rpcs3/Utilities/JIT.h
2024-01-14 17:21:39 +01:00

557 lines
13 KiB
C++

#pragma once
#include "util/types.hpp"
// Include asmjit with warnings ignored
#define ASMJIT_EMBED
#define ASMJIT_STATIC
#define ASMJIT_BUILD_DEBUG
#undef Bool
#ifdef _MSC_VER
#pragma warning(push, 0)
#include <asmjit/asmjit.h>
#pragma warning(pop)
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wall"
#pragma GCC diagnostic ignored "-Wextra"
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wredundant-decls"
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#pragma GCC diagnostic ignored "-Weffc++"
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wdeprecated-anon-enum-enum-conversion"
#pragma GCC diagnostic ignored "-Wcast-qual"
#else
#pragma GCC diagnostic ignored "-Wduplicated-branches"
#pragma GCC diagnostic ignored "-Wdeprecated-enum-enum-conversion"
#endif
#include <asmjit/asmjit.h>
#if defined(ARCH_ARM64)
#include <asmjit/a64.h>
#endif
#pragma GCC diagnostic pop
#endif
#include <array>
#include <functional>
#include <memory>
#include <string>
#include <string_view>
#include <unordered_map>
#include <util/v128.hpp>
#if defined(ARCH_X64)
using native_asm = asmjit::x86::Assembler;
using native_args = std::array<asmjit::x86::Gp, 4>;
#elif defined(ARCH_ARM64)
using native_asm = asmjit::a64::Assembler;
using native_args = std::array<asmjit::a64::Gp, 4>;
#endif
void jit_announce(uptr func, usz size, std::string_view name);
void jit_announce(auto* func, usz size, std::string_view name)
{
jit_announce(uptr(func), size, name);
}
enum class jit_class
{
ppu_code,
ppu_data,
spu_code,
spu_data,
};
struct jit_runtime_base
{
jit_runtime_base() noexcept = default;
virtual ~jit_runtime_base() = default;
jit_runtime_base(const jit_runtime_base&) = delete;
jit_runtime_base& operator=(const jit_runtime_base&) = delete;
const asmjit::Environment& environment() const noexcept;
void* _add(asmjit::CodeHolder* code) noexcept;
virtual uchar* _alloc(usz size, usz align) noexcept = 0;
};
// ASMJIT runtime for emitting code in a single 2G region
struct jit_runtime final : jit_runtime_base
{
jit_runtime();
~jit_runtime() override;
// Allocate executable memory
uchar* _alloc(usz size, usz align) noexcept override;
// Allocate memory
static u8* alloc(usz size, usz align, bool exec = true) noexcept;
// Should be called at least once after global initialization
static void initialize();
// Deallocate all memory
static void finalize() noexcept;
};
namespace asmjit
{
// Should only be used to build global functions
jit_runtime_base& get_global_runtime();
// Don't use directly
class inline_runtime : public jit_runtime_base
{
uchar* m_data;
usz m_size;
public:
inline_runtime(uchar* data, usz size);
~inline_runtime();
uchar* _alloc(usz size, usz align) noexcept override;
};
// Emit xbegin and adjacent loop, return label at xbegin (don't use xabort please)
template <typename F>
[[nodiscard]] inline asmjit::Label build_transaction_enter(asmjit::x86::Assembler& c, asmjit::Label fallback, F func)
{
Label fall = c.newLabel();
Label begin = c.newLabel();
c.jmp(begin);
c.bind(fall);
// Don't repeat on zero status (may indicate syscall or interrupt)
c.test(x86::eax, x86::eax);
c.jz(fallback);
// First invoked after failure (can fallback to proceed, or jump anywhere else)
func();
// Other bad statuses are ignored regardless of repeat flag (TODO)
c.align(AlignMode::kCode, 16);
c.bind(begin);
return fall;
// xbegin should be issued manually, allows to add more check before entering transaction
}
// Helper to spill RDX (EDX) register for RDTSC
inline void build_swap_rdx_with(asmjit::x86::Assembler& c, std::array<x86::Gp, 4>& args, const asmjit::x86::Gp& with)
{
#ifdef _WIN32
c.xchg(args[1], with);
args[1] = with;
#else
c.xchg(args[2], with);
args[2] = with;
#endif
}
// Get full RDTSC value into chosen register (clobbers rax/rdx or saves only rax with other target)
inline void build_get_tsc(asmjit::x86::Assembler& c, const asmjit::x86::Gp& to = asmjit::x86::rax)
{
if (&to != &x86::rax && &to != &x86::rdx)
{
// Swap to save its contents
c.xchg(x86::rax, to);
}
c.rdtsc();
c.shl(x86::rdx, 32);
if (&to == &x86::rax)
{
c.or_(x86::rax, x86::rdx);
}
else if (&to == &x86::rdx)
{
c.or_(x86::rdx, x86::rax);
}
else
{
// Swap back, maybe there is more effective way to do it
c.xchg(x86::rax, to);
c.mov(to.r32(), to.r32());
c.or_(to.r64(), x86::rdx);
}
}
inline void build_init_args_from_ghc(native_asm& c, native_args& args)
{
#if defined(ARCH_X64)
// TODO: handle case when args don't overlap with r13/rbp/r12/rbx
c.mov(args[0], x86::r13);
c.mov(args[1], x86::rbp);
c.mov(args[2], x86::r12);
c.mov(args[3], x86::rbx);
#else
static_cast<void>(c);
static_cast<void>(args);
#endif
}
inline void build_init_ghc_args(native_asm& c, native_args& args)
{
#if defined(ARCH_X64)
// TODO: handle case when args don't overlap with r13/rbp/r12/rbx
c.mov(x86::r13, args[0]);
c.mov(x86::rbp, args[1]);
c.mov(x86::r12, args[2]);
c.mov(x86::rbx, args[3]);
#else
static_cast<void>(c);
static_cast<void>(args);
#endif
}
#if defined(ARCH_X64)
struct simd_builder : native_asm
{
std::unordered_map<v128, Label> consts;
Operand v0, v1, v2, v3, v4, v5;
uint vsize = 16;
uint vmask = 0;
simd_builder(CodeHolder* ch) noexcept;
~simd_builder();
void operator()() noexcept;
void _init(uint new_vsize = 0);
void vec_cleanup_ret();
void vec_set_all_zeros(const Operand& v);
void vec_set_all_ones(const Operand& v);
void vec_set_const(const Operand& v, const v128& value);
void vec_clobbering_test(u32 esize, const Operand& v, const Operand& rhs);
void vec_broadcast_gpr(u32 esize, const Operand& v, const x86::Gp& r);
// return x86::ptr(base, ctr, X, 0) where X is set for esize accordingly
x86::Mem ptr_scale_for_vec(u32 esize, const x86::Gp& base, const x86::Gp& index);
void vec_load_unaligned(u32 esize, const Operand& v, const x86::Mem& src);
void vec_store_unaligned(u32 esize, const Operand& v, const x86::Mem& dst);
void vec_partial_move(u32 esize, const Operand& dst, const Operand& src);
void _vec_binary_op(x86::Inst::Id sse_op, x86::Inst::Id vex_op, x86::Inst::Id evex_op, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_shuffle_xi8(const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPshufb, kIdVpshufb, kIdVpshufb, dst, lhs, rhs);
}
void vec_xor(u32, const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPxor, kIdVpxor, kIdVpxord, dst, lhs, rhs);
}
void vec_or(u32, const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPor, kIdVpor, kIdVpord, dst, lhs, rhs);
}
void vec_andn(u32, const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPandn, kIdVpandn, kIdVpandnd, dst, lhs, rhs);
}
void vec_umin(u32 esize, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_umax(u32 esize, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_cmp_eq(u32 esize, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_extract_high(u32 esize, const Operand& dst, const Operand& src);
void vec_extract_gpr(u32 esize, const x86::Gp& dst, const Operand& src);
simd_builder& keep_if_not_masked()
{
if (vmask && vmask < 8)
{
this->k(x86::KReg(vmask));
}
return *this;
}
simd_builder& zero_if_not_masked()
{
if (vmask && vmask < 8)
{
this->k(x86::KReg(vmask));
this->z();
}
return *this;
}
void build_loop(u32 esize, const x86::Gp& reg_ctr, const x86::Gp& reg_cnt, auto&& build, auto&& reduce)
{
ensure((esize & (esize - 1)) == 0);
ensure(esize <= vsize);
Label body = this->newLabel();
Label next = this->newLabel();
Label exit = this->newLabel();
const u32 step = vsize / esize;
this->xor_(reg_ctr.r32(), reg_ctr.r32()); // Reset counter reg
this->cmp(reg_cnt, step);
this->jb(next); // If count < step, skip main loop body
this->align(AlignMode::kCode, 16);
this->bind(body);
this->sub(reg_cnt, step);
build();
this->add(reg_ctr, step);
this->cmp(reg_cnt, step);
this->jae(body);
this->bind(next);
if (vmask)
{
// Build single last iteration (masked)
this->test(reg_cnt, reg_cnt);
this->jz(exit);
if (esize == 1 && vsize == 64)
{
this->bzhi(reg_cnt.r64(), x86::Mem(consts[~u128()], 0), reg_cnt.r64());
this->kmovq(x86::k7, reg_cnt.r64());
}
else
{
this->bzhi(reg_cnt.r32(), x86::Mem(consts[~u128()], 0), reg_cnt.r32());
this->kmovd(x86::k7, reg_cnt.r32());
}
vmask = 7;
build();
// Rollout reduction step
this->bind(exit);
while (true)
{
vsize /= 2;
if (vsize < esize)
break;
this->_init(vsize);
reduce();
}
}
else
{
// Build unrolled loop tail (reduced vector width)
while (true)
{
vsize /= 2;
if (vsize < esize)
break;
// Shall not clobber flags
this->_init(vsize);
reduce();
if (vsize == esize)
{
// Last "iteration"
this->test(reg_cnt, reg_cnt);
this->jz(exit);
build();
}
else
{
const u32 step = vsize / esize;
Label next = this->newLabel();
this->cmp(reg_cnt, step);
this->jb(next);
build();
this->add(reg_ctr, step);
this->sub(reg_cnt, step);
this->bind(next);
}
}
this->bind(exit);
}
this->_init(0);
}
};
// for (; count > 0; ctr++, count--)
inline void build_loop(native_asm& c, auto ctr, auto count, auto&& build)
{
asmjit::Label body = c.newLabel();
asmjit::Label exit = c.newLabel();
c.test(count, count);
c.jz(exit);
c.align(asmjit::AlignMode::kCode, 16);
c.bind(body);
build();
c.inc(ctr);
c.sub(count, 1);
c.ja(body);
c.bind(exit);
}
inline void maybe_flush_lbr(native_asm& c, uint count = 2)
{
// Workaround for bad LBR callstacks which happen in some situations (mainly TSX) - execute additional RETs
Label next = c.newLabel();
c.lea(x86::rcx, x86::qword_ptr(next));
for (u32 i = 0; i < count; i++)
{
c.push(x86::rcx);
c.sub(x86::rcx, 16);
}
for (u32 i = 0; i < count; i++)
{
c.ret();
c.align(asmjit::AlignMode::kCode, 16);
}
c.bind(next);
}
#endif
}
// Build runtime function with asmjit::X86Assembler
template <typename FT, typename Asm = native_asm, typename F>
inline FT build_function_asm(std::string_view name, F&& builder, ::jit_runtime* custom_runtime = nullptr)
{
#ifdef __APPLE__
pthread_jit_write_protect_np(false);
#endif
using namespace asmjit;
auto& rt = custom_runtime ? *custom_runtime : get_global_runtime();
CodeHolder code;
code.init(rt.environment());
#if defined(ARCH_X64)
native_args args;
#ifdef _WIN32
args[0] = x86::rcx;
args[1] = x86::rdx;
args[2] = x86::r8;
args[3] = x86::r9;
#else
args[0] = x86::rdi;
args[1] = x86::rsi;
args[2] = x86::rdx;
args[3] = x86::rcx;
#endif
#elif defined(ARCH_ARM64)
native_args args;
args[0] = a64::x0;
args[1] = a64::x1;
args[2] = a64::x2;
args[3] = a64::x3;
#endif
Asm compiler(&code);
compiler.addEncodingOptions(EncodingOptions::kOptimizedAlign);
if constexpr (std::is_invocable_r_v<bool, F, Asm&, native_args&>)
{
if (!builder(compiler, args))
return nullptr;
}
else
{
builder(compiler, args);
}
if constexpr (std::is_invocable_r_v<void, Asm>)
{
// Finalization
compiler();
}
const auto result = rt._add(&code);
jit_announce(result, code.codeSize(), name);
return reinterpret_cast<FT>(uptr(result));
}
#ifdef LLVM_AVAILABLE
namespace llvm
{
class LLVMContext;
class ExecutionEngine;
class Module;
}
// Temporary compiler interface
class jit_compiler final
{
// Local LLVM context
std::unique_ptr<llvm::LLVMContext> m_context{};
// Execution instance
std::unique_ptr<llvm::ExecutionEngine> m_engine{};
// Arch
std::string m_cpu{};
public:
jit_compiler(const std::unordered_map<std::string, u64>& _link, const std::string& _cpu, u32 flags = 0);
~jit_compiler();
// Get LLVM context
auto& get_context()
{
return *m_context;
}
auto& get_engine() const
{
return *m_engine;
}
// Add module (path to obj cache dir)
void add(std::unique_ptr<llvm::Module> _module, const std::string& path);
// Add module (not cached)
void add(std::unique_ptr<llvm::Module> _module);
// Add object (path to obj file)
void add(const std::string& path);
// Update global mapping for a single value
void update_global_mapping(const std::string& name, u64 addr);
// Check object file
static bool check(const std::string& path);
// Finalize
void fin();
// Get compiled function address
u64 get(const std::string& name);
// Get CPU info
static std::string cpu(const std::string& _cpu);
// Get system triple (PPU)
static std::string triple1();
// Get system triple (SPU)
static std::string triple2();
};
#endif // LLVM_AVAILABLE