godot/core/math/bvh_structs.inc
风青山 e705aa4550 Fix not refitting upward from leaf nodes.
Previously, the wrong node id (root node id) was used. Dirty leaf nodes
do not actually recalculate aabb.

Additionally, when requesting a new leaf, mark `dirty` as `false` in `clear()`.

Make sure to only mark the leaf as **dirty** when shrinking the border of
the leaf when removing items.

In other cases, the leaf node's aabb will get the correct result immediately.
1. When adding an item, the leaf nodes will be calculated immediately.
2. Removing the item within the border of the leaf node has no effect on the
original aabb.
2023-09-28 20:27:51 +08:00

216 lines
6.3 KiB
C++

public:
struct ItemRef {
uint32_t tnode_id; // -1 is invalid
uint32_t item_id; // in the leaf
bool is_active() const { return tnode_id != BVHCommon::INACTIVE; }
void set_inactive() {
tnode_id = BVHCommon::INACTIVE;
item_id = BVHCommon::INACTIVE;
}
};
// extra info kept in separate parallel list to the references,
// as this is less used as keeps cache better
struct ItemExtra {
// Before doing user defined pairing checks (especially in the find_leavers function),
// we may want to check that two items have compatible tree ids and tree masks,
// as if they are incompatible they should not pair / collide.
bool are_item_trees_compatible(const ItemExtra &p_other) const {
uint32_t other_type = 1 << p_other.tree_id;
if (tree_collision_mask & other_type) {
return true;
}
uint32_t our_type = 1 << tree_id;
if (p_other.tree_collision_mask & our_type) {
return true;
}
return false;
}
// There can be multiple user defined trees
uint32_t tree_id;
// Defines which trees this item should collision check against.
// 1 << tree_id, and normally items would collide against there own
// tree (but not always).
uint32_t tree_collision_mask;
uint32_t last_updated_tick;
int32_t subindex;
T *userdata;
// the active reference is a separate list of which references
// are active so that we can slowly iterate through it over many frames for
// slow optimize.
uint32_t active_ref_id;
};
// tree leaf
struct TLeaf {
uint16_t num_items;
private:
uint16_t dirty;
// separate data orientated lists for faster SIMD traversal
uint32_t item_ref_ids[MAX_ITEMS];
BVHABB_CLASS aabbs[MAX_ITEMS];
public:
// accessors
BVHABB_CLASS &get_aabb(uint32_t p_id) {
BVH_ASSERT(p_id < MAX_ITEMS);
return aabbs[p_id];
}
const BVHABB_CLASS &get_aabb(uint32_t p_id) const {
BVH_ASSERT(p_id < MAX_ITEMS);
return aabbs[p_id];
}
uint32_t &get_item_ref_id(uint32_t p_id) {
BVH_ASSERT(p_id < MAX_ITEMS);
return item_ref_ids[p_id];
}
const uint32_t &get_item_ref_id(uint32_t p_id) const {
BVH_ASSERT(p_id < MAX_ITEMS);
return item_ref_ids[p_id];
}
bool is_dirty() const { return dirty; }
void set_dirty(bool p) { dirty = p; }
void clear() {
num_items = 0;
set_dirty(false);
}
bool is_full() const { return num_items >= MAX_ITEMS; }
void remove_item_unordered(uint32_t p_id) {
BVH_ASSERT(p_id < num_items);
num_items--;
aabbs[p_id] = aabbs[num_items];
item_ref_ids[p_id] = item_ref_ids[num_items];
}
uint32_t request_item() {
if (num_items < MAX_ITEMS) {
uint32_t id = num_items;
num_items++;
return id;
}
#ifdef DEV_ENABLED
return -1;
#else
ERR_FAIL_V_MSG(0, "BVH request_item error.");
#endif
}
};
// tree node
struct TNode {
BVHABB_CLASS aabb;
// either number of children if positive
// or leaf id if negative (leaf id 0 is disallowed)
union {
int32_t num_children;
int32_t neg_leaf_id;
};
uint32_t parent_id; // or -1
uint16_t children[MAX_CHILDREN];
// height in the tree, where leaves are 0, and all above are 1+
// (or the highest where there is a tie off)
int32_t height;
bool is_leaf() const { return num_children < 0; }
void set_leaf_id(int id) { neg_leaf_id = -id; }
int get_leaf_id() const { return -neg_leaf_id; }
void clear() {
num_children = 0;
parent_id = BVHCommon::INVALID;
height = 0; // or -1 for testing
// for safety set to improbable value
aabb.set_to_max_opposite_extents();
// other members are not blanked for speed .. they may be uninitialized
}
bool is_full_of_children() const { return num_children >= MAX_CHILDREN; }
void remove_child_internal(uint32_t child_num) {
children[child_num] = children[num_children - 1];
num_children--;
}
int find_child(uint32_t p_child_node_id) {
BVH_ASSERT(!is_leaf());
for (int n = 0; n < num_children; n++) {
if (children[n] == p_child_node_id) {
return n;
}
}
// not found
return -1;
}
};
// instead of using linked list we maintain
// item references (for quick lookup)
PooledList<ItemRef, uint32_t, true> _refs;
PooledList<ItemExtra, uint32_t, true> _extra;
PooledList<ItemPairs> _pairs;
// these 2 are not in sync .. nodes != leaves!
PooledList<TNode, uint32_t, true> _nodes;
PooledList<TLeaf, uint32_t, true> _leaves;
// we can maintain an un-ordered list of which references are active,
// in order to do a slow incremental optimize of the tree over each frame.
// This will work best if dynamic objects and static objects are in a different tree.
LocalVector<uint32_t, uint32_t, true> _active_refs;
uint32_t _current_active_ref = 0;
// instead of translating directly to the userdata output,
// we keep an intermediate list of hits as reference IDs, which can be used
// for pairing collision detection
LocalVector<uint32_t, uint32_t, true> _cull_hits;
// We can now have a user definable number of trees.
// This allows using e.g. a non-pairable and pairable tree,
// which can be more efficient for example, if we only need check non pairable against the pairable tree.
// It also may be more efficient in terms of separating static from dynamic objects, by reducing housekeeping.
// However this is a trade off, as there is a cost of traversing two trees.
uint32_t _root_node_id[NUM_TREES];
// these values may need tweaking according to the project
// the bound of the world, and the average velocities of the objects
// node expansion is important in the rendering tree
// larger values give less re-insertion as items move...
// but on the other hand over estimates the bounding box of nodes.
// we can either use auto mode, where the expansion is based on the root node size, or specify manually
real_t _node_expansion = 0.5;
bool _auto_node_expansion = true;
// pairing expansion important for physics pairing
// larger values gives more 'sticky' pairing, and is less likely to exhibit tunneling
// we can either use auto mode, where the expansion is based on the root node size, or specify manually
real_t _pairing_expansion = 0.1;
#ifdef BVH_ALLOW_AUTO_EXPANSION
bool _auto_pairing_expansion = true;
#endif
// when using an expanded bound, we must detect the condition where a new AABB
// is significantly smaller than the expanded bound, as this is a special case where we
// should override the optimization and create a new expanded bound.
// This threshold is derived from the _pairing_expansion, and should be recalculated
// if _pairing_expansion is changed.
real_t _aabb_shrinkage_threshold = 0.0;