mirror of
https://github.com/RPCS3/rpcs3
synced 2024-11-02 10:51:44 +00:00
3216 lines
74 KiB
C++
3216 lines
74 KiB
C++
#include "stdafx.h"
|
|
#include "Emu/System.h"
|
|
#include "Emu/Cell/SPUThread.h"
|
|
#include "Emu/Cell/PPUThread.h"
|
|
#include "Emu/Cell/lv2/sys_mmapper.h"
|
|
#include "Emu/Cell/lv2/sys_event.h"
|
|
#include "Emu/Cell/lv2/sys_process.h"
|
|
#include "Emu/RSX/RSXThread.h"
|
|
#include "Thread.h"
|
|
#include "Utilities/JIT.h"
|
|
#include <thread>
|
|
#include <cfenv>
|
|
|
|
#ifdef _WIN32
|
|
#include <Windows.h>
|
|
#include <Psapi.h>
|
|
#include <process.h>
|
|
#include <sysinfoapi.h>
|
|
|
|
#include "util/dyn_lib.hpp"
|
|
|
|
DYNAMIC_IMPORT_RENAME("Kernel32.dll", SetThreadDescriptionImport, "SetThreadDescription", HRESULT(HANDLE hThread, PCWSTR lpThreadDescription));
|
|
|
|
#else
|
|
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#endif
|
|
#ifdef __APPLE__
|
|
#define _XOPEN_SOURCE
|
|
#define __USE_GNU
|
|
#include <mach/thread_act.h>
|
|
#include <mach/thread_policy.h>
|
|
#endif
|
|
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
|
|
#include <pthread_np.h>
|
|
#define cpu_set_t cpuset_t
|
|
#endif
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#ifndef __OpenBSD__
|
|
#include <ucontext.h>
|
|
#endif
|
|
#include <pthread.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <time.h>
|
|
#endif
|
|
#ifdef __linux__
|
|
#include <sys/syscall.h>
|
|
#include <sys/timerfd.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(__APPLE__) || defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
|
|
# include <sys/sysctl.h>
|
|
# include <unistd.h>
|
|
# if defined(__DragonFly__) || defined(__FreeBSD__)
|
|
# include <sys/user.h>
|
|
# endif
|
|
# if defined(__OpenBSD__)
|
|
# include <sys/param.h>
|
|
# include <sys/proc.h>
|
|
# endif
|
|
|
|
# if defined(__NetBSD__)
|
|
# undef KERN_PROC
|
|
# define KERN_PROC KERN_PROC2
|
|
# define kinfo_proc kinfo_proc2
|
|
# endif
|
|
|
|
# if defined(__APPLE__)
|
|
# define KP_FLAGS kp_proc.p_flag
|
|
# elif defined(__DragonFly__)
|
|
# define KP_FLAGS kp_flags
|
|
# elif defined(__FreeBSD__)
|
|
# define KP_FLAGS ki_flag
|
|
# elif defined(__NetBSD__)
|
|
# define KP_FLAGS p_flag
|
|
# elif defined(__OpenBSD__)
|
|
# define KP_FLAGS p_psflags
|
|
# define P_TRACED PS_TRACED
|
|
# endif
|
|
#endif
|
|
|
|
#include "util/vm.hpp"
|
|
#include "util/logs.hpp"
|
|
#include "util/asm.hpp"
|
|
#include "util/v128.hpp"
|
|
#include "util/simd.hpp"
|
|
#include "util/sysinfo.hpp"
|
|
#include "Emu/Memory/vm_locking.h"
|
|
|
|
LOG_CHANNEL(sig_log, "SIG");
|
|
LOG_CHANNEL(sys_log, "SYS");
|
|
LOG_CHANNEL(vm_log, "VM");
|
|
|
|
thread_local u64 g_tls_fault_all = 0;
|
|
thread_local u64 g_tls_fault_rsx = 0;
|
|
thread_local u64 g_tls_fault_spu = 0;
|
|
thread_local u64 g_tls_wait_time = 0;
|
|
thread_local u64 g_tls_wait_fail = 0;
|
|
thread_local bool g_tls_access_violation_recovered = false;
|
|
extern thread_local std::string(*g_tls_log_prefix)();
|
|
|
|
// Report error and call std::abort(), defined in main.cpp
|
|
[[noreturn]] void report_fatal_error(std::string_view text, bool is_html = false, bool include_help_text = true);
|
|
|
|
std::string dump_useful_thread_info()
|
|
{
|
|
std::string result;
|
|
|
|
if (auto cpu = get_current_cpu_thread())
|
|
{
|
|
cpu->dump_all(result);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
bool IsDebuggerPresent()
|
|
{
|
|
#if defined(__APPLE__) || defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
|
|
int mib[] = {
|
|
CTL_KERN,
|
|
KERN_PROC,
|
|
KERN_PROC_PID,
|
|
getpid(),
|
|
# if defined(__NetBSD__) || defined(__OpenBSD__)
|
|
sizeof(struct kinfo_proc),
|
|
1,
|
|
# endif
|
|
};
|
|
u_int miblen = std::size(mib);
|
|
struct kinfo_proc info;
|
|
usz size = sizeof(info);
|
|
|
|
if (sysctl(mib, miblen, &info, &size, NULL, 0))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return info.KP_FLAGS & P_TRACED;
|
|
#else
|
|
char buf[4096];
|
|
fs::file status_fd("/proc/self/status");
|
|
if (!status_fd)
|
|
{
|
|
std::fprintf(stderr, "Failed to open /proc/self/status\n");
|
|
return false;
|
|
}
|
|
|
|
const auto num_read = status_fd.read(buf, sizeof(buf) - 1);
|
|
if (num_read == 0 || num_read == umax)
|
|
{
|
|
std::fprintf(stderr, "Failed to read /proc/self/status (%d)\n", errno);
|
|
return false;
|
|
}
|
|
|
|
buf[num_read] = '\0';
|
|
std::string_view status = buf;
|
|
|
|
const auto found = status.find("TracerPid:");
|
|
if (found == umax)
|
|
{
|
|
std::fprintf(stderr, "Failed to find 'TracerPid:' in /proc/self/status\n");
|
|
return false;
|
|
}
|
|
|
|
for (const char* cp = status.data() + found + 10; cp <= status.data() + num_read; ++cp)
|
|
{
|
|
if (!std::isspace(*cp))
|
|
{
|
|
return std::isdigit(*cp) != 0 && *cp != '0';
|
|
}
|
|
}
|
|
|
|
return false;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
bool is_debugger_present()
|
|
{
|
|
if (g_cfg.core.external_debugger)
|
|
return true;
|
|
return IsDebuggerPresent();
|
|
}
|
|
|
|
#if defined(ARCH_X64)
|
|
enum x64_reg_t : u32
|
|
{
|
|
X64R_RAX = 0,
|
|
X64R_RCX,
|
|
X64R_RDX,
|
|
X64R_RBX,
|
|
X64R_RSP,
|
|
X64R_RBP,
|
|
X64R_RSI,
|
|
X64R_RDI,
|
|
X64R_R8,
|
|
X64R_R9,
|
|
X64R_R10,
|
|
X64R_R11,
|
|
X64R_R12,
|
|
X64R_R13,
|
|
X64R_R14,
|
|
X64R_R15,
|
|
|
|
X64R_XMM0 = 0,
|
|
X64R_XMM1,
|
|
X64R_XMM2,
|
|
X64R_XMM3,
|
|
X64R_XMM4,
|
|
X64R_XMM5,
|
|
X64R_XMM6,
|
|
X64R_XMM7,
|
|
X64R_XMM8,
|
|
X64R_XMM9,
|
|
X64R_XMM10,
|
|
X64R_XMM11,
|
|
X64R_XMM12,
|
|
X64R_XMM13,
|
|
X64R_XMM14,
|
|
X64R_XMM15,
|
|
|
|
X64R_AL,
|
|
X64R_CL,
|
|
X64R_DL,
|
|
X64R_BL,
|
|
X64R_AH,
|
|
X64R_CH,
|
|
X64R_DH,
|
|
X64R_BH,
|
|
|
|
X64_NOT_SET,
|
|
X64_IMM8,
|
|
X64_IMM16,
|
|
X64_IMM32,
|
|
|
|
X64_BIT_O = 0x90,
|
|
X64_BIT_NO,
|
|
X64_BIT_C,
|
|
X64_BIT_NC,
|
|
X64_BIT_Z,
|
|
X64_BIT_NZ,
|
|
X64_BIT_BE,
|
|
X64_BIT_NBE,
|
|
X64_BIT_S,
|
|
X64_BIT_NS,
|
|
X64_BIT_P,
|
|
X64_BIT_NP,
|
|
X64_BIT_L,
|
|
X64_BIT_NL,
|
|
X64_BIT_LE,
|
|
X64_BIT_NLE,
|
|
|
|
X64R_ECX = X64R_CL,
|
|
};
|
|
|
|
enum x64_op_t : u32
|
|
{
|
|
X64OP_NONE,
|
|
X64OP_LOAD, // obtain and put the value into x64 register
|
|
X64OP_LOAD_BE,
|
|
X64OP_LOAD_CMP,
|
|
X64OP_LOAD_TEST,
|
|
X64OP_STORE, // take the value from x64 register or an immediate and use it
|
|
X64OP_STORE_BE,
|
|
X64OP_MOVS,
|
|
X64OP_STOS,
|
|
X64OP_XCHG,
|
|
X64OP_CMPXCHG,
|
|
X64OP_AND, // lock and [mem], ...
|
|
X64OP_OR, // lock or [mem], ...
|
|
X64OP_XOR, // lock xor [mem], ...
|
|
X64OP_INC, // lock inc [mem]
|
|
X64OP_DEC, // lock dec [mem]
|
|
X64OP_ADD, // lock add [mem], ...
|
|
X64OP_ADC, // lock adc [mem], ...
|
|
X64OP_SUB, // lock sub [mem], ...
|
|
X64OP_SBB, // lock sbb [mem], ...
|
|
X64OP_BEXTR,
|
|
};
|
|
|
|
static thread_local x64_reg_t s_tls_reg3{};
|
|
|
|
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, usz& out_size, usz& out_length)
|
|
{
|
|
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
|
|
out_length = 0;
|
|
|
|
u8 rex = 0, pg2 = 0;
|
|
|
|
bool oso = false, lock = false, repne = false, repe = false;
|
|
|
|
enum : u8
|
|
{
|
|
LOCK = 0xf0,
|
|
REPNE = 0xf2,
|
|
REPE = 0xf3,
|
|
};
|
|
|
|
// check prefixes:
|
|
for (;; code++, out_length++)
|
|
{
|
|
switch (const u8 prefix = *code)
|
|
{
|
|
case LOCK: // group 1
|
|
{
|
|
if (lock)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): LOCK prefix found twice", code - out_length);
|
|
}
|
|
|
|
lock = true;
|
|
continue;
|
|
}
|
|
case REPNE: // group 1
|
|
{
|
|
if (repne)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", code - out_length);
|
|
}
|
|
|
|
repne = true;
|
|
continue;
|
|
}
|
|
case REPE: // group 1
|
|
{
|
|
if (repe)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", code - out_length);
|
|
}
|
|
|
|
repe = true;
|
|
continue;
|
|
}
|
|
|
|
case 0x2e: // group 2
|
|
case 0x36:
|
|
case 0x3e:
|
|
case 0x26:
|
|
case 0x64:
|
|
case 0x65:
|
|
{
|
|
if (pg2)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", code - out_length, prefix, pg2);
|
|
}
|
|
else
|
|
{
|
|
pg2 = prefix; // probably, segment register
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case 0x66: // group 3
|
|
{
|
|
if (oso)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): operand-size override prefix found twice", code - out_length);
|
|
}
|
|
|
|
oso = true;
|
|
continue;
|
|
}
|
|
|
|
case 0x67: // group 4
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): address-size override prefix found", code - out_length, prefix);
|
|
out_op = X64OP_NONE;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 0;
|
|
out_length = 0;
|
|
return;
|
|
}
|
|
|
|
default:
|
|
{
|
|
if ((prefix & 0xf0) == 0x40) // check REX prefix
|
|
{
|
|
if (rex)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", code - out_length, prefix, rex);
|
|
}
|
|
else
|
|
{
|
|
rex = prefix;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
|
|
{
|
|
return x64_reg_t{((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX};
|
|
};
|
|
|
|
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
|
|
{
|
|
return x64_reg_t{((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0};
|
|
};
|
|
|
|
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
|
|
{
|
|
return x64_reg_t{((*code & 0x38) >> 3) + X64R_AL};
|
|
};
|
|
|
|
auto get_op_size = [](const u8 rex, const bool oso) -> usz
|
|
{
|
|
return rex & 8 ? 8 : (oso ? 2 : 4);
|
|
};
|
|
|
|
auto get_modRM_size = [](const u8* code) -> usz
|
|
{
|
|
switch (*code >> 6) // check Mod
|
|
{
|
|
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
|
|
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
|
|
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
|
|
default: return 1;
|
|
}
|
|
};
|
|
|
|
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
|
|
|
|
switch (op1)
|
|
{
|
|
case 0x0f:
|
|
{
|
|
out_length++, code++;
|
|
|
|
switch (op2)
|
|
{
|
|
case 0x11:
|
|
case 0x29:
|
|
{
|
|
if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = 16;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x7f:
|
|
{
|
|
if (repe != oso) // MOVDQU/MOVDQA xmm/m, xmm
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = 16;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xb0:
|
|
{
|
|
if (!oso) // CMPXCHG r8/m8, r8
|
|
{
|
|
out_op = X64OP_CMPXCHG;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xb1:
|
|
{
|
|
if (true) // CMPXCHG r/m, r (16, 32, 64)
|
|
{
|
|
out_op = X64OP_CMPXCHG;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x90:
|
|
case 0x91:
|
|
case 0x92:
|
|
case 0x93:
|
|
case 0x94:
|
|
case 0x95:
|
|
case 0x96:
|
|
case 0x97:
|
|
case 0x98:
|
|
case 0x9a:
|
|
case 0x9b:
|
|
case 0x9c:
|
|
case 0x9d:
|
|
case 0x9e:
|
|
case 0x9f:
|
|
{
|
|
if (!lock) // SETcc
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x38:
|
|
{
|
|
out_length++, code++;
|
|
|
|
switch (op3)
|
|
{
|
|
case 0xf0:
|
|
case 0xf1:
|
|
{
|
|
if (!repne) // MOVBE
|
|
{
|
|
out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 0x20:
|
|
{
|
|
if (!oso)
|
|
{
|
|
out_op = X64OP_AND;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x21:
|
|
{
|
|
if (true)
|
|
{
|
|
out_op = X64OP_AND;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x80:
|
|
{
|
|
switch (get_modRM_reg(code, 0))
|
|
{
|
|
//case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual
|
|
case 1: out_op = X64OP_OR; break;
|
|
case 2: out_op = X64OP_ADC; break;
|
|
case 3: out_op = X64OP_SBB; break;
|
|
case 4: out_op = X64OP_AND; break;
|
|
case 5: out_op = X64OP_SUB; break;
|
|
case 6: out_op = X64OP_XOR; break;
|
|
default: out_op = X64OP_LOAD_CMP; break;
|
|
}
|
|
|
|
out_reg = X64_IMM8;
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
case 0x81:
|
|
{
|
|
switch (get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_ADD; break;
|
|
case 1: out_op = X64OP_OR; break;
|
|
case 2: out_op = X64OP_ADC; break;
|
|
case 3: out_op = X64OP_SBB; break;
|
|
case 4: out_op = X64OP_AND; break;
|
|
case 5: out_op = X64OP_SUB; break;
|
|
case 6: out_op = X64OP_XOR; break;
|
|
default: out_op = X64OP_LOAD_CMP; break;
|
|
}
|
|
|
|
out_reg = oso ? X64_IMM16 : X64_IMM32;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + (oso ? 2 : 4);
|
|
return;
|
|
}
|
|
case 0x83:
|
|
{
|
|
switch (get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_ADD; break;
|
|
case 1: out_op = X64OP_OR; break;
|
|
case 2: out_op = X64OP_ADC; break;
|
|
case 3: out_op = X64OP_SBB; break;
|
|
case 4: out_op = X64OP_AND; break;
|
|
case 5: out_op = X64OP_SUB; break;
|
|
case 6: out_op = X64OP_XOR; break;
|
|
default: out_op = X64OP_LOAD_CMP; break;
|
|
}
|
|
|
|
out_reg = X64_IMM8;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
case 0x86:
|
|
{
|
|
if (!oso) // XCHG r8/m8, r8
|
|
{
|
|
out_op = X64OP_XCHG;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x87:
|
|
{
|
|
if (true) // XCHG r/m, r (16, 32, 64)
|
|
{
|
|
out_op = X64OP_XCHG;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x88:
|
|
{
|
|
if (!lock && !oso) // MOV r8/m8, r8
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x89:
|
|
{
|
|
if (!lock) // MOV r/m, r (16, 32, 64)
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x8a:
|
|
{
|
|
if (!lock && !oso) // MOV r8, r8/m8
|
|
{
|
|
out_op = X64OP_LOAD;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x8b:
|
|
{
|
|
if (!lock) // MOV r, r/m (16, 32, 64)
|
|
{
|
|
out_op = X64OP_LOAD;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xa4:
|
|
{
|
|
if (!oso && !lock && !repe && !rex) // MOVS
|
|
{
|
|
out_op = X64OP_MOVS;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
if (!oso && !lock && repe) // REP MOVS
|
|
{
|
|
out_op = X64OP_MOVS;
|
|
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xaa:
|
|
{
|
|
if (!oso && !lock && !repe && !rex) // STOS
|
|
{
|
|
out_op = X64OP_STOS;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
if (!oso && !lock && repe) // REP STOS
|
|
{
|
|
out_op = X64OP_STOS;
|
|
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xc4: // 3-byte VEX prefix
|
|
case 0xc5: // 2-byte VEX prefix
|
|
{
|
|
// Last prefix byte: op2 or op3
|
|
const u8 opx = op1 == 0xc5 ? op2 : op3;
|
|
|
|
// Implied prefixes
|
|
rex |= op2 & 0x80 ? 0 : 0x4; // REX.R
|
|
rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ???
|
|
oso = (opx & 0x3) == 0x1;
|
|
repe = (opx & 0x3) == 0x2;
|
|
repne = (opx & 0x3) == 0x3;
|
|
|
|
const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f;
|
|
const u8 vop1 = op1 == 0xc5 ? op3 : code[2];
|
|
const u8 vlen = (opx & 0x4) ? 32 : 16;
|
|
const u8 vreg = (~opx >> 3) & 0xf;
|
|
out_length += op1 == 0xc5 ? 2 : 3;
|
|
code += op1 == 0xc5 ? 2 : 3;
|
|
|
|
s_tls_reg3 = x64_reg_t{vreg};
|
|
|
|
if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F
|
|
{
|
|
case 0x11:
|
|
case 0x29:
|
|
{
|
|
if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = vlen;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x7f:
|
|
{
|
|
if (repe || oso) // VMOVDQU/VMOVDQA mem,reg
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = vlen;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vopm == 0x2) switch (vop1) // Implied leading bytes 0x0F 0x38
|
|
{
|
|
case 0xf7:
|
|
{
|
|
if (!repe && !repne && vlen == 16) // BEXTR r32,mem,r32
|
|
{
|
|
out_op = X64OP_BEXTR;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = opx & 0x80 ? 8 : 4;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 0xc6:
|
|
{
|
|
if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = X64_IMM8;
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xc7:
|
|
{
|
|
if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64)
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = oso ? X64_IMM16 : X64_IMM32;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + (oso ? 2 : 4);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xf6:
|
|
{
|
|
switch (get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_LOAD_TEST; break;
|
|
default: out_op = X64OP_NONE; break; // TODO...
|
|
}
|
|
|
|
out_reg = X64_IMM8;
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
case 0xf7:
|
|
{
|
|
switch (get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_LOAD_TEST; break;
|
|
default: out_op = X64OP_NONE; break; // TODO...
|
|
}
|
|
|
|
out_reg = oso ? X64_IMM16 : X64_IMM32;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + (oso ? 2 : 4);
|
|
return;
|
|
}
|
|
}
|
|
|
|
out_op = X64OP_NONE;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 0;
|
|
out_length = 0;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
typedef CONTEXT x64_context;
|
|
typedef CONTEXT ucontext_t;
|
|
|
|
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(&(context)->Xmm0)[reg]))
|
|
#define EFLAGS(context) ((context)->EFlags)
|
|
|
|
#define ARG1(context) RCX(context)
|
|
#define ARG2(context) RDX(context)
|
|
|
|
#else
|
|
|
|
typedef ucontext_t x64_context;
|
|
|
|
#ifdef __APPLE__
|
|
|
|
#define X64REG(context, reg) (darwin_x64reg(context, reg))
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
|
|
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
|
|
|
|
u64* darwin_x64reg(x64_context *context, int reg)
|
|
{
|
|
auto *state = &context->uc_mcontext->__ss;
|
|
switch(reg)
|
|
{
|
|
case 0: return &state->__rax;
|
|
case 1: return &state->__rcx;
|
|
case 2: return &state->__rdx;
|
|
case 3: return &state->__rbx;
|
|
case 4: return &state->__rsp;
|
|
case 5: return &state->__rbp;
|
|
case 6: return &state->__rsi;
|
|
case 7: return &state->__rdi;
|
|
case 8: return &state->__r8;
|
|
case 9: return &state->__r9;
|
|
case 10: return &state->__r10;
|
|
case 11: return &state->__r11;
|
|
case 12: return &state->__r12;
|
|
case 13: return &state->__r13;
|
|
case 14: return &state->__r14;
|
|
case 15: return &state->__r15;
|
|
case 16: return &state->__rip;
|
|
default:
|
|
sig_log.error("Invalid register index: %d", reg);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__)
|
|
|
|
#define X64REG(context, reg) (freebsd_x64reg(context, reg))
|
|
#ifdef __DragonFly__
|
|
# define XMMREG(context, reg) (reinterpret_cast<v128*>((reinterpret_cast<union savefpu*>(context)->uc_mcontext.mc_fpregs)->sv_xmm.sv_xmm[reg]))
|
|
#else
|
|
# define XMMREG(context, reg) (reinterpret_cast<v128*>((reinterpret_cast<struct savefpu*>(context)->uc_mcontext.mc_fpstate)->sv_xmm[reg]))
|
|
#endif
|
|
#define EFLAGS(context) ((context)->uc_mcontext.mc_rflags)
|
|
|
|
register_t* freebsd_x64reg(x64_context *context, int reg)
|
|
{
|
|
auto *state = &context->uc_mcontext;
|
|
switch(reg)
|
|
{
|
|
case 0: return &state->mc_rax;
|
|
case 1: return &state->mc_rcx;
|
|
case 2: return &state->mc_rdx;
|
|
case 3: return &state->mc_rbx;
|
|
case 4: return &state->mc_rsp;
|
|
case 5: return &state->mc_rbp;
|
|
case 6: return &state->mc_rsi;
|
|
case 7: return &state->mc_rdi;
|
|
case 8: return &state->mc_r8;
|
|
case 9: return &state->mc_r9;
|
|
case 10: return &state->mc_r10;
|
|
case 11: return &state->mc_r11;
|
|
case 12: return &state->mc_r12;
|
|
case 13: return &state->mc_r13;
|
|
case 14: return &state->mc_r14;
|
|
case 15: return &state->mc_r15;
|
|
case 16: return &state->mc_rip;
|
|
default:
|
|
sig_log.error("Invalid register index: %d", reg);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#elif defined(__OpenBSD__)
|
|
|
|
#define X64REG(context, reg) (openbsd_x64reg(context, reg))
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>((context)->sc_fpstate->fx_xmm[reg]))
|
|
#define EFLAGS(context) ((context)->sc_rflags)
|
|
|
|
long* openbsd_x64reg(x64_context *context, int reg)
|
|
{
|
|
auto *state = &context;
|
|
switch(reg)
|
|
{
|
|
case 0: return &state->sc_rax;
|
|
case 1: return &state->sc_rcx;
|
|
case 2: return &state->sc_rdx;
|
|
case 3: return &state->sc_rbx;
|
|
case 4: return &state->sc_rsp;
|
|
case 5: return &state->sc_rbp;
|
|
case 6: return &state->sc_rsi;
|
|
case 7: return &state->sc_rdi;
|
|
case 8: return &state->sc_r8;
|
|
case 9: return &state->sc_r9;
|
|
case 10: return &state->sc_r10;
|
|
case 11: return &state->sc_r11;
|
|
case 12: return &state->sc_r12;
|
|
case 13: return &state->sc_r13;
|
|
case 14: return &state->sc_r14;
|
|
case 15: return &state->sc_r15;
|
|
case 16: return &state->sc_rip;
|
|
default:
|
|
sig_log.error("Invalid register index: %d", reg);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#elif defined(__NetBSD__)
|
|
|
|
static const decltype(_REG_RAX) reg_table[] =
|
|
{
|
|
_REG_RAX, _REG_RCX, _REG_RDX, _REG_RBX, _REG_RSP, _REG_RBP, _REG_RSI, _REG_RDI,
|
|
_REG_R8, _REG_R9, _REG_R10, _REG_R11, _REG_R12, _REG_R13, _REG_R14, _REG_R15, _REG_RIP
|
|
};
|
|
|
|
#define X64REG(context, reg) (&(context)->uc_mcontext.__gregs[reg_table[reg]])
|
|
#define XMM_sig(context, reg) (reinterpret_cast<v128*>(((struct fxsave64*)(context)->uc_mcontext.__fpregs)->fx_xmm[reg]))
|
|
#define EFLAGS(context) ((context)->uc_mcontext.__gregs[_REG_RFL])
|
|
|
|
#else
|
|
|
|
static const int reg_table[] =
|
|
{
|
|
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
|
|
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
|
|
};
|
|
|
|
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
|
|
#ifdef __sun
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs.fp_reg_set.fpchip_state.xmm[reg_table[reg]]))
|
|
#else
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
|
|
#endif // __sun
|
|
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
|
|
|
|
#endif // __APPLE__
|
|
|
|
#define ARG1(context) RDI(context)
|
|
#define ARG2(context) RSI(context)
|
|
|
|
#endif
|
|
|
|
#define RAX(c) (*X64REG((c), 0))
|
|
#define RCX(c) (*X64REG((c), 1))
|
|
#define RDX(c) (*X64REG((c), 2))
|
|
#define RSP(c) (*X64REG((c), 4))
|
|
#define RSI(c) (*X64REG((c), 6))
|
|
#define RDI(c) (*X64REG((c), 7))
|
|
#define RIP(c) (*X64REG((c), 16))
|
|
|
|
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, usz d_size, usz i_size, u64& out_value)
|
|
{
|
|
// get x64 reg value (for store operations)
|
|
if (reg - X64R_RAX < 16)
|
|
{
|
|
// load the value from x64 register
|
|
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 1: out_value = static_cast<u8>(reg_value); return true;
|
|
case 2: out_value = static_cast<u16>(reg_value); return true;
|
|
case 4: out_value = static_cast<u32>(reg_value); return true;
|
|
case 8: out_value = reg_value; return true;
|
|
}
|
|
}
|
|
else if (reg - X64R_AL < 4 && d_size == 1)
|
|
{
|
|
out_value = static_cast<u8>(*X64REG(context, reg - X64R_AL));
|
|
return true;
|
|
}
|
|
else if (reg - X64R_AH < 4 && d_size == 1)
|
|
{
|
|
out_value = static_cast<u8>(*X64REG(context, reg - X64R_AH) >> 8);
|
|
return true;
|
|
}
|
|
else if (reg == X64_IMM8)
|
|
{
|
|
// load the immediate value (assuming it's at the end of the instruction)
|
|
const s8 imm_value = *reinterpret_cast<s8*>(RIP(context) + i_size - 1);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 1: out_value = static_cast<u8>(imm_value); return true;
|
|
case 2: out_value = static_cast<u16>(imm_value); return true; // sign-extended
|
|
case 4: out_value = static_cast<u32>(imm_value); return true; // sign-extended
|
|
case 8: out_value = static_cast<u64>(imm_value); return true; // sign-extended
|
|
}
|
|
}
|
|
else if (reg == X64_IMM16)
|
|
{
|
|
const s16 imm_value = *reinterpret_cast<s16*>(RIP(context) + i_size - 2);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 2: out_value = static_cast<u16>(imm_value); return true;
|
|
}
|
|
}
|
|
else if (reg == X64_IMM32)
|
|
{
|
|
const s32 imm_value = *reinterpret_cast<s32*>(RIP(context) + i_size - 4);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 4: out_value = static_cast<u32>(imm_value); return true;
|
|
case 8: out_value = static_cast<u64>(imm_value); return true; // sign-extended
|
|
}
|
|
}
|
|
else if (reg == X64R_ECX)
|
|
{
|
|
out_value = static_cast<u32>(RCX(context));
|
|
return true;
|
|
}
|
|
else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE)
|
|
{
|
|
const u32 _cf = EFLAGS(context) & 0x1;
|
|
const u32 _zf = EFLAGS(context) & 0x40;
|
|
const u32 _sf = EFLAGS(context) & 0x80;
|
|
const u32 _of = EFLAGS(context) & 0x800;
|
|
const u32 _pf = EFLAGS(context) & 0x4;
|
|
const u32 _l = (_sf << 4) ^ _of; // SF != OF
|
|
|
|
switch (reg & ~1)
|
|
{
|
|
case X64_BIT_O: out_value = !!_of ^ (reg & 1); break;
|
|
case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break;
|
|
case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break;
|
|
case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break;
|
|
case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break;
|
|
case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break;
|
|
case X64_BIT_L: out_value = !!_l ^ (reg & 1); break;
|
|
case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
sig_log.error("get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", +reg, d_size, i_size);
|
|
return false;
|
|
}
|
|
|
|
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, usz d_size, u64 value)
|
|
{
|
|
// save x64 reg value (for load operations)
|
|
if (reg - X64R_RAX < 16)
|
|
{
|
|
// save the value into x64 register
|
|
switch (d_size)
|
|
{
|
|
case 1: *X64REG(context, reg - X64R_RAX) = (value & 0xff) | (*X64REG(context, reg - X64R_RAX) & 0xffffff00); return true;
|
|
case 2: *X64REG(context, reg - X64R_RAX) = (value & 0xffff) | (*X64REG(context, reg - X64R_RAX) & 0xffff0000); return true;
|
|
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
|
|
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
|
|
}
|
|
}
|
|
|
|
sig_log.error("put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", +reg, d_size, value);
|
|
return false;
|
|
}
|
|
|
|
bool set_x64_cmp_flags(x64_context* context, usz d_size, u64 x, u64 y, bool carry = true)
|
|
{
|
|
switch (d_size)
|
|
{
|
|
case 1: break;
|
|
case 2: break;
|
|
case 4: break;
|
|
case 8: break;
|
|
default: sig_log.error("set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
|
|
}
|
|
|
|
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
|
|
const u64 diff = x - y;
|
|
const u64 summ = x + y;
|
|
|
|
if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign)
|
|
{
|
|
EFLAGS(context) |= 0x1; // set CF
|
|
}
|
|
else if (carry)
|
|
{
|
|
EFLAGS(context) &= ~0x1; // clear CF
|
|
}
|
|
|
|
if (x == y)
|
|
{
|
|
EFLAGS(context) |= 0x40; // set ZF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x40; // clear ZF
|
|
}
|
|
|
|
if (diff & sign)
|
|
{
|
|
EFLAGS(context) |= 0x80; // set SF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x80; // clear SF
|
|
}
|
|
|
|
if ((x ^ summ) & (y ^ summ) & sign)
|
|
{
|
|
EFLAGS(context) |= 0x800; // set OF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x800; // clear OF
|
|
}
|
|
|
|
const u8 p1 = static_cast<u8>(diff) ^ (static_cast<u8>(diff) >> 4);
|
|
const u8 p2 = p1 ^ (p1 >> 2);
|
|
const u8 p3 = p2 ^ (p2 >> 1);
|
|
|
|
if ((p3 & 1) == 0)
|
|
{
|
|
EFLAGS(context) |= 0x4; // set PF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x4; // clear PF
|
|
}
|
|
|
|
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
|
|
{
|
|
EFLAGS(context) |= 0x10; // set AF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x10; // clear AF
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
usz get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, usz d_size, usz i_size)
|
|
{
|
|
if (op == X64OP_MOVS || op == X64OP_STOS)
|
|
{
|
|
if (EFLAGS(context) & 0x400 /* direction flag */)
|
|
{
|
|
// TODO
|
|
return 0;
|
|
}
|
|
|
|
if (reg != X64_NOT_SET) // get "full" access size from RCX register
|
|
{
|
|
u64 counter = 1;
|
|
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
return d_size * counter;
|
|
}
|
|
}
|
|
|
|
return d_size;
|
|
}
|
|
|
|
#elif defined(ARCH_ARM64)
|
|
|
|
#if defined(__APPLE__)
|
|
// https://github.com/bombela/backward-cpp/issues/200
|
|
#define RIP(context) ((context)->uc_mcontext->__ss.__pc)
|
|
#elif defined(__FreeBSD__)
|
|
#define RIP(context) ((context)->uc_mcontext.mc_gpregs.gp_elr)
|
|
#elif defined(__NetBSD__)
|
|
#define RIP(context) ((context)->uc_mcontext.__gregs[_REG_PC])
|
|
#elif defined(__OpenBSD__)
|
|
#define RIP(context) ((context)->sc_elr)
|
|
#else
|
|
#define RIP(context) ((context)->uc_mcontext.pc)
|
|
#endif
|
|
|
|
#endif /* ARCH_ */
|
|
|
|
namespace rsx
|
|
{
|
|
extern std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
|
|
}
|
|
|
|
bool handle_access_violation(u32 addr, bool is_writing, ucontext_t* context) noexcept
|
|
{
|
|
g_tls_fault_all++;
|
|
|
|
const auto cpu = get_current_cpu_thread();
|
|
|
|
struct spu_unsavable
|
|
{
|
|
spu_thread* _spu;
|
|
|
|
spu_unsavable(cpu_thread* cpu) noexcept
|
|
: _spu(cpu ? cpu->try_get<spu_thread>() : nullptr)
|
|
{
|
|
if (_spu)
|
|
{
|
|
if (_spu->unsavable)
|
|
{
|
|
_spu = nullptr;
|
|
}
|
|
else
|
|
{
|
|
// Must not be saved inside access violation handler because it is unpredictable
|
|
_spu->unsavable = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
~spu_unsavable() noexcept
|
|
{
|
|
if (_spu)
|
|
{
|
|
_spu->unsavable = false;
|
|
}
|
|
}
|
|
} spu_protection{cpu};
|
|
|
|
if (addr < RAW_SPU_BASE_ADDR && vm::check_addr(addr) && rsx::g_access_violation_handler)
|
|
{
|
|
bool state_changed = false;
|
|
|
|
if (cpu)
|
|
{
|
|
state_changed = vm::temporary_unlock(*cpu);
|
|
}
|
|
|
|
bool handled = rsx::g_access_violation_handler(addr, is_writing);
|
|
|
|
if (state_changed && (cpu->state += cpu_flag::temp, cpu->test_stopped()))
|
|
{
|
|
//
|
|
}
|
|
|
|
if (handled)
|
|
{
|
|
g_tls_fault_rsx++;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#if defined(ARCH_X64)
|
|
const u8* const code = reinterpret_cast<u8*>(RIP(context));
|
|
|
|
x64_op_t op;
|
|
x64_reg_t reg;
|
|
usz d_size;
|
|
usz i_size;
|
|
|
|
// decode single x64 instruction that causes memory access
|
|
decode_x64_reg_op(code, op, reg, d_size, i_size);
|
|
|
|
auto report_opcode = [=]()
|
|
{
|
|
if (op == X64OP_NONE)
|
|
{
|
|
be_t<v128> dump;
|
|
std::memcpy(&dump, code, sizeof(dump));
|
|
sig_log.error("decode_x64_reg_op(%p): unsupported opcode: %s", code, dump);
|
|
}
|
|
};
|
|
|
|
if (0x1'0000'0000ull - addr < d_size)
|
|
{
|
|
sig_log.error("Invalid d_size (0x%llx)", d_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
|
|
// get length of data being accessed
|
|
usz a_size = get_x64_access_size(context, op, reg, d_size, i_size);
|
|
|
|
if (0x1'0000'0000ull - addr < a_size)
|
|
{
|
|
sig_log.error("Invalid a_size (0x%llx)", a_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
|
|
// check if address is RawSPU MMIO register
|
|
do if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
|
|
{
|
|
auto thread = idm::get<named_thread<spu_thread>>(spu_thread::find_raw_spu((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET));
|
|
|
|
if (!thread)
|
|
{
|
|
break;
|
|
}
|
|
|
|
if (!a_size || !d_size || !i_size)
|
|
{
|
|
sig_log.error("Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", +op, +reg, d_size, a_size, i_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
|
|
if (a_size != 4)
|
|
{
|
|
// Might be unimplemented, such as writing MFC proxy EAL+EAH using 64-bit store
|
|
break;
|
|
}
|
|
|
|
switch (op)
|
|
{
|
|
case X64OP_LOAD:
|
|
case X64OP_LOAD_BE:
|
|
case X64OP_LOAD_CMP:
|
|
case X64OP_LOAD_TEST:
|
|
{
|
|
u32 value;
|
|
if (is_writing || !thread->read_reg(addr, value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (op != X64OP_LOAD_BE)
|
|
{
|
|
value = stx::se_storage<u32>::swap(value);
|
|
}
|
|
|
|
if (op == X64OP_LOAD_CMP)
|
|
{
|
|
u64 rvalue;
|
|
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (op == X64OP_LOAD_TEST)
|
|
{
|
|
u64 rvalue;
|
|
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (!put_x64_reg_value(context, reg, d_size, value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case X64OP_BEXTR:
|
|
{
|
|
u32 value;
|
|
if (is_writing || !thread->read_reg(addr, value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
value = stx::se_storage<u32>::swap(value);
|
|
|
|
u64 ctrl;
|
|
if (!get_x64_reg_value(context, s_tls_reg3, d_size, i_size, ctrl))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
u8 start = ctrl & 0xff;
|
|
u8 _len = (ctrl & 0xff00) >> 8;
|
|
if (_len > 32)
|
|
_len = 32;
|
|
if (start > 32)
|
|
start = 32;
|
|
value = (u64{value} >> start) & ~(u64{umax} << _len);
|
|
|
|
if (!put_x64_reg_value(context, reg, d_size, value) || !set_x64_cmp_flags(context, d_size, value, 0))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case X64OP_STORE:
|
|
case X64OP_STORE_BE:
|
|
{
|
|
u64 reg_value;
|
|
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
u32 val32 = static_cast<u32>(reg_value);
|
|
if (!thread->write_reg(addr, op == X64OP_STORE ? stx::se_storage<u32>::swap(val32) : val32))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case X64OP_MOVS: // possibly, TODO
|
|
case X64OP_STOS:
|
|
default:
|
|
{
|
|
sig_log.error("Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", +op, +reg, d_size, i_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// skip processed instruction
|
|
RIP(context) += i_size;
|
|
g_tls_fault_spu++;
|
|
return true;
|
|
} while (0);
|
|
#else
|
|
static_cast<void>(context);
|
|
#endif /* ARCH_ */
|
|
|
|
if (vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
// Hack: allocate memory in case the emulator is stopping
|
|
const auto hack_alloc = [&]()
|
|
{
|
|
g_tls_access_violation_recovered = true;
|
|
|
|
if (vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
const auto area = vm::reserve_map(vm::any, addr & -0x10000, 0x10000);
|
|
|
|
if (!area)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (vm::writer_lock mlock; area->flags & vm::preallocated || vm::check_addr(addr, 0))
|
|
{
|
|
// For allocated memory with protection lower than required (such as protection::no or read-only while writing to it)
|
|
utils::memory_protect(vm::base(addr & -0x1000), 0x1000, utils::protection::rw);
|
|
return true;
|
|
}
|
|
|
|
return area->falloc(addr & -0x10000, 0x10000) || vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable);
|
|
};
|
|
|
|
if (cpu && (cpu->get_class() == thread_class::ppu || cpu->get_class() == thread_class::spu))
|
|
{
|
|
vm::temporary_unlock(*cpu);
|
|
u32 pf_port_id = 0;
|
|
|
|
if (auto& pf_entries = g_fxo->get<page_fault_notification_entries>(); true)
|
|
{
|
|
if (auto mem = vm::get(vm::any, addr))
|
|
{
|
|
reader_lock lock(pf_entries.mutex);
|
|
|
|
for (const auto& entry : pf_entries.entries)
|
|
{
|
|
if (entry.start_addr == mem->addr)
|
|
{
|
|
pf_port_id = entry.port_id;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto pf_port = idm::get<lv2_obj, lv2_event_port>(pf_port_id); pf_port && pf_port->queue)
|
|
{
|
|
// We notify the game that a page fault occurred so it can rectify it.
|
|
// Note, for data3, were the memory readable AND we got a page fault, it must be due to a write violation since reads are allowed.
|
|
u64 data1 = addr;
|
|
u64 data2 = 0;
|
|
|
|
if (cpu->try_get<ppu_thread>())
|
|
{
|
|
data2 = (SYS_MEMORY_PAGE_FAULT_TYPE_PPU_THREAD << 32) | cpu->id;
|
|
}
|
|
else if (auto spu = cpu->try_get<spu_thread>())
|
|
{
|
|
const u64 type = spu->get_type() == spu_type::threaded ?
|
|
SYS_MEMORY_PAGE_FAULT_TYPE_SPU_THREAD :
|
|
SYS_MEMORY_PAGE_FAULT_TYPE_RAW_SPU;
|
|
|
|
data2 = (type << 32) | spu->lv2_id;
|
|
}
|
|
|
|
u64 data3;
|
|
{
|
|
vm::writer_lock rlock;
|
|
if (vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable))
|
|
{
|
|
// Memory was allocated inbetween, retry
|
|
return true;
|
|
}
|
|
else if (vm::check_addr(addr))
|
|
{
|
|
data3 = SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY; // TODO
|
|
}
|
|
else
|
|
{
|
|
data3 = SYS_MEMORY_PAGE_FAULT_CAUSE_NON_MAPPED;
|
|
}
|
|
}
|
|
|
|
|
|
// Now, place the page fault event onto table so that other functions [sys_mmapper_free_address and pagefault recovery funcs etc]
|
|
// know that this thread is page faulted and where.
|
|
|
|
auto& pf_events = g_fxo->get<page_fault_event_entries>();
|
|
|
|
// De-schedule
|
|
if (cpu->get_class() == thread_class::ppu)
|
|
{
|
|
cpu->state -= cpu_flag::signal; // Cannot use check_state here and signal must be removed if exists
|
|
lv2_obj::sleep(*cpu);
|
|
}
|
|
|
|
auto send_event = [&]() -> error_code
|
|
{
|
|
lv2_obj::notify_all_t notify_later{};
|
|
|
|
std::lock_guard pf_lock(pf_events.pf_mutex);
|
|
|
|
if (auto error = pf_port->queue->send(pf_port->name ? pf_port->name : ((u64{process_getpid() + 0u} << 32) | u64{pf_port_id}), data1, data2, data3))
|
|
{
|
|
return error;
|
|
}
|
|
|
|
pf_events.events.emplace(cpu, addr);
|
|
return {};
|
|
};
|
|
|
|
sig_log.warning("Page_fault %s location 0x%x because of %s memory", is_writing ? "writing" : "reading",
|
|
addr, data3 == SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY ? "writing read-only" : "using unmapped");
|
|
|
|
if (cpu->get_class() == thread_class::ppu)
|
|
{
|
|
if (const auto func = static_cast<ppu_thread*>(cpu)->current_function)
|
|
{
|
|
sig_log.warning("Page_fault while in function %s", func);
|
|
}
|
|
}
|
|
|
|
error_code sending_error = not_an_error(CELL_EBUSY);
|
|
|
|
// If we fail due to being busy, wait a bit and try again.
|
|
for (; static_cast<u32>(sending_error) == CELL_EBUSY; thread_ctrl::wait_for(1000))
|
|
{
|
|
sending_error = send_event();
|
|
|
|
if (cpu->is_stopped())
|
|
{
|
|
sending_error = {};
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sending_error)
|
|
{
|
|
vm_log.error("Unknown error 0x%x while trying to pass page fault.", +sending_error);
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// Wait until the thread is recovered
|
|
while (auto state = cpu->state.fetch_sub(cpu_flag::signal))
|
|
{
|
|
if (is_stopped(state) || state & cpu_flag::signal)
|
|
{
|
|
break;
|
|
}
|
|
|
|
thread_ctrl::wait_on(cpu->state, state);
|
|
}
|
|
}
|
|
|
|
// Reschedule, test cpu state and try recovery if stopped
|
|
if (cpu->test_stopped() && !hack_alloc())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (cpu->get_class() == thread_class::spu)
|
|
{
|
|
if (!g_tls_access_violation_recovered)
|
|
{
|
|
vm_log.notice("\n%s", dump_useful_thread_info());
|
|
vm_log.always()("[%s] Access violation %s location 0x%x (%s)", cpu->get_name(), is_writing ? "writing" : "reading", addr, (is_writing && vm::check_addr(addr)) ? "read-only memory" : "unmapped memory");
|
|
}
|
|
|
|
// TODO:
|
|
// RawSPU: Send appropriate interrupt
|
|
// SPUThread: Send sys_spu exception event
|
|
cpu->state += cpu_flag::dbg_pause;
|
|
|
|
if (cpu->check_state() && !hack_alloc())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (auto last_func = static_cast<ppu_thread*>(cpu)->current_function)
|
|
{
|
|
ppu_log.fatal("Function aborted: %s", last_func);
|
|
}
|
|
|
|
lv2_obj::sleep(*cpu);
|
|
}
|
|
}
|
|
|
|
if (cpu)
|
|
{
|
|
cpu->state += cpu_flag::wait;
|
|
}
|
|
|
|
Emu.Pause(true);
|
|
|
|
if (!g_tls_access_violation_recovered)
|
|
{
|
|
vm_log.notice("\n%s", dump_useful_thread_info());
|
|
}
|
|
|
|
// Note: a thread may access violate more than once after hack_alloc recovery
|
|
// Do not log any further access violations in this case.
|
|
if (!g_tls_access_violation_recovered)
|
|
{
|
|
vm_log.fatal("Access violation %s location 0x%x (%s)", is_writing ? "writing" : (cpu && cpu->get_class() == thread_class::ppu && cpu->get_pc() == addr ? "executing" : "reading"), addr, (is_writing && vm::check_addr(addr)) ? "read-only memory" : "unmapped memory");
|
|
}
|
|
|
|
while (Emu.IsPaused())
|
|
{
|
|
thread_ctrl::wait();
|
|
}
|
|
|
|
if (Emu.IsStopped() && !hack_alloc())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void append_thread_name(std::string& msg)
|
|
{
|
|
if (thread_ctrl::get_current())
|
|
{
|
|
fmt::append(msg, "Emu Thread Name: '%s'.\n", thread_ctrl::get_name());
|
|
}
|
|
else if (thread_ctrl::is_main())
|
|
{
|
|
fmt::append(msg, "Thread: Main Thread.\n");
|
|
}
|
|
else
|
|
{
|
|
fmt::append(msg, "Thread id = %u.\n", thread_ctrl::get_tid());
|
|
}
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
static LONG exception_handler(PEXCEPTION_POINTERS pExp) noexcept
|
|
{
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_BREAKPOINT)
|
|
{
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
const auto ptr = reinterpret_cast<u8*>(pExp->ExceptionRecord->ExceptionInformation[1]);
|
|
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] == 1;
|
|
const bool is_executing = pExp->ExceptionRecord->ExceptionInformation[0] == 8;
|
|
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && !is_executing)
|
|
{
|
|
u32 addr = 0;
|
|
|
|
if (auto [addr0, ok] = vm::try_get_addr(ptr); ok)
|
|
{
|
|
addr = addr0;
|
|
}
|
|
else if (const usz exec64 = (ptr - vm::g_exec_addr) / 2; exec64 <= u32{umax})
|
|
{
|
|
addr = static_cast<u32>(exec64);
|
|
}
|
|
else
|
|
{
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
if (thread_ctrl::get_current() && handle_access_violation(addr, is_writing, pExp->ContextRecord))
|
|
{
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
}
|
|
|
|
switch (pExp->ExceptionRecord->ExceptionCode)
|
|
{
|
|
case EXCEPTION_ACCESS_VIOLATION:
|
|
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
|
|
case EXCEPTION_DATATYPE_MISALIGNMENT:
|
|
case EXCEPTION_ILLEGAL_INSTRUCTION:
|
|
case EXCEPTION_IN_PAGE_ERROR:
|
|
case EXCEPTION_INT_DIVIDE_BY_ZERO:
|
|
case EXCEPTION_NONCONTINUABLE_EXCEPTION:
|
|
case EXCEPTION_PRIV_INSTRUCTION:
|
|
//case EXCEPTION_STACK_OVERFLOW:
|
|
{
|
|
sys_log.notice("\n%s", dump_useful_thread_info());
|
|
logs::listener::sync_all();
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
static LONG exception_filter(PEXCEPTION_POINTERS pExp) noexcept
|
|
{
|
|
std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode);
|
|
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
|
|
{
|
|
const auto cause =
|
|
pExp->ExceptionRecord->ExceptionInformation[0] == 8 ? "executing" :
|
|
pExp->ExceptionRecord->ExceptionInformation[0] == 1 ? "writing" : "reading";
|
|
|
|
fmt::append(msg, "Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress);
|
|
}
|
|
else
|
|
{
|
|
fmt::append(msg, "Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress);
|
|
|
|
for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++)
|
|
{
|
|
fmt::append(msg, "ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]);
|
|
}
|
|
}
|
|
|
|
append_thread_name(msg);
|
|
|
|
std::vector<HMODULE> modules;
|
|
for (DWORD size = 256; modules.size() != size; size /= sizeof(HMODULE))
|
|
{
|
|
modules.resize(size);
|
|
if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size))
|
|
{
|
|
modules.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
fmt::append(msg, "Instruction address: %p.\n", pExp->ContextRecord->Rip);
|
|
|
|
DWORD64 unwind_base;
|
|
if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr))
|
|
{
|
|
// Get function address
|
|
const DWORD64 func_addr = rtf->BeginAddress + unwind_base;
|
|
fmt::append(msg, "Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress);
|
|
|
|
// Access UNWIND_INFO structure
|
|
//const auto uw = (u8*)(unwind_base + rtf->UnwindData);
|
|
}
|
|
|
|
for (HMODULE _module : modules)
|
|
{
|
|
MODULEINFO info;
|
|
if (GetModuleInformation(GetCurrentProcess(), _module, &info, sizeof(info)))
|
|
{
|
|
const DWORD64 base = reinterpret_cast<DWORD64>(info.lpBaseOfDll);
|
|
|
|
if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage)
|
|
{
|
|
std::string module_name;
|
|
for (DWORD size = 15; module_name.size() != size;)
|
|
{
|
|
module_name.resize(size);
|
|
size = GetModuleBaseNameA(GetCurrentProcess(), _module, &module_name.front(), size + 1);
|
|
if (!size)
|
|
{
|
|
module_name.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
fmt::append(msg, "Module name: '%s'.\n", module_name);
|
|
fmt::append(msg, "Module base: %p.\n", info.lpBaseOfDll);
|
|
}
|
|
}
|
|
}
|
|
|
|
fmt::append(msg, "RPCS3 image base: %p.\n", GetModuleHandle(NULL));
|
|
|
|
// TODO: print registers and the callstack
|
|
|
|
sys_log.fatal("\n%s", msg);
|
|
logs::listener::sync_all();
|
|
|
|
thread_ctrl::emergency_exit(msg);
|
|
}
|
|
|
|
const bool s_exception_handler_set = []() -> bool
|
|
{
|
|
#ifdef USE_ASAN
|
|
if (!AddVectoredExceptionHandler(FALSE, static_cast<PVECTORED_EXCEPTION_HANDLER>(exception_handler)))
|
|
#else
|
|
if (!AddVectoredExceptionHandler(1, static_cast<PVECTORED_EXCEPTION_HANDLER>(exception_handler)))
|
|
#endif
|
|
{
|
|
report_fatal_error("AddVectoredExceptionHandler() failed.");
|
|
}
|
|
|
|
if (!SetUnhandledExceptionFilter(static_cast<LPTOP_LEVEL_EXCEPTION_FILTER>(exception_filter)))
|
|
{
|
|
report_fatal_error("SetUnhandledExceptionFilter() failed.");
|
|
}
|
|
|
|
return true;
|
|
}();
|
|
|
|
#else
|
|
|
|
static void signal_handler(int /*sig*/, siginfo_t* info, void* uct) noexcept
|
|
{
|
|
ucontext_t* context = static_cast<ucontext_t*>(uct);
|
|
|
|
#if defined(ARCH_X64)
|
|
#ifdef __APPLE__
|
|
const u64 err = context->uc_mcontext->__es.__err;
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__)
|
|
const u64 err = context->uc_mcontext.mc_err;
|
|
#elif defined(__OpenBSD__)
|
|
const u64 err = context->sc_err;
|
|
#elif defined(__NetBSD__)
|
|
const u64 err = context->uc_mcontext.__gregs[_REG_ERR];
|
|
#else
|
|
const u64 err = context->uc_mcontext.gregs[REG_ERR];
|
|
#endif
|
|
|
|
const bool is_executing = err & 0x10;
|
|
const bool is_writing = err & 0x2;
|
|
#elif defined(ARCH_ARM64)
|
|
const bool is_executing = uptr(info->si_addr) == uptr(RIP(context));
|
|
const u32 insn = is_executing ? 0 : *reinterpret_cast<u32*>(RIP(context));
|
|
const bool is_writing = (insn & 0xbfff0000) == 0x0c000000
|
|
|| (insn & 0xbfe00000) == 0x0c800000
|
|
|| (insn & 0xbfdf0000) == 0x0d000000
|
|
|| (insn & 0xbfc00000) == 0x0d800000
|
|
|| (insn & 0x3f400000) == 0x08000000
|
|
|| (insn & 0x3bc00000) == 0x39000000
|
|
|| (insn & 0x3fc00000) == 0x3d800000
|
|
|| (insn & 0x3bc00000) == 0x38000000
|
|
|| (insn & 0x3fe00000) == 0x3c800000
|
|
|| (insn & 0x3a400000) == 0x28000000;
|
|
|
|
#else
|
|
#error "signal_handler not implemented"
|
|
#endif
|
|
|
|
const u64 exec64 = (reinterpret_cast<u64>(info->si_addr) - reinterpret_cast<u64>(vm::g_exec_addr)) / 2;
|
|
const auto cause = is_executing ? "executing" : is_writing ? "writing" : "reading";
|
|
|
|
if (auto [addr, ok] = vm::try_get_addr(info->si_addr); ok && !is_executing)
|
|
{
|
|
// Try to process access violation
|
|
if (thread_ctrl::get_current() && handle_access_violation(addr, is_writing, context))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (exec64 < 0x100000000ull && !is_executing)
|
|
{
|
|
if (thread_ctrl::get_current() && handle_access_violation(static_cast<u32>(exec64), is_writing, context))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::string msg = fmt::format("Segfault %s location %p at %p.\n", cause, info->si_addr, RIP(context));
|
|
|
|
append_thread_name(msg);
|
|
|
|
sys_log.fatal("\n%s", msg);
|
|
sys_log.notice("\n%s", dump_useful_thread_info());
|
|
logs::listener::sync_all();
|
|
|
|
if (IsDebuggerPresent())
|
|
{
|
|
// Convert to SIGTRAP
|
|
raise(SIGTRAP);
|
|
return;
|
|
}
|
|
|
|
thread_ctrl::emergency_exit(msg);
|
|
}
|
|
|
|
static void sigill_handler(int /*sig*/, siginfo_t* info, void* /*uct*/) noexcept
|
|
{
|
|
std::string msg = fmt::format("Illegal instruction at %p (%s).\n", info->si_addr, *reinterpret_cast<be_t<u128>*>(info->si_addr));
|
|
|
|
append_thread_name(msg);
|
|
|
|
sys_log.fatal("\n%s", msg);
|
|
sys_log.notice("\n%s", dump_useful_thread_info());
|
|
logs::listener::sync_all();
|
|
|
|
if (IsDebuggerPresent())
|
|
{
|
|
// Convert to SIGTRAP
|
|
raise(SIGTRAP);
|
|
return;
|
|
}
|
|
|
|
thread_ctrl::emergency_exit(msg);
|
|
}
|
|
|
|
void sigpipe_signaling_handler(int)
|
|
{
|
|
}
|
|
|
|
const bool s_exception_handler_set = []() -> bool
|
|
{
|
|
struct ::sigaction sa;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_sigaction = signal_handler;
|
|
|
|
if (::sigaction(SIGSEGV, &sa, NULL) == -1)
|
|
{
|
|
std::fprintf(stderr, "sigaction(SIGSEGV) failed (%d).\n", errno);
|
|
std::abort();
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
if (::sigaction(SIGBUS, &sa, NULL) == -1)
|
|
{
|
|
std::fprintf(stderr, "sigaction(SIGBUS) failed (%d).\n", errno);
|
|
std::abort();
|
|
}
|
|
#endif
|
|
|
|
sa.sa_sigaction = sigill_handler;
|
|
if (::sigaction(SIGILL, &sa, NULL) == -1)
|
|
{
|
|
std::fprintf(stderr, "sigaction(SIGILL) failed (%d).\n", errno);
|
|
std::abort();
|
|
}
|
|
|
|
sa.sa_handler = sigpipe_signaling_handler;
|
|
if (::sigaction(SIGPIPE, &sa, NULL) == -1)
|
|
{
|
|
std::fprintf(stderr, "sigaction(SIGPIPE) failed (%d).\n", errno);
|
|
std::abort();
|
|
}
|
|
|
|
std::printf("Debugger: %d\n", +IsDebuggerPresent());
|
|
return true;
|
|
}();
|
|
|
|
#endif
|
|
|
|
const bool s_terminate_handler_set = []() -> bool
|
|
{
|
|
std::set_terminate([]()
|
|
{
|
|
if (IsDebuggerPresent())
|
|
{
|
|
logs::listener::sync_all();
|
|
utils::trap();
|
|
}
|
|
|
|
report_fatal_error("RPCS3 has abnormally terminated.");
|
|
});
|
|
|
|
return true;
|
|
}();
|
|
|
|
thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr;
|
|
|
|
thread_local DECLARE(thread_ctrl::g_tls_error_callback) = nullptr;
|
|
|
|
DECLARE(thread_ctrl::g_native_core_layout) { native_core_arrangement::undefined };
|
|
|
|
void thread_base::start()
|
|
{
|
|
m_sync.atomic_op([&](u32& v)
|
|
{
|
|
v &= ~static_cast<u32>(thread_state::mask);
|
|
v |= static_cast<u32>(thread_state::created);
|
|
});
|
|
|
|
#ifdef _WIN32
|
|
m_thread = ::_beginthreadex(nullptr, 0, entry_point, this, CREATE_SUSPENDED, nullptr);
|
|
ensure(m_thread);
|
|
ensure(::ResumeThread(reinterpret_cast<HANDLE>(+m_thread)) != static_cast<DWORD>(-1));
|
|
#elif defined(__APPLE__)
|
|
pthread_attr_t stack_size_attr;
|
|
pthread_attr_init(&stack_size_attr);
|
|
pthread_attr_setstacksize(&stack_size_attr, 0x800000);
|
|
ensure(pthread_create(reinterpret_cast<pthread_t*>(&m_thread.raw()), &stack_size_attr, entry_point, this) == 0);
|
|
#else
|
|
ensure(pthread_create(reinterpret_cast<pthread_t*>(&m_thread.raw()), nullptr, entry_point, this) == 0);
|
|
#endif
|
|
}
|
|
|
|
void thread_base::initialize(void (*error_cb)())
|
|
{
|
|
#ifndef _WIN32
|
|
m_thread.release(reinterpret_cast<u64>(pthread_self()));
|
|
#endif
|
|
|
|
// Initialize TLS variables
|
|
thread_ctrl::g_tls_this_thread = this;
|
|
|
|
thread_ctrl::g_tls_error_callback = error_cb;
|
|
|
|
g_tls_log_prefix = []
|
|
{
|
|
return thread_ctrl::get_name_cached();
|
|
};
|
|
|
|
atomic_wait_engine::set_wait_callback([](const void*, u64 attempts, u64 stamp0) -> bool
|
|
{
|
|
if (attempts == umax)
|
|
{
|
|
g_tls_wait_time += utils::get_tsc() - stamp0;
|
|
}
|
|
else if (attempts > 1)
|
|
{
|
|
g_tls_wait_fail += attempts - 1;
|
|
}
|
|
|
|
return true;
|
|
});
|
|
|
|
set_name(thread_ctrl::get_name_cached());
|
|
}
|
|
|
|
void thread_base::set_name(std::string name)
|
|
{
|
|
#ifdef _WIN32
|
|
if (SetThreadDescriptionImport)
|
|
{
|
|
SetThreadDescriptionImport(GetCurrentThread(), utf8_to_wchar(name).c_str());
|
|
}
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
struct THREADNAME_INFO
|
|
{
|
|
DWORD dwType;
|
|
LPCSTR szName;
|
|
DWORD dwThreadID;
|
|
DWORD dwFlags;
|
|
};
|
|
|
|
// Set thread name for VS debugger
|
|
if (IsDebuggerPresent()) [&]() NEVER_INLINE
|
|
{
|
|
THREADNAME_INFO info;
|
|
info.dwType = 0x1000;
|
|
info.szName = name.c_str();
|
|
info.dwThreadID = -1;
|
|
info.dwFlags = 0;
|
|
|
|
__try
|
|
{
|
|
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
|
|
}
|
|
__except (EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
}
|
|
}();
|
|
#endif
|
|
|
|
#if defined(__APPLE__)
|
|
name.resize(std::min<usz>(15, name.size()));
|
|
pthread_setname_np(name.c_str());
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
|
|
pthread_set_name_np(pthread_self(), name.c_str());
|
|
#elif defined(__NetBSD__)
|
|
pthread_setname_np(pthread_self(), "%s", name.data());
|
|
#elif !defined(_WIN32)
|
|
name.resize(std::min<usz>(15, name.size()));
|
|
pthread_setname_np(pthread_self(), name.c_str());
|
|
#endif
|
|
}
|
|
|
|
u64 thread_base::finalize(thread_state result_state) noexcept
|
|
{
|
|
// Report pending errors
|
|
error_code::error_report(0, nullptr, nullptr, nullptr, nullptr);
|
|
|
|
#ifdef _WIN32
|
|
static thread_local ULONG64 tls_cycles{};
|
|
static thread_local u64 tls_time{};
|
|
ULONG64 cycles{};
|
|
QueryThreadCycleTime(GetCurrentThread(), &cycles);
|
|
cycles -= tls_cycles;
|
|
tls_cycles += cycles;
|
|
FILETIME ctime, etime, ktime, utime;
|
|
GetThreadTimes(GetCurrentThread(), &ctime, &etime, &ktime, &utime);
|
|
const u64 time = ((ktime.dwLowDateTime | static_cast<u64>(ktime.dwHighDateTime) << 32) + (utime.dwLowDateTime | static_cast<u64>(utime.dwHighDateTime) << 32)) * 100ull - tls_time;
|
|
tls_time += time;
|
|
const u64 fsoft = 0;
|
|
const u64 fhard = 0;
|
|
const u64 ctxvol = 0;
|
|
const u64 ctxinv = 0;
|
|
#elif defined(RUSAGE_THREAD)
|
|
static thread_local u64 tls_time{}, tls_fsoft{}, tls_fhard{}, tls_ctxvol{}, tls_ctxinv{};
|
|
const u64 cycles = 0; // Not supported
|
|
struct ::rusage stats{};
|
|
::getrusage(RUSAGE_THREAD, &stats);
|
|
const u64 time = (stats.ru_utime.tv_sec + stats.ru_stime.tv_sec) * 1000000000ull + (stats.ru_utime.tv_usec + stats.ru_stime.tv_usec) * 1000ull - tls_time;
|
|
tls_time += time;
|
|
const u64 fsoft = stats.ru_minflt - tls_fsoft;
|
|
tls_fsoft += fsoft;
|
|
const u64 fhard = stats.ru_majflt - tls_fhard;
|
|
tls_fhard += fhard;
|
|
const u64 ctxvol = stats.ru_nvcsw - tls_ctxvol;
|
|
tls_ctxvol += ctxvol;
|
|
const u64 ctxinv = stats.ru_nivcsw - tls_ctxinv;
|
|
tls_ctxinv += ctxinv;
|
|
#else
|
|
const u64 cycles = 0;
|
|
const u64 time = 0;
|
|
const u64 fsoft = 0;
|
|
const u64 fhard = 0;
|
|
const u64 ctxvol = 0;
|
|
const u64 ctxinv = 0;
|
|
#endif
|
|
|
|
g_tls_log_prefix = []
|
|
{
|
|
return thread_ctrl::get_name_cached();
|
|
};
|
|
|
|
const bool is_cpu_thread = !!cpu_thread::get_current();
|
|
auto& thread_log = (is_cpu_thread || g_tls_fault_all ? sig_log.notice : sig_log.trace);
|
|
|
|
thread_log("Thread time: %fs (%fGc); Faults: %u [rsx:%u, spu:%u]; [soft:%u hard:%u]; Switches:[vol:%u unvol:%u]; Wait:[%.3fs, spur:%u]",
|
|
time / 1000000000.,
|
|
cycles / 1000000000.,
|
|
g_tls_fault_all,
|
|
g_tls_fault_rsx,
|
|
g_tls_fault_spu,
|
|
fsoft, fhard, ctxvol, ctxinv,
|
|
g_tls_wait_time / (utils::get_tsc_freq() / 1.),
|
|
g_tls_wait_fail);
|
|
|
|
atomic_wait_engine::set_wait_callback(nullptr);
|
|
|
|
// Avoid race with the destructor
|
|
const u64 _self = m_thread;
|
|
|
|
// Set result state (errored or finalized)
|
|
m_sync.fetch_op([&](u32& v)
|
|
{
|
|
v &= -4;
|
|
v |= static_cast<u32>(result_state);
|
|
});
|
|
|
|
// Signal waiting threads
|
|
m_sync.notify_all();
|
|
|
|
return _self;
|
|
}
|
|
|
|
thread_base::native_entry thread_base::finalize(u64 _self) noexcept
|
|
{
|
|
g_tls_fault_all = 0;
|
|
g_tls_fault_rsx = 0;
|
|
g_tls_fault_spu = 0;
|
|
g_tls_wait_time = 0;
|
|
g_tls_wait_fail = 0;
|
|
g_tls_access_violation_recovered = false;
|
|
|
|
g_tls_log_prefix = []() -> std::string { return {}; };
|
|
|
|
if (_self == umax)
|
|
{
|
|
thread_ctrl::g_tls_this_thread = nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
_endthreadex(0);
|
|
#else
|
|
pthread_exit(nullptr);
|
|
#endif
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
thread_base::native_entry thread_base::make_trampoline(u64(*entry)(thread_base* _base))
|
|
{
|
|
return build_function_asm<native_entry>("", [&](native_asm& c, auto& args)
|
|
{
|
|
using namespace asmjit;
|
|
|
|
#if defined(ARCH_X64)
|
|
Label _ret = c.newLabel();
|
|
c.push(x86::rbp);
|
|
c.sub(x86::rsp, 0x20);
|
|
|
|
// Call entry point (TODO: support for detached threads missing?)
|
|
c.call(entry);
|
|
|
|
// Call finalize, return if zero
|
|
c.mov(args[0], x86::rax);
|
|
c.call(static_cast<native_entry(*)(u64)>(&finalize));
|
|
c.test(x86::rax, x86::rax);
|
|
c.jz(_ret);
|
|
|
|
// Otherwise, call it as an entry point with first arg = new current thread
|
|
c.mov(x86::rbp, x86::rax);
|
|
c.call(thread_ctrl::get_current);
|
|
c.mov(args[0], x86::rax);
|
|
c.add(x86::rsp, 0x28);
|
|
c.jmp(x86::rbp);
|
|
|
|
c.bind(_ret);
|
|
c.add(x86::rsp, 0x28);
|
|
c.ret();
|
|
#endif
|
|
});
|
|
}
|
|
|
|
thread_state thread_ctrl::state()
|
|
{
|
|
auto _this = g_tls_this_thread;
|
|
|
|
// Guard for recursive calls (TODO: may be more effective to reuse one of m_sync bits)
|
|
static thread_local bool s_tls_exec = false;
|
|
|
|
// Drain execution queue
|
|
if (!s_tls_exec)
|
|
{
|
|
s_tls_exec = true;
|
|
_this->exec();
|
|
s_tls_exec = false;
|
|
}
|
|
|
|
return static_cast<thread_state>(_this->m_sync & 3);
|
|
}
|
|
|
|
void thread_ctrl::wait_for(u64 usec, [[maybe_unused]] bool alert /* true */)
|
|
{
|
|
if (!usec)
|
|
{
|
|
return;
|
|
}
|
|
|
|
auto _this = g_tls_this_thread;
|
|
|
|
if (!alert && usec > 50000)
|
|
{
|
|
usec = 50000;
|
|
}
|
|
|
|
#ifdef __linux__
|
|
static thread_local struct linux_timer_handle_t
|
|
{
|
|
// Allocate timer only if needed (i.e. someone calls wait_for with alert and short period)
|
|
const int m_timer = timerfd_create(CLOCK_MONOTONIC, 0);
|
|
|
|
linux_timer_handle_t() noexcept
|
|
{
|
|
if (m_timer == -1)
|
|
{
|
|
sig_log.error("Linux timer allocation failed, using the fallback instead.");
|
|
}
|
|
}
|
|
|
|
operator int() const
|
|
{
|
|
return m_timer;
|
|
}
|
|
|
|
~linux_timer_handle_t()
|
|
{
|
|
if (m_timer != -1)
|
|
{
|
|
close(m_timer);
|
|
}
|
|
}
|
|
} fd_timer;
|
|
|
|
if (!alert && fd_timer != -1)
|
|
{
|
|
struct itimerspec timeout;
|
|
u64 missed;
|
|
|
|
timeout.it_value.tv_nsec = usec % 1'000'000 * 1'000ull;
|
|
timeout.it_value.tv_sec = usec / 1'000'000;
|
|
timeout.it_interval.tv_sec = 0;
|
|
timeout.it_interval.tv_nsec = 0;
|
|
timerfd_settime(fd_timer, 0, &timeout, NULL);
|
|
if (read(fd_timer, &missed, sizeof(missed)) != sizeof(missed))
|
|
sig_log.error("timerfd: read() failed");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (alert)
|
|
{
|
|
if (_this->m_sync.bit_test_reset(2) || _this->m_taskq)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Wait for signal and thread state abort
|
|
atomic_wait::list<2> list{};
|
|
|
|
if (alert)
|
|
{
|
|
list.set<0>(_this->m_sync, 0);
|
|
list.set<1>(utils::bless<atomic_t<u32>>(&_this->m_taskq)[1], 0);
|
|
}
|
|
else
|
|
{
|
|
list.set<0>(_this->m_dummy, 0);
|
|
}
|
|
|
|
list.wait(atomic_wait_timeout{usec <= 0xffff'ffff'ffff'ffff / 1000 ? usec * 1000 : 0xffff'ffff'ffff'ffff});
|
|
}
|
|
|
|
void thread_ctrl::wait_for_accurate(u64 usec)
|
|
{
|
|
if (!usec)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (usec > 50000)
|
|
{
|
|
fmt::throw_exception("thread_ctrl::wait_for_accurate: unsupported amount");
|
|
}
|
|
|
|
#ifdef __linux__
|
|
return wait_for(usec, false);
|
|
#else
|
|
using namespace std::chrono_literals;
|
|
|
|
const auto until = std::chrono::steady_clock::now() + 1us * usec;
|
|
|
|
while (true)
|
|
{
|
|
// Host scheduler quantum for windows (worst case)
|
|
constexpr u64 host_min_quantum = 500;
|
|
|
|
if (usec >= host_min_quantum)
|
|
{
|
|
// Wait on multiple of min quantum for large durations to avoid overloading low thread cpus
|
|
wait_for(usec - (usec % host_min_quantum), false);
|
|
}
|
|
// TODO: Determine best value for yield delay
|
|
else if (usec >= host_min_quantum / 2)
|
|
{
|
|
std::this_thread::yield();
|
|
}
|
|
else
|
|
{
|
|
busy_wait(100);
|
|
}
|
|
|
|
const auto current = std::chrono::steady_clock::now();
|
|
|
|
if (current >= until)
|
|
{
|
|
break;
|
|
}
|
|
|
|
usec = std::chrono::duration_cast<std::chrono::microseconds>(until - current).count();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
std::string thread_ctrl::get_name_cached()
|
|
{
|
|
auto _this = thread_ctrl::g_tls_this_thread;
|
|
|
|
if (!_this)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
static thread_local shared_ptr<std::string> name_cache;
|
|
|
|
if (!_this->m_tname.is_equal(name_cache)) [[unlikely]]
|
|
{
|
|
_this->m_tname.peek_op([&](const shared_ptr<std::string>& ptr)
|
|
{
|
|
if (ptr != name_cache)
|
|
{
|
|
name_cache = ptr;
|
|
}
|
|
});
|
|
}
|
|
|
|
return *name_cache;
|
|
}
|
|
|
|
thread_base::thread_base(native_entry entry, std::string name)
|
|
: entry_point(entry)
|
|
, m_tname(make_single_value(std::move(name)))
|
|
{
|
|
}
|
|
|
|
thread_base::~thread_base()
|
|
{
|
|
// Cleanup abandoned tasks: initialize default results and signal
|
|
this->exec();
|
|
|
|
// Cleanup
|
|
{
|
|
#ifdef _WIN32
|
|
const HANDLE handle0 = reinterpret_cast<HANDLE>(m_thread.load());
|
|
WaitForSingleObject(handle0, INFINITE);
|
|
CloseHandle(handle0);
|
|
#else
|
|
pthread_join(reinterpret_cast<pthread_t>(m_thread.load()), nullptr);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool thread_base::join(bool dtor) const
|
|
{
|
|
// Check if already finished
|
|
if (m_sync & 2)
|
|
{
|
|
return (m_sync & 3) == 3;
|
|
}
|
|
|
|
// Hacked for too sleepy threads (1ms) TODO: make sure it's unneeded and remove
|
|
const auto timeout = dtor && Emu.IsStopped() ? atomic_wait_timeout{1'000'000} : atomic_wait_timeout::inf;
|
|
|
|
auto stamp0 = utils::get_tsc();
|
|
|
|
for (u64 i = 0; (m_sync & 3) <= 1; i++)
|
|
{
|
|
m_sync.wait(m_sync & ~2, timeout);
|
|
|
|
if (m_sync & 2)
|
|
{
|
|
break;
|
|
}
|
|
|
|
if (i >= 16 && !(i & (i - 1)) && timeout != atomic_wait_timeout::inf)
|
|
{
|
|
sig_log.error(u8"Thread [%s] is too sleepy. Waiting for it %.3fµs already!", *m_tname.load(), (utils::get_tsc() - stamp0) / (utils::get_tsc_freq() / 1000000.));
|
|
}
|
|
}
|
|
|
|
return (m_sync & 3) == 3;
|
|
}
|
|
|
|
void thread_base::notify()
|
|
{
|
|
// Set notification
|
|
m_sync |= 4;
|
|
m_sync.notify_all();
|
|
}
|
|
|
|
u64 thread_base::get_native_id() const
|
|
{
|
|
#ifdef _WIN32
|
|
return GetThreadId(reinterpret_cast<HANDLE>(m_thread.load()));
|
|
#else
|
|
return m_thread.load();
|
|
#endif
|
|
}
|
|
|
|
u64 thread_base::get_cycles()
|
|
{
|
|
u64 cycles = 0;
|
|
|
|
const u64 handle = m_thread;
|
|
|
|
#ifdef _WIN32
|
|
if (QueryThreadCycleTime(reinterpret_cast<HANDLE>(handle), &cycles))
|
|
{
|
|
#elif __APPLE__
|
|
mach_port_name_t port = pthread_mach_thread_np(reinterpret_cast<pthread_t>(handle));
|
|
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
|
|
thread_basic_info_data_t info;
|
|
kern_return_t ret = thread_info(port, THREAD_BASIC_INFO, reinterpret_cast<thread_info_t>(&info), &count);
|
|
if (ret == KERN_SUCCESS)
|
|
{
|
|
cycles = static_cast<u64>(info.user_time.seconds + info.system_time.seconds) * 1'000'000'000 +
|
|
static_cast<u64>(info.user_time.microseconds + info.system_time.microseconds) * 1'000;
|
|
#else
|
|
clockid_t _clock;
|
|
struct timespec thread_time;
|
|
if (!pthread_getcpuclockid(reinterpret_cast<pthread_t>(handle), &_clock) && !clock_gettime(_clock, &thread_time))
|
|
{
|
|
cycles = static_cast<u64>(thread_time.tv_sec) * 1'000'000'000 + thread_time.tv_nsec;
|
|
#endif
|
|
if (const u64 old_cycles = m_cycles.exchange(cycles))
|
|
{
|
|
return cycles - old_cycles;
|
|
}
|
|
|
|
// Report 0 the first time this function is called
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return m_cycles;
|
|
}
|
|
}
|
|
|
|
void thread_base::push(shared_ptr<thread_future> task)
|
|
{
|
|
const auto next = &task->next;
|
|
m_taskq.push_head(*next, std::move(task));
|
|
m_taskq.notify_one();
|
|
}
|
|
|
|
void thread_base::exec()
|
|
{
|
|
if (!m_taskq) [[likely]]
|
|
{
|
|
return;
|
|
}
|
|
|
|
while (shared_ptr<thread_future> head = m_taskq.exchange(null_ptr))
|
|
{
|
|
// TODO: check if adapting reverse algorithm is feasible here
|
|
thread_future* prev_head{head.get()};
|
|
|
|
for (thread_future* prev{};;)
|
|
{
|
|
utils::prefetch_exec(prev_head->exec.load());
|
|
|
|
if (auto next = prev_head->next.get())
|
|
{
|
|
prev = std::exchange(prev_head, next);
|
|
prev_head->prev = prev;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (auto ptr = prev_head; ptr; ptr = ptr->prev)
|
|
{
|
|
if (auto task = ptr->exec.load()) [[likely]]
|
|
{
|
|
// Execute or discard (if aborting)
|
|
if ((m_sync & 3) == 0) [[likely]]
|
|
{
|
|
task(this, ptr);
|
|
}
|
|
else
|
|
{
|
|
task(nullptr, ptr);
|
|
}
|
|
|
|
// Notify waiters
|
|
ptr->done.release(1);
|
|
ptr->done.notify_all();
|
|
}
|
|
|
|
if (ptr->next)
|
|
{
|
|
// Partial cleanup
|
|
ptr->next.reset();
|
|
}
|
|
}
|
|
|
|
if (!m_taskq) [[likely]]
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
[[noreturn]] void thread_ctrl::emergency_exit(std::string_view reason)
|
|
{
|
|
if (std::string info = dump_useful_thread_info(); !info.empty())
|
|
{
|
|
sys_log.notice("\n%s", info);
|
|
}
|
|
|
|
std::string reason_buf;
|
|
|
|
if (auto ppu = cpu_thread::get_current<ppu_thread>())
|
|
{
|
|
if (auto func = ppu->current_function)
|
|
{
|
|
fmt::append(reason_buf, "%s (PPU: %s)", reason, func);
|
|
}
|
|
}
|
|
|
|
if (!reason_buf.empty())
|
|
{
|
|
reason = reason_buf;
|
|
}
|
|
|
|
sig_log.fatal("Thread terminated due to fatal error: %s", reason);
|
|
|
|
logs::listener::sync_all();
|
|
|
|
if (IsDebuggerPresent())
|
|
{
|
|
// Prevent repeatedly halting the debugger in case multiple threads crashed at once
|
|
static atomic_t<u64> s_last_break = 0;
|
|
const u64 current_break = get_system_time() & -2;
|
|
|
|
if (s_last_break.fetch_op([current_break](u64& v)
|
|
{
|
|
if (current_break >= (v & -2) && current_break - (v & -2) >= 20'000'000)
|
|
{
|
|
v = current_break;
|
|
return true;
|
|
}
|
|
|
|
// Let's allow a single more thread to halt the debugger so the programmer sees the pattern
|
|
if (!(v & 1))
|
|
{
|
|
v |= 1;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}).second)
|
|
{
|
|
utils::trap();
|
|
}
|
|
}
|
|
|
|
if (const auto _this = g_tls_this_thread)
|
|
{
|
|
g_tls_error_callback();
|
|
|
|
u64 _self = _this->finalize(thread_state::errored);
|
|
|
|
if (_self == umax)
|
|
{
|
|
// Unused, detached thread support remnant
|
|
delete _this;
|
|
}
|
|
|
|
thread_base::finalize(umax);
|
|
|
|
#ifdef _WIN32
|
|
_endthreadex(0);
|
|
#else
|
|
pthread_exit(nullptr);
|
|
#endif
|
|
}
|
|
|
|
report_fatal_error(reason);
|
|
}
|
|
|
|
void thread_ctrl::detect_cpu_layout()
|
|
{
|
|
if (!g_native_core_layout.compare_and_swap_test(native_core_arrangement::undefined, native_core_arrangement::generic))
|
|
return;
|
|
|
|
const auto system_id = utils::get_cpu_brand();
|
|
if (system_id.find("Ryzen") != umax)
|
|
{
|
|
g_native_core_layout.store(native_core_arrangement::amd_ccx);
|
|
}
|
|
else if (system_id.find("Intel") != umax)
|
|
{
|
|
#ifdef _WIN32
|
|
const LOGICAL_PROCESSOR_RELATIONSHIP relationship = LOGICAL_PROCESSOR_RELATIONSHIP::RelationProcessorCore;
|
|
DWORD buffer_size = 0;
|
|
|
|
// If buffer size is set to 0 bytes, it will be overwritten with the required size
|
|
if (GetLogicalProcessorInformationEx(relationship, nullptr, &buffer_size))
|
|
{
|
|
sig_log.error("GetLogicalProcessorInformationEx returned 0 bytes");
|
|
return;
|
|
}
|
|
DWORD error_code = GetLastError();
|
|
if (error_code != ERROR_INSUFFICIENT_BUFFER)
|
|
{
|
|
sig_log.error("Unexpected windows error code when detecting CPU layout: %u", error_code);
|
|
return;
|
|
}
|
|
|
|
std::vector<u8> buffer(buffer_size);
|
|
|
|
if (!GetLogicalProcessorInformationEx(relationship,
|
|
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(buffer.data()), &buffer_size))
|
|
{
|
|
sig_log.error("GetLogicalProcessorInformationEx failed (size=%u, error=%s)", buffer_size, fmt::win_error{GetLastError(), nullptr});
|
|
}
|
|
else
|
|
{
|
|
// Iterate through the buffer until a core with hyperthreading is found
|
|
auto ptr = reinterpret_cast<uptr>(buffer.data());
|
|
const uptr end = ptr + buffer_size;
|
|
|
|
while (ptr < end)
|
|
{
|
|
auto info = reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(ptr);
|
|
if (info->Relationship == relationship && info->Processor.Flags == LTP_PC_SMT)
|
|
{
|
|
g_native_core_layout.store(native_core_arrangement::intel_ht);
|
|
break;
|
|
}
|
|
ptr += info->Size;
|
|
}
|
|
}
|
|
#else
|
|
sig_log.todo("Thread scheduler is not implemented for Intel and this OS");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
u64 thread_ctrl::get_affinity_mask(thread_class group)
|
|
{
|
|
detect_cpu_layout();
|
|
|
|
if (const auto thread_count = utils::get_thread_count())
|
|
{
|
|
const u64 all_cores_mask = process_affinity_mask;
|
|
|
|
switch (g_native_core_layout)
|
|
{
|
|
default:
|
|
case native_core_arrangement::generic:
|
|
{
|
|
return all_cores_mask;
|
|
}
|
|
case native_core_arrangement::amd_ccx:
|
|
{
|
|
if (thread_count <= 8)
|
|
{
|
|
// Single CCX or not enough threads, do nothing
|
|
return all_cores_mask;
|
|
}
|
|
|
|
u64 spu_mask, ppu_mask, rsx_mask;
|
|
spu_mask = ppu_mask = rsx_mask = all_cores_mask; // Fallback, in case someone is messing with core config
|
|
|
|
const auto system_id = utils::get_cpu_brand();
|
|
const auto family_id = utils::get_cpu_family();
|
|
const auto model_id = utils::get_cpu_model();
|
|
|
|
switch (family_id)
|
|
{
|
|
case 0x17: // Zen, Zen+, Zen2
|
|
case 0x18: // Dhyana core (Zen)
|
|
{
|
|
if (model_id > 0x30)
|
|
{
|
|
// Zen2 (models 49, 96, 113, 144)
|
|
// Much improved inter-CCX latency
|
|
switch (thread_count)
|
|
{
|
|
case 128:
|
|
case 64:
|
|
case 48:
|
|
case 32:
|
|
// TR 3000 series, or R9 3950X, Assign threads 9-32
|
|
ppu_mask = 0b11111111000000000000000000000000;
|
|
spu_mask = 0b00000000111111110000000000000000;
|
|
rsx_mask = 0b00000000000000001111111100000000;
|
|
break;
|
|
case 24:
|
|
// 3900X, Assign threads 7-24
|
|
ppu_mask = 0b111111000000000000000000;
|
|
spu_mask = 0b000000111111000000000000;
|
|
rsx_mask = 0b000000000000111111000000;
|
|
break;
|
|
case 16:
|
|
// 3700, 3800 family, Assign threads 1-16
|
|
ppu_mask = 0b0000000011110000;
|
|
spu_mask = 0b1111111100000000;
|
|
rsx_mask = 0b0000000000001111;
|
|
break;
|
|
case 12:
|
|
// 3600 family, Assign threads 1-12
|
|
ppu_mask = 0b000000111000;
|
|
spu_mask = 0b111111000000;
|
|
rsx_mask = 0b000000000111;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Zen, Zen+ (models 1, 8(+), 17, 24(+), 32)
|
|
switch (thread_count)
|
|
{
|
|
case 64:
|
|
// TR 2990WX, Assign threads 17-32
|
|
ppu_mask = 0b00000000111111110000000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b11111111000000000000000000000000;
|
|
break;
|
|
case 48:
|
|
// TR 2970WX, Assign threads 9-24
|
|
ppu_mask = 0b000000111111000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b111111000000000000000000;
|
|
break;
|
|
case 32:
|
|
// TR 2950X, TR 1950X, Assign threads 17-32
|
|
ppu_mask = 0b00000000111111110000000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b11111111000000000000000000000000;
|
|
break;
|
|
case 24:
|
|
// TR 1920X, 2920X, Assign threads 13-24
|
|
ppu_mask = 0b000000111111000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b111111000000000000000000;
|
|
break;
|
|
case 16:
|
|
// 1700, 1800, 2700, TR 1900X family
|
|
if (g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
|
|
{
|
|
ppu_mask = 0b0010000010000000;
|
|
spu_mask = 0b0000101010101010;
|
|
rsx_mask = 0b1000000000000000;
|
|
}
|
|
else // if (g_cfg.core.thread_scheduler == thread_scheduler_mode::old)
|
|
{
|
|
ppu_mask = 0b1111111100000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b0000000000111100;
|
|
}
|
|
break;
|
|
case 12:
|
|
// 1600, 2600 family, Assign threads 3-12
|
|
ppu_mask = 0b111111000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b000000111100;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 0x19: // Zen3
|
|
{
|
|
// Single-CCX architecture, just disable SMT if wide enough
|
|
// CCX now holds upto 16 threads
|
|
// Lack of hw availability makes testing difficult
|
|
switch (thread_count)
|
|
{
|
|
case 24:
|
|
// 5900X, Use same scheduler as 3900X
|
|
// Unverified on windows, may be worse than just disabling SMT and scheduler
|
|
ppu_mask = 0b111111000000000000000000;
|
|
spu_mask = 0b000000111111000000000000;
|
|
rsx_mask = 0b000000000000111111000000;
|
|
break;
|
|
case 16:
|
|
// 5800X
|
|
if (g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
|
|
{
|
|
ppu_mask = 0b0000000011110000;
|
|
spu_mask = 0b1111111100000000;
|
|
rsx_mask = 0b0000000000001111;
|
|
}
|
|
else // if (g_cfg.core.thread_scheduler == thread_scheduler_mode::old)
|
|
{
|
|
// Verified by more than one windows user on 16-thread CPU
|
|
ppu_mask = spu_mask = rsx_mask = (0b10101010101010101010101010101010 & all_cores_mask);
|
|
}
|
|
break;
|
|
case 12:
|
|
// 5600X
|
|
if (g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
|
|
{
|
|
ppu_mask = 0b000000001100;
|
|
spu_mask = 0b111111110000;
|
|
rsx_mask = 0b000000000011;
|
|
}
|
|
else // if (g_cfg.core.thread_scheduler == thread_scheduler_mode::old)
|
|
{
|
|
ppu_mask = spu_mask = rsx_mask = all_cores_mask;
|
|
}
|
|
break;
|
|
default:
|
|
if (thread_count > 24)
|
|
{
|
|
ppu_mask = spu_mask = rsx_mask = (0b10101010101010101010101010101010 & all_cores_mask);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (group)
|
|
{
|
|
default:
|
|
case thread_class::general:
|
|
return all_cores_mask;
|
|
case thread_class::rsx:
|
|
return rsx_mask;
|
|
case thread_class::ppu:
|
|
return ppu_mask;
|
|
case thread_class::spu:
|
|
return spu_mask;
|
|
}
|
|
}
|
|
case native_core_arrangement::intel_ht:
|
|
{
|
|
if (thread_count >= 12 && g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
|
|
return (0b10101010101010101010101010101010 & all_cores_mask); // Potentially improves performance by mimicking HT off
|
|
return all_cores_mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void thread_ctrl::set_native_priority(int priority)
|
|
{
|
|
#ifdef _WIN32
|
|
HANDLE _this_thread = GetCurrentThread();
|
|
INT native_priority = THREAD_PRIORITY_NORMAL;
|
|
|
|
if (priority > 0)
|
|
native_priority = THREAD_PRIORITY_ABOVE_NORMAL;
|
|
if (priority < 0)
|
|
native_priority = THREAD_PRIORITY_BELOW_NORMAL;
|
|
|
|
if (!SetThreadPriority(_this_thread, native_priority))
|
|
{
|
|
sig_log.error("SetThreadPriority() failed: %s", fmt::win_error{GetLastError(), nullptr});
|
|
}
|
|
#else
|
|
int policy;
|
|
struct sched_param param;
|
|
|
|
pthread_getschedparam(pthread_self(), &policy, ¶m);
|
|
|
|
if (priority > 0)
|
|
param.sched_priority = sched_get_priority_max(policy);
|
|
if (priority < 0)
|
|
param.sched_priority = sched_get_priority_min(policy);
|
|
|
|
if (int err = pthread_setschedparam(pthread_self(), policy, ¶m))
|
|
{
|
|
sig_log.error("pthread_setschedparam() failed: %d", err);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
u64 thread_ctrl::get_process_affinity_mask()
|
|
{
|
|
static const u64 mask = []() -> u64
|
|
{
|
|
#ifdef _WIN32
|
|
DWORD_PTR res, _sys;
|
|
if (!GetProcessAffinityMask(GetCurrentProcess(), &res, &_sys))
|
|
{
|
|
sig_log.error("Failed to get process affinity mask.");
|
|
return 0;
|
|
}
|
|
|
|
return res;
|
|
#else
|
|
// Assume it's called from the main thread (this is a bit shaky)
|
|
return thread_ctrl::get_thread_affinity_mask();
|
|
#endif
|
|
}();
|
|
|
|
return mask;
|
|
}
|
|
|
|
DECLARE(thread_ctrl::process_affinity_mask) = get_process_affinity_mask();
|
|
|
|
void thread_ctrl::set_thread_affinity_mask(u64 mask)
|
|
{
|
|
sig_log.trace("set_thread_affinity_mask called with mask=0x%x", mask);
|
|
|
|
#ifdef _WIN32
|
|
HANDLE _this_thread = GetCurrentThread();
|
|
if (!SetThreadAffinityMask(_this_thread, !mask ? process_affinity_mask : mask))
|
|
{
|
|
sig_log.error("Failed to set thread affinity 0x%x: error: %s", mask, fmt::win_error{GetLastError(), nullptr});
|
|
}
|
|
#elif __APPLE__
|
|
// Supports only one core
|
|
thread_affinity_policy_data_t policy = { static_cast<integer_t>(std::countr_zero(mask)) };
|
|
thread_port_t mach_thread = pthread_mach_thread_np(pthread_self());
|
|
thread_policy_set(mach_thread, THREAD_AFFINITY_POLICY, reinterpret_cast<thread_policy_t>(&policy), !mask ? 0 : 1);
|
|
#elif defined(__linux__) || defined(__DragonFly__) || defined(__FreeBSD__)
|
|
if (!mask)
|
|
{
|
|
// Reset affinity mask
|
|
mask = process_affinity_mask;
|
|
}
|
|
|
|
cpu_set_t cs;
|
|
CPU_ZERO(&cs);
|
|
|
|
for (u32 core = 0; core < 64u; ++core)
|
|
{
|
|
const u64 shifted = mask >> core;
|
|
|
|
if (shifted & 1)
|
|
{
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wold-style-cast"
|
|
CPU_SET(core, &cs);
|
|
#pragma GCC diagnostic pop
|
|
}
|
|
|
|
if (shifted <= 1)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (int err = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs))
|
|
{
|
|
sig_log.error("Failed to set thread affinity 0x%x: error %d.", mask, err);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
u64 thread_ctrl::get_thread_affinity_mask()
|
|
{
|
|
#ifdef _WIN32
|
|
const u64 res = process_affinity_mask;
|
|
|
|
if (DWORD_PTR result = SetThreadAffinityMask(GetCurrentThread(), res))
|
|
{
|
|
if (res != result)
|
|
{
|
|
SetThreadAffinityMask(GetCurrentThread(), result);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
sig_log.error("Failed to get thread affinity mask.");
|
|
return 0;
|
|
#elif defined(__linux__) || defined(__DragonFly__) || defined(__FreeBSD__)
|
|
cpu_set_t cs;
|
|
CPU_ZERO(&cs);
|
|
|
|
if (int err = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs))
|
|
{
|
|
sig_log.error("Failed to get thread affinity mask: error %d.", err);
|
|
return 0;
|
|
}
|
|
|
|
u64 result = 0;
|
|
|
|
for (u32 core = 0; core < 64u; core++)
|
|
{
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wold-style-cast"
|
|
if (CPU_ISSET(core, &cs))
|
|
#pragma GCC diagnostic pop
|
|
{
|
|
result |= 1ull << core;
|
|
}
|
|
}
|
|
|
|
if (result == 0)
|
|
{
|
|
sig_log.error("Thread affinity mask is out of u64 range.");
|
|
return 0;
|
|
}
|
|
|
|
return result;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
std::pair<void*, usz> thread_ctrl::get_thread_stack()
|
|
{
|
|
#ifdef _WIN32
|
|
ULONG_PTR _min = 0;
|
|
ULONG_PTR _max = 0;
|
|
GetCurrentThreadStackLimits(&_min, &_max);
|
|
const usz ssize = _max - _min;
|
|
const auto saddr = reinterpret_cast<void*>(_min);
|
|
#else
|
|
void* saddr = 0;
|
|
usz ssize = 0;
|
|
#if defined(__linux__)
|
|
pthread_attr_t attr;
|
|
pthread_getattr_np(pthread_self(), &attr);
|
|
pthread_attr_getstack(&attr, &saddr, &ssize);
|
|
#elif defined(__APPLE__)
|
|
saddr = pthread_get_stackaddr_np(pthread_self());
|
|
ssize = pthread_get_stacksize_np(pthread_self());
|
|
#else
|
|
pthread_attr_t attr;
|
|
pthread_attr_get_np(pthread_self(), &attr);
|
|
pthread_attr_getstackaddr(&attr, &saddr);
|
|
pthread_attr_getstacksize(&attr, &ssize);
|
|
#endif
|
|
#endif
|
|
return {saddr, ssize};
|
|
}
|
|
|
|
u64 thread_ctrl::get_tid()
|
|
{
|
|
#ifdef _WIN32
|
|
return GetCurrentThreadId();
|
|
#elif defined(__linux__)
|
|
return syscall(SYS_gettid);
|
|
#else
|
|
return reinterpret_cast<u64>(pthread_self());
|
|
#endif
|
|
}
|
|
|
|
bool thread_ctrl::is_main()
|
|
{
|
|
return get_tid() == utils::main_tid;
|
|
}
|