godot/tests/test_list.h
Marcel Admiraal 755c70b871 Rename Array.invert() to Array.reverse()
Does the same internally for List and Vector<>, which includes all
PackedArray types.
2021-03-21 10:20:08 +00:00

548 lines
14 KiB
C++

/*************************************************************************/
/* test_list.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef TEST_LIST_H
#define TEST_LIST_H
#include "core/templates/list.h"
#include "tests/test_macros.h"
namespace TestList {
static void populate_integers(List<int> &p_list, List<int>::Element *r_elements[], int num_elements) {
p_list.clear();
for (int i = 0; i < num_elements; ++i) {
List<int>::Element *n = p_list.push_back(i);
r_elements[i] = n;
}
}
TEST_CASE("[List] Push/pop back") {
List<String> list;
List<String>::Element *n;
n = list.push_back("A");
CHECK(n->get() == "A");
n = list.push_back("B");
CHECK(n->get() == "B");
n = list.push_back("C");
CHECK(n->get() == "C");
CHECK(list.size() == 3);
CHECK(!list.is_empty());
String v;
v = list.back()->get();
list.pop_back();
CHECK(v == "C");
v = list.back()->get();
list.pop_back();
CHECK(v == "B");
v = list.back()->get();
list.pop_back();
CHECK(v == "A");
CHECK(list.size() == 0);
CHECK(list.is_empty());
CHECK(list.back() == nullptr);
CHECK(list.front() == nullptr);
}
TEST_CASE("[List] Push/pop front") {
List<String> list;
List<String>::Element *n;
n = list.push_front("A");
CHECK(n->get() == "A");
n = list.push_front("B");
CHECK(n->get() == "B");
n = list.push_front("C");
CHECK(n->get() == "C");
CHECK(list.size() == 3);
CHECK(!list.is_empty());
String v;
v = list.front()->get();
list.pop_front();
CHECK(v == "C");
v = list.front()->get();
list.pop_front();
CHECK(v == "B");
v = list.front()->get();
list.pop_front();
CHECK(v == "A");
CHECK(list.size() == 0);
CHECK(list.is_empty());
CHECK(list.back() == nullptr);
CHECK(list.front() == nullptr);
}
TEST_CASE("[List] Set and get") {
List<String> list;
list.push_back("A");
List<String>::Element *n = list.front();
CHECK(n->get() == "A");
n->set("X");
CHECK(n->get() == "X");
}
TEST_CASE("[List] Insert before") {
List<String> list;
List<String>::Element *a = list.push_back("A");
List<String>::Element *b = list.push_back("B");
List<String>::Element *c = list.push_back("C");
list.insert_before(b, "I");
CHECK(a->next()->get() == "I");
CHECK(c->prev()->prev()->get() == "I");
CHECK(list.front()->next()->get() == "I");
CHECK(list.back()->prev()->prev()->get() == "I");
}
TEST_CASE("[List] Insert after") {
List<String> list;
List<String>::Element *a = list.push_back("A");
List<String>::Element *b = list.push_back("B");
List<String>::Element *c = list.push_back("C");
list.insert_after(b, "I");
CHECK(a->next()->next()->get() == "I");
CHECK(c->prev()->get() == "I");
CHECK(list.front()->next()->next()->get() == "I");
CHECK(list.back()->prev()->get() == "I");
}
TEST_CASE("[List] Insert before null") {
List<String> list;
List<String>::Element *a = list.push_back("A");
List<String>::Element *b = list.push_back("B");
List<String>::Element *c = list.push_back("C");
list.insert_before(nullptr, "I");
CHECK(a->next()->get() == "B");
CHECK(b->get() == "B");
CHECK(c->prev()->prev()->get() == "A");
CHECK(list.front()->next()->get() == "B");
CHECK(list.back()->prev()->prev()->get() == "B");
CHECK(list.back()->get() == "I");
}
TEST_CASE("[List] Insert after null") {
List<String> list;
List<String>::Element *a = list.push_back("A");
List<String>::Element *b = list.push_back("B");
List<String>::Element *c = list.push_back("C");
list.insert_after(nullptr, "I");
CHECK(a->next()->get() == "B");
CHECK(b->get() == "B");
CHECK(c->prev()->prev()->get() == "A");
CHECK(list.front()->next()->get() == "B");
CHECK(list.back()->prev()->prev()->get() == "B");
CHECK(list.back()->get() == "I");
}
TEST_CASE("[List] Find") {
List<int> list;
List<int>::Element *n[10];
// Indices match values.
populate_integers(list, n, 10);
for (int i = 0; i < 10; ++i) {
CHECK(n[i]->get() == list.find(i)->get());
}
}
TEST_CASE("[List] Erase (by value)") {
List<int> list;
List<int>::Element *n[4];
// Indices match values.
populate_integers(list, n, 4);
CHECK(list.front()->next()->next()->get() == 2);
bool erased = list.erase(2); // 0, 1, 3.
CHECK(erased);
CHECK(list.size() == 3);
// The pointer n[2] points to the freed memory which is not reset to zero,
// so the below assertion may pass, but this relies on undefined behavior.
// CHECK(n[2]->get() == 2);
CHECK(list.front()->get() == 0);
CHECK(list.front()->next()->next()->get() == 3);
CHECK(list.back()->get() == 3);
CHECK(list.back()->prev()->get() == 1);
CHECK(n[1]->next()->get() == 3);
CHECK(n[3]->prev()->get() == 1);
erased = list.erase(9000); // Doesn't exist.
CHECK(!erased);
}
TEST_CASE("[List] Erase (by element)") {
List<int> list;
List<int>::Element *n[4];
// Indices match values.
populate_integers(list, n, 4);
bool erased = list.erase(n[2]);
CHECK(erased);
CHECK(list.size() == 3);
CHECK(n[1]->next()->get() == 3);
CHECK(n[3]->prev()->get() == 1);
}
TEST_CASE("[List] Element erase") {
List<int> list;
List<int>::Element *n[4];
// Indices match values.
populate_integers(list, n, 4);
n[2]->erase();
CHECK(list.size() == 3);
CHECK(n[1]->next()->get() == 3);
CHECK(n[3]->prev()->get() == 1);
}
TEST_CASE("[List] Clear") {
List<int> list;
List<int>::Element *n[100];
populate_integers(list, n, 100);
list.clear();
CHECK(list.size() == 0);
CHECK(list.is_empty());
}
TEST_CASE("[List] Invert") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.reverse();
CHECK(list.front()->get() == 3);
CHECK(list.front()->next()->get() == 2);
CHECK(list.back()->prev()->get() == 1);
CHECK(list.back()->get() == 0);
}
TEST_CASE("[List] Move to front") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.move_to_front(n[3]);
CHECK(list.front()->get() == 3);
CHECK(list.back()->get() == 2);
}
TEST_CASE("[List] Move to back") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.move_to_back(n[0]);
CHECK(list.back()->get() == 0);
CHECK(list.front()->get() == 1);
}
TEST_CASE("[List] Move before") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.move_before(n[3], n[1]);
CHECK(list.front()->next()->get() == n[3]->get());
}
TEST_CASE("[List] Sort") {
List<String> list;
list.push_back("D");
list.push_back("B");
list.push_back("A");
list.push_back("C");
list.sort();
CHECK(list.front()->get() == "A");
CHECK(list.front()->next()->get() == "B");
CHECK(list.back()->prev()->get() == "C");
CHECK(list.back()->get() == "D");
}
TEST_CASE("[List] Swap adjacent front and back") {
List<int> list;
List<int>::Element *n[2];
populate_integers(list, n, 2);
list.swap(list.front(), list.back());
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() != list.front()->next());
CHECK(list.front() == n[1]);
CHECK(list.back() == n[0]);
CHECK(list.back()->next() == nullptr);
CHECK(list.back() != list.back()->prev());
}
TEST_CASE("[List] Swap first adjacent pair") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.swap(n[0], n[1]);
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() != list.front()->next());
CHECK(list.front() == n[1]);
CHECK(list.front()->next() == n[0]);
CHECK(list.back()->prev() == n[2]);
CHECK(list.back() == n[3]);
CHECK(list.back()->next() == nullptr);
CHECK(list.back() != list.back()->prev());
}
TEST_CASE("[List] Swap middle adjacent pair") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.swap(n[1], n[2]);
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() == n[0]);
CHECK(list.front()->next() == n[2]);
CHECK(list.back()->prev() == n[1]);
CHECK(list.back() == n[3]);
CHECK(list.back()->next() == nullptr);
}
TEST_CASE("[List] Swap last adjacent pair") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.swap(n[2], n[3]);
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() == n[0]);
CHECK(list.front()->next() == n[1]);
CHECK(list.back()->prev() == n[3]);
CHECK(list.back() == n[2]);
CHECK(list.back()->next() == nullptr);
}
TEST_CASE("[List] Swap first cross pair") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.swap(n[0], n[2]);
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() == n[2]);
CHECK(list.front()->next() == n[1]);
CHECK(list.back()->prev() == n[0]);
CHECK(list.back() == n[3]);
CHECK(list.back()->next() == nullptr);
}
TEST_CASE("[List] Swap last cross pair") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.swap(n[1], n[3]);
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() == n[0]);
CHECK(list.front()->next() == n[3]);
CHECK(list.back()->prev() == n[2]);
CHECK(list.back() == n[1]);
CHECK(list.back()->next() == nullptr);
}
TEST_CASE("[List] Swap edges") {
List<int> list;
List<int>::Element *n[4];
populate_integers(list, n, 4);
list.swap(n[1], n[3]);
CHECK(list.front()->prev() == nullptr);
CHECK(list.front() == n[0]);
CHECK(list.front()->next() == n[3]);
CHECK(list.back()->prev() == n[2]);
CHECK(list.back() == n[1]);
CHECK(list.back()->next() == nullptr);
}
TEST_CASE("[List] Swap middle (values check)") {
List<String> list;
List<String>::Element *n_str1 = list.push_back("Still");
List<String>::Element *n_str2 = list.push_back("waiting");
List<String>::Element *n_str3 = list.push_back("for");
List<String>::Element *n_str4 = list.push_back("Godot.");
CHECK(n_str1->get() == "Still");
CHECK(n_str4->get() == "Godot.");
CHECK(list.front()->get() == "Still");
CHECK(list.front()->next()->get() == "waiting");
CHECK(list.back()->prev()->get() == "for");
CHECK(list.back()->get() == "Godot.");
list.swap(n_str2, n_str3);
CHECK(list.front()->next()->get() == "for");
CHECK(list.back()->prev()->get() == "waiting");
}
TEST_CASE("[List] Swap front and back (values check)") {
List<Variant> list;
Variant str = "Godot";
List<Variant>::Element *n_str = list.push_back(str);
Variant color = Color(0, 0, 1);
List<Variant>::Element *n_color = list.push_back(color);
CHECK(list.front()->get() == "Godot");
CHECK(list.back()->get() == Color(0, 0, 1));
list.swap(n_str, n_color);
CHECK(list.front()->get() == Color(0, 0, 1));
CHECK(list.back()->get() == "Godot");
}
TEST_CASE("[List] Swap adjacent back and front (reverse order of elements)") {
List<int> list;
List<int>::Element *n[2];
populate_integers(list, n, 2);
list.swap(n[1], n[0]);
List<int>::Element *it = list.front();
while (it) {
List<int>::Element *prev_it = it;
it = it->next();
if (it == prev_it) {
FAIL_CHECK("Infinite loop detected.");
break;
}
}
}
static void swap_random(List<int> &p_list, List<int>::Element *r_elements[], size_t p_size, size_t p_iterations) {
Math::seed(0);
for (size_t test_i = 0; test_i < p_iterations; ++test_i) {
// A and B elements have corresponding indices as values.
const int a_idx = static_cast<int>(Math::rand() % p_size);
const int b_idx = static_cast<int>(Math::rand() % p_size);
List<int>::Element *a = p_list.find(a_idx); // via find.
List<int>::Element *b = r_elements[b_idx]; // via pointer.
int va = a->get();
int vb = b->get();
p_list.swap(a, b);
CHECK(va == a->get());
CHECK(vb == b->get());
size_t element_count = 0;
// Fully traversable after swap?
List<int>::Element *it = p_list.front();
while (it) {
element_count += 1;
List<int>::Element *prev_it = it;
it = it->next();
if (it == prev_it) {
FAIL_CHECK("Infinite loop detected.");
break;
}
}
// We should not lose anything in the process.
if (element_count != p_size) {
FAIL_CHECK("Element count mismatch.");
break;
}
}
}
TEST_CASE("[Stress][List] Swap random 100 elements, 500 iterations.") {
List<int> list;
List<int>::Element *n[100];
populate_integers(list, n, 100);
swap_random(list, n, 100, 500);
}
TEST_CASE("[Stress][List] Swap random 10 elements, 1000 iterations.") {
List<int> list;
List<int>::Element *n[10];
populate_integers(list, n, 10);
swap_random(list, n, 10, 1000);
}
} // namespace TestList
#endif // TEST_LIST_H