X of preview */
static int preview_y1; /* Upper-left Y of preview */
static int preview_x2; /* Lower-right X of preview */
static int preview_y2; /* Lower-right Y of preview */
static int sel_width; /* Selection width */
static int sel_height; /* Selection height */
static GtkObject *hscroll_data; /* Horizontal scrollbar data */
static GtkObject *vscroll_data; /* Vertical scrollbar data */
#endif
static gint run_filter = FALSE;
/* create a few globals, set default values */
static UnsharpMaskParams unsharp_params =
{
5.0, /* default radius = 5 */
0.5, /* default amount = .5 */
0 /* default threshold = 0 */
};
/* static UnsharpMaskInterface umint = { FALSE }; */
/* Setting PLUG_IN_INFO */
GPlugInInfo PLUG_IN_INFO = {
NULL, /* init_proc */
NULL, /* quit_proc */
query, /* query_proc */
run, /* run_proc */
};
MAIN()
static void query () {
static GParamDef args[] = {
{ PARAM_INT32, "run_mode", "Interactive, non-interactive" },
{ PARAM_IMAGE, "image", "(unused)" },
{ PARAM_DRAWABLE, "drawable", "Drawable to draw on" },
{ PARAM_FLOAT, "radius", "Radius of gaussian blur (in pixels > 1.0)" },
{ PARAM_FLOAT, "amount", "Strength of effect." }
};
static gint nargs = sizeof(args) / sizeof(args[0]);
/* for return vals */
static GParamDef *return_vals = NULL;
static int nreturn_vals = 0;
/* Install a procedure in the procedure database. */
gimp_install_procedure ("plug_in_unsharp_mask",
"An unsharp mask filter",
"Long description / help",
"Winston Chang <wchang3@students.wisc.edu>",
"Winston Chang",
"1999",
"<Image>/Filters/Enhance/Unsharp Mask...",
"GRAY*, RGB*",
PROC_PLUG_IN,
nargs, nreturn_vals,
args, return_vals);
}
/* this is the actual function */
static void run(char *name, int nparams, GParam *param, int *nreturn_vals,
GParam **return_vals) {
static GParam values[1];
GDrawable *drawable;
GRunModeType run_mode;
GStatusType status = STATUS_SUCCESS;
#ifdef TIMER
timerstart();
#endif
run_mode = param[0].data.d_int32;
values[0].type = PARAM_STATUS;
values[0].data.d_status = status;
*return_vals = values;
*nreturn_vals = 1;
switch (run_mode) {
case RUN_INTERACTIVE:
gimp_get_data ("plug_in_unsharp_mask", &unsharp_params);
if (! unsharp_mask_dialog ()) return;
break;
case RUN_NONINTERACTIVE:
if (nparams != 4) status = STATUS_CALLING_ERROR;
/* get the parameters */
else if (status == STATUS_SUCCESS) {
unsharp_params.radius = param[3].data.d_float;
unsharp_params.amount = param[4].data.d_float;
}
/* make sure there are legal values */
if (status == STATUS_SUCCESS &&
( (unsharp_params.radius < 0) || (unsharp_params.amount<0) ) )
status = STATUS_CALLING_ERROR;
break;
case RUN_WITH_LAST_VALS:
gimp_get_data ("plug_in_unsharp_mask", &unsharp_params);
break;
default:
break;
}
if (status == STATUS_SUCCESS) {
drawable = gimp_drawable_get (param[2].data.d_drawable);
gimp_tile_cache_ntiles(2 * (drawable->width / gimp_tile_width() + 1));
/* here we go */
unsharp_mask(drawable, unsharp_params.radius, unsharp_params.amount);
/* values[0].data.d_status = status; */
gimp_displays_flush ();
/* set data for next use of filter */
gimp_set_data ("plug_in_unsharp_mask", &unsharp_params,
sizeof (UnsharpMaskParams));
/*fprintf(stderr, "%f %f\n", unsharp_params.radius, unsharp_params.amount);*/
gimp_drawable_detach(drawable);
values[0].data.d_status = status;
}
#ifdef TIMER
timerstop();
#endif
}
/* -------------------------- Unsharp Mask ------------------------- */
static void unsharp_mask(GDrawable *drawable, gint radius, gdouble amount) {
GPixelRgn srcPR, destPR;
glong width, height;
glong bytes;
gint x1, y1, x2, y2;
gdouble* cmatrix = NULL;
gint cmatrix_length;
gdouble* ctable;
/* Get the input */
gimp_drawable_mask_bounds(drawable->id, &x1, &y1, &x2, &y2);
gimp_progress_init("Blurring...");
/* generate convolution matrix */
cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
/* generate lookup table */
ctable = gen_lookup_table(cmatrix, cmatrix_length);
width = drawable->width;
height = drawable->height;
bytes = drawable->bpp;
/* initialize pixel regions */
gimp_pixel_rgn_init (&srcPR, drawable, 0, 0, width, height, FALSE, FALSE);
gimp_pixel_rgn_init (&destPR, drawable, 0, 0, width, height, TRUE, TRUE);
unsharp_region (srcPR, destPR, width, height, bytes, radius, amount,
x1, x2, y1, y2);
gimp_drawable_flush(drawable);
gimp_drawable_merge_shadow(drawable->id, TRUE);
gimp_drawable_update(drawable->id, x1, y1, (x2-x1), (y2-y1));
}
/* perform an unsharp mask on the region, given a source region, dest.
region, width and height of the regions, and corner coordinates of
a subregion to act upon. Everything outside the subregion is unaffected.
*/
static void unsharp_region (GPixelRgn srcPR, GPixelRgn destPR,
gint width, gint height, gint bytes,
gdouble radius, gdouble amount,
gint x1, gint x2, gint y1, gint y2) {
guchar* cur_col;
guchar* dest_col;
guchar* cur_row;
guchar* dest_row;
gint x;
gint y;
gdouble* cmatrix = NULL;
gint cmatrix_length;
gdouble* ctable;
gint row, col; /* these are counters for loops */
/* these are used for the merging step */
gint threshold;
gint diff;
gint value;
gint u,v;
/* find height and width of subregion to act on */
x = x2-x1;
y = y2-y1;
/* generate convolution matrix and make sure it's smaller than each dimension */
cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
/* generate lookup table */
ctable = gen_lookup_table(cmatrix, cmatrix_length);
/* allocate row buffers */
cur_row = (guchar *) g_malloc (x * bytes);
dest_row = (guchar *) g_malloc (x * bytes);
/* find height and width of subregion to act on */
x = x2-x1;
y = y2-y1;
/* blank out a region of the destination memory area, I think */
for (row = 0; row < y; row++) {
gimp_pixel_rgn_get_row(&destPR, dest_row, x1, y1+row, (x2-x1));
memset(dest_row, 0, x*bytes);
gimp_pixel_rgn_set_row(&destPR, dest_row, x1, y1+row, (x2-x1));
}
/* blur the rows */
for (row = 0; row < y; row++) {
gimp_pixel_rgn_get_row(&srcPR, cur_row, x1, y1+row, x);
gimp_pixel_rgn_get_row(&destPR, dest_row, x1, y1+row, x);
blur_line(ctable, cmatrix, cmatrix_length, cur_row, dest_row, x, bytes);
gimp_pixel_rgn_set_row(&destPR, dest_row, x1, y1+row, x);
if (row%5 == 0) gimp_progress_update((gdouble)row/(3*y));
}
/* allocate column buffers */
cur_col = (guchar *) g_malloc (y * bytes);
dest_col = (guchar *) g_malloc (y * bytes);
/* blur the cols */
for (col = 0; col < x; col++) {
gimp_pixel_rgn_get_col(&destPR, cur_col, x1+col, y1, y);
gimp_pixel_rgn_get_col(&destPR, dest_col, x1+col, y1, y);
blur_line(ctable, cmatrix, cmatrix_length, cur_col, dest_col, y, bytes);
gimp_pixel_rgn_set_col(&destPR, dest_col, x1+col, y1, y);
if (col%5 == 0) gimp_progress_update((gdouble)col/(3*x) + 0.33);
}
gimp_progress_init("Merging...");
/* find integer value of threshold */
threshold = unsharp_params.threshold;
/* merge the source and destination (which currently contains
the blurred version) images */
for (row = 0; row < y; row++) {
value = 0;
/* get source row */
gimp_pixel_rgn_get_row(&srcPR, cur_row, x1, y1+row, x);
/* get dest row */
gimp_pixel_rgn_get_row(&destPR, dest_row, x1, y1+row, x);
/* combine the two */
for (u=0; u<x; u++) {
for (v=0; v<bytes; v++) {
diff = (cur_row[u*bytes+v] - dest_row[u*bytes+v]);
/* do tresholding */
if ( abs(2*diff) < threshold )
diff = 0;
value = cur_row[u*bytes+v] + amount * diff;
if (value < 0) dest_row[u*bytes+v] =0;
else if (value > 255) dest_row[u*bytes+v] = 255;
else dest_row[u*bytes+v] = value;
}
}
/* update progress bar every five rows */
if (row%5 == 0) gimp_progress_update((gdouble)row/(3*y) + 0.67);
gimp_pixel_rgn_set_row(&destPR, dest_row, x1, y1+row, x);
}
/* free the memory we took */
g_free(cur_row);
g_free(dest_row);
g_free(cur_col);
g_free(dest_col);
}
/* this function is written as if it is blurring a column at a time,
even though it can operate on rows, too. There is no difference
in the processing of the lines, at least to the blur_line function. */
static inline void blur_line(gdouble* ctable, gdouble* cmatrix,
gint cmatrix_length,
guchar* cur_col, guchar* dest_col,
gint y, glong bytes) {
#ifdef READABLE_CODE
/* ------------- semi-readable code ------------------- */
gdouble scale;
gdouble sum;
gint i,j;
gint row;
/* this is to take care cases in which the matrix can go over
* both edges at once. It's not efficient, but this can only
* happen in small pictures anyway.
*/
if (cmatrix_length > y) {
for (row = 0; row < y ; row++) {
scale=0;
/* find the scale factor */
for (j = 0; j < y ; j++) {
/* if the index is in bounds, add it to the scale counter */
if ((j + cmatrix_length/2 - row >= 0) &&
(j + cmatrix_length/2 - row < cmatrix_length))
scale += cmatrix[j + cmatrix_length/2 - row];
}
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = 0; j < y; j++) {
if ( (j >= row - cmatrix_length/2) && (j <= row + cmatrix_length/2) )
sum += cur_col[j*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum / scale);
}
}
}
else { /* when the cmatrix is smaller than row length */
/* for the edge condition, we only use available info, and scale to one */
for (row = 0; row < cmatrix_length/2; row++) {
/* find scale factor */
scale=0;
for (j = cmatrix_length/2 - row; j<cmatrix_length; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = cmatrix_length/2 - row; j<cmatrix_length; j++) {
sum += cur_col[(row + j-cmatrix_length/2)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum / scale);
}
}
/* go through each pixel in each col */
for ( ; row < y-cmatrix_length/2; row++) {
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = 0; j<cmatrix_length; j++) {
sum += cur_col[(row + j-cmatrix_length/2)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum);
}
}
/* for the edge condition , we only use available info, and scale to one */
for ( ; row < y; row++) {
/* find scale factor */
scale=0;
for (j = 0; j< y-row + cmatrix_length/2; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = 0; j<y-row + cmatrix_length/2; j++) {
sum += cur_col[(row + j-cmatrix_length/2)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum / scale);
}
}
}
#endif
#ifndef READABLE_CODE
/* --------------- optimized, unreadable code -------------------*/
gdouble scale;
gdouble sum;
gint i=0, j=0;
gint row;
gint cmatrix_middle = cmatrix_length/2;
gdouble *cmatrix_p;
guchar *cur_col_p;
guchar *cur_col_p1;
guchar *dest_col_p;
gdouble *ctable_p;
/* this first block is the same as the non-optimized version --
* it is only used for very small pictures, so speed isn't a
* big concern.
*/
if (cmatrix_length > y) {
for (row = 0; row < y ; row++) {
scale=0;
/* find the scale factor */
for (j = 0; j < y ; j++) {
/* if the index is in bounds, add it to the scale counter */
if ((j + cmatrix_length/2 - row >= 0) &&
(j + cmatrix_length/2 - row < cmatrix_length))
scale += cmatrix[j + cmatrix_length/2 - row];
}
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = 0; j < y; j++) {
if ( (j >= row - cmatrix_length/2) && (j <= row + cmatrix_length/2) )
sum += cur_col[j*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum / scale);
}
}
}
else {
/* for the edge condition, we only use available info and scale to one */
for (row = 0; row < cmatrix_middle; row++) {
/* find scale factor */
scale=0;
for (j = cmatrix_middle - row; j<cmatrix_length; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = cmatrix_middle - row; j<cmatrix_length; j++) {
sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum / scale);
}
}
/* go through each pixel in each col */
dest_col_p = dest_col + row*bytes;
for ( ; row < y-cmatrix_middle; row++) {
cur_col_p = (row - cmatrix_middle) * bytes + cur_col;
for (i = 0; i<bytes; i++) {
sum = 0;
cmatrix_p = cmatrix;
cur_col_p1 = cur_col_p;
ctable_p = ctable;
for (j = cmatrix_length; j>0; j--) {
sum += *(ctable_p + *cur_col_p1);
cur_col_p1 += bytes;
ctable_p += 256;
}
cur_col_p++;
*(dest_col_p++) = round2int(sum);
}
}
/* for the edge condition , we only use available info, and scale to one */
for ( ; row < y; row++) {
/* find scale factor */
scale=0;
for (j = 0; j< y-row + cmatrix_middle; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++) {
sum = 0;
for (j = 0; j<y-row + cmatrix_middle; j++) {
sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (guchar)round2int(sum / scale);
}
}
}
#endif
}
static inline gint round2int(gdouble i) {
return (gint)(i + 0.5);
}
/* generates a 1-D convolution matrix to be used for each pass of
* a two-pass gaussian blur. Returns the length of the matrix.
*/
static gint gen_convolve_matrix(gdouble radius, gdouble** cmatrix_p) {
gint matrix_length;
gint matrix_midpoint;
gdouble* cmatrix;
gint i,j;
gdouble std_dev;
gdouble sum;
/* we want to generate a matrix that goes out a certain radius
* from the center, so we have to go out ceil(rad-0.5) pixels,
* inlcuding the center pixel. Of course, that's only in one direction,
* so we have to go the same amount in the other direction, but not count
* the center pixel again. So we double the previous result and subtract
* one.
* The radius parameter that is passed to this function is used as
* the standard deviation, and the radius of effect is the
* standard deviation * 2. It's a little confusing.
*/
radius = fabs(radius) + 1.0;
std_dev = radius;
radius = std_dev * 2;
/* go out 'radius' in each direction */
matrix_length = 2 * ceil(radius-0.5) + 1;
if (matrix_length <= 0) matrix_length = 1;
matrix_midpoint = matrix_length/2 + 1;
*cmatrix_p = (gdouble*)(malloc(matrix_length * sizeof(gdouble)));
cmatrix = *cmatrix_p;
/* Now we fill the matrix by doing a numeric integration approximation
* from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
* We do the bottom half, mirror it to the top half, then compute the
* center point. Otherwise asymmetric quantization errors will occur.
* The formula to integrate is e^-(x^2/2s^2).
*/
/* first we do the top (right) half of matrix */
for (i=matrix_length/2 + 1; i<matrix_length; i++) {
double base_x = i - floor(matrix_length/2) - 0.5;
sum = 0;
for (j=1; j<=50; j++) {
if ( base_x+0.02*j <= radius )
sum += exp( -(base_x+0.02*j)*(base_x+0.02*j) /
(2*std_dev*std_dev) );
}
cmatrix[i] = sum/50;
}
/* mirror the thing to the bottom half */
for (i=0; i<=matrix_length/2; i++) {
cmatrix[i] = cmatrix[matrix_length-1-i];
}
/* find center val -- calculate an odd number of quanta to make it symmetric,
* even if the center point is weighted slightly higher than others. */
sum = 0;
for (j=0; j<=50; j++) {
sum += exp( -(0.5+0.02*j)*(0.5+0.02*j) /
(2*std_dev*std_dev) );
}
cmatrix[matrix_length/2] = sum/51;
/* normalize the distribution by scaling the total sum to one */
sum=0;
for (i=0; i<matrix_length; i++) sum += cmatrix[i];
for (i=0; i<matrix_length; i++) cmatrix[i] = cmatrix[i] / sum;
return matrix_length;
}
/* ----------------------- gen_lookup_table ----------------------- */
/* generates a lookup table for every possible product of 0-255 and
each value in the convolution matrix. The returned array is
indexed first by matrix position, then by input multiplicand (?)
value.
*/
static gdouble* gen_lookup_table(gdouble* cmatrix, gint cmatrix_length) {
int i, j;
gdouble* lookup_table = malloc(cmatrix_length * 256 * sizeof(gdouble));
#ifdef READABLE_CODE
for (i=0; i<cmatrix_length; i++) {
for (j=0; j<256; j++) {
lookup_table[i*256 + j] = cmatrix[i] * (gdouble)j;
}
}
#endif
#ifndef READABLE_CODE
gdouble* lookup_table_p = lookup_table;
gdouble* cmatrix_p = cmatrix;
for (i=0; i<cmatrix_length; i++) {
for (j=0; j<256; j++) {
*(lookup_table_p++) = *cmatrix_p * (gdouble)j;
}
cmatrix_p++;
}
#endif
return lookup_table;
}
/* ------------------------ unsharp_mask_dialog ----------------------- */
static gint unsharp_mask_dialog()
{
GtkWidget *window;
GtkWidget *table;
GtkWidget *hbbox;
GtkWidget *button;
gint argc = 1;
gchar** argv = g_new(gchar*, 1);
argv[0] = g_strdup("unsharp mask");
/* initialize */
gtk_init(&argc, &argv);
gtk_rc_parse(gimp_gtkrc());
gdk_set_use_xshm(gimp_use_xshm());
gtk_preview_set_gamma(gimp_gamma());
gtk_preview_set_install_cmap(gimp_install_cmap());
/* create a new window */
window = gtk_dialog_new();
gtk_window_set_title(GTK_WINDOW(window), "Unsharp Mask " PLUG_IN_VERSION);
/* I have no idea what the following two lines do.
I took them from sharpen.c */
gtk_window_set_wmclass(GTK_WINDOW(window), "unsharp mask", "Gimp");
gtk_window_position(GTK_WINDOW(window), GTK_WIN_POS_MOUSE);
gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (unsharp_cancel_callback), NULL);
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (unsharp_cancel_callback), NULL);
table = gtk_table_new(3, 3, FALSE); /* Make a 3x3 table in mainbox */
gtk_box_pack_start(GTK_BOX( GTK_DIALOG(window)->vbox), table,
FALSE, FALSE, 0);
/* create each of the inputs */
dialog_create_value_f("Radius:", GTK_TABLE(table), 1, &unsharp_params.radius,
0.1, 1, 1.0, 25.0);
dialog_create_value_f("Amount:", GTK_TABLE(table), 2, &unsharp_params.amount,
0.01, 2, 0.01, 5.0);
dialog_create_value_i("Threshold:", GTK_TABLE(table), 3, &unsharp_params.threshold,
1, 0, 255);
/* show table */
gtk_widget_show(table);
/* Action area */
gtk_container_set_border_width (GTK_CONTAINER (GTK_DIALOG (window)->action_area), 2);
gtk_box_set_homogeneous (GTK_BOX (GTK_DIALOG (window)->action_area), FALSE);
hbbox = gtk_hbutton_box_new ();
gtk_button_box_set_spacing (GTK_BUTTON_BOX (hbbox), 4);
gtk_box_pack_end (GTK_BOX (GTK_DIALOG (window)->action_area), hbbox, FALSE, FALSE, 0);
gtk_widget_show (hbbox);
button = gtk_button_new_with_label ("OK");
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_signal_connect (GTK_OBJECT (button), "clicked",
(GtkSignalFunc) unsharp_ok_callback,
window);
gtk_box_pack_start (GTK_BOX (hbbox), button, FALSE, FALSE, 0);
gtk_widget_grab_default (button);
gtk_widget_show (button);
button = gtk_button_new_with_label ("Cancel");
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_signal_connect (GTK_OBJECT (button), "clicked",
(GtkSignalFunc) unsharp_cancel_callback,
NULL);
gtk_box_pack_start (GTK_BOX (hbbox), button, FALSE, FALSE, 0);
gtk_widget_show (button);
/* show the window */
gtk_widget_show (window);
gtk_main ();
gdk_flush();
/* return ok or cancel */
return(run_filter);
}
#ifdef PREVIEW
/* 'preview_init()' - Initialize the preview window... */
static void
preview_init(void)
{
int width; /* Byte width of the image */
/*
* Setup for preview filter...
*/
width = preview_width * img_bpp;
preview_src = g_malloc(width * preview_height * sizeof(guchar));
preview_neg = g_malloc(width * preview_height * sizeof(guchar));
preview_dst = g_malloc(width * preview_height * sizeof(guchar));
preview_image = g_malloc(preview_width * preview_height * 3 * sizeof(guchar));
preview_x1 = sel_x1;
preview_y1 = sel_y1;
preview_x2 = preview_x1 + preview_width;
preview_y2 = preview_y1 + preview_height;
}
/*
* 'preview_scroll_callback()' - Update the preview when a scrollbar is moved.
*/
static void
preview_scroll_callback(void)
{
preview_x1 = sel_x1 + GTK_ADJUSTMENT(hscroll_data)->value;
preview_y1 = sel_y1 + GTK_ADJUSTMENT(vscroll_data)->value;
preview_x2 = preview_x1 + MIN(preview_width, sel_width);
preview_y2 = preview_y1 + MIN(preview_height, sel_height);
preview_update();
}
/*
* 'preview_update()' - Update the preview window.
*/
static void
preview_update(void) {
}
#endif
static void unsharp_cancel_callback (GtkWidget *widget, gpointer data) {
gtk_main_quit ();
}
static void unsharp_ok_callback (GtkWidget *widget, gpointer data) {
run_filter = TRUE;
gtk_widget_destroy (GTK_WIDGET (data));
}
/* delete_event */
gboolean delete_event( GtkWidget *widget, GdkEvent *event, gpointer data ) {
return FALSE;
}
/* Destroy callback */
void destroy( GtkWidget *widget, gpointer data ) {
gtk_main_quit();
}
#ifdef TIMER
static void timerstart() {
gettimeofday(&time_start,NULL);
}
static void timerstop() {
long sec, usec;
gettimeofday(&time_stop,NULL);
sec = time_stop.tv_sec - time_start.tv_sec;
usec = time_stop.tv_usec - time_start.tv_usec;
if (usec < 0) {
sec--;
usec += 1000000;
}
fprintf(stderr, "%ld.%ld seconds\n", sec, usec);
}
#endif