mirror of
https://github.com/godotengine/godot
synced 2024-11-05 16:53:09 +00:00
314 lines
14 KiB
XML
314 lines
14 KiB
XML
<?xml version="1.0" encoding="UTF-8" ?>
|
|
<class name="Quaternion" version="4.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
|
|
<brief_description>
|
|
A unit quaternion used for representing 3D rotations.
|
|
</brief_description>
|
|
<description>
|
|
Quaternions are similar to [Basis], which implements the matrix representation of rotations. Unlike [Basis], which stores rotation, scale, and shearing, quaternions only store rotation.
|
|
Quaternions can be parametrized using both an axis-angle pair or Euler angles. Due to their compactness and the way they are stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors.
|
|
[b]Note:[/b] Quaternions need to be normalized before being used for rotation.
|
|
</description>
|
|
<tutorials>
|
|
<link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html#interpolating-with-quaternions</link>
|
|
<link title="Third Person Shooter Demo">https://godotengine.org/asset-library/asset/678</link>
|
|
</tutorials>
|
|
<constructors>
|
|
<constructor name="Quaternion">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
Constructs a default-initialized quaternion with all components set to [code]0[/code].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Quaternion">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="from" type="Quaternion" />
|
|
<description>
|
|
Constructs a [Quaternion] as a copy of the given [Quaternion].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Quaternion">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="arc_from" type="Vector3" />
|
|
<param index="1" name="arc_to" type="Vector3" />
|
|
<description>
|
|
Constructs a quaternion representing the shortest arc between two points on the surface of a sphere with a radius of [code]1.0[/code].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Quaternion">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="axis" type="Vector3" />
|
|
<param index="1" name="angle" type="float" />
|
|
<description>
|
|
Constructs a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector.
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Quaternion">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="from" type="Basis" />
|
|
<description>
|
|
Constructs a quaternion from the given [Basis].
|
|
</description>
|
|
</constructor>
|
|
<constructor name="Quaternion">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="x" type="float" />
|
|
<param index="1" name="y" type="float" />
|
|
<param index="2" name="z" type="float" />
|
|
<param index="3" name="w" type="float" />
|
|
<description>
|
|
Constructs a quaternion defined by the given values.
|
|
</description>
|
|
</constructor>
|
|
</constructors>
|
|
<methods>
|
|
<method name="angle_to" qualifiers="const">
|
|
<return type="float" />
|
|
<param index="0" name="to" type="Quaternion" />
|
|
<description>
|
|
Returns the angle between this quaternion and [param to]. This is the magnitude of the angle you would need to rotate by to get from one to the other.
|
|
[b]Note:[/b] The magnitude of the floating-point error for this method is abnormally high, so methods such as [code]is_zero_approx[/code] will not work reliably.
|
|
</description>
|
|
</method>
|
|
<method name="dot" qualifiers="const">
|
|
<return type="float" />
|
|
<param index="0" name="with" type="Quaternion" />
|
|
<description>
|
|
Returns the dot product of two quaternions.
|
|
</description>
|
|
</method>
|
|
<method name="exp" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
</description>
|
|
</method>
|
|
<method name="from_euler" qualifiers="static">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="euler" type="Vector3" />
|
|
<description>
|
|
Constructs a Quaternion from Euler angles in YXZ rotation order.
|
|
</description>
|
|
</method>
|
|
<method name="get_angle" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
</description>
|
|
</method>
|
|
<method name="get_axis" qualifiers="const">
|
|
<return type="Vector3" />
|
|
<description>
|
|
</description>
|
|
</method>
|
|
<method name="get_euler" qualifiers="const">
|
|
<return type="Vector3" />
|
|
<param index="0" name="order" type="int" default="2" />
|
|
<description>
|
|
Returns the quaternion's rotation in the form of Euler angles. The Euler order depends on the [param order] parameter, for example using the YXZ convention: since this method decomposes, first Z, then X, and Y last. See the [enum EulerOrder] enum for possible values. The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
|
|
</description>
|
|
</method>
|
|
<method name="inverse" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
Returns the inverse of the quaternion.
|
|
</description>
|
|
</method>
|
|
<method name="is_equal_approx" qualifiers="const">
|
|
<return type="bool" />
|
|
<param index="0" name="to" type="Quaternion" />
|
|
<description>
|
|
Returns [code]true[/code] if this quaternion and [param to] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
|
|
</description>
|
|
</method>
|
|
<method name="is_finite" qualifiers="const">
|
|
<return type="bool" />
|
|
<description>
|
|
Returns [code]true[/code] if this quaternion is finite, by calling [method @GlobalScope.is_finite] on each component.
|
|
</description>
|
|
</method>
|
|
<method name="is_normalized" qualifiers="const">
|
|
<return type="bool" />
|
|
<description>
|
|
Returns whether the quaternion is normalized or not.
|
|
</description>
|
|
</method>
|
|
<method name="length" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
Returns the length of the quaternion.
|
|
</description>
|
|
</method>
|
|
<method name="length_squared" qualifiers="const">
|
|
<return type="float" />
|
|
<description>
|
|
Returns the length of the quaternion, squared.
|
|
</description>
|
|
</method>
|
|
<method name="log" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
</description>
|
|
</method>
|
|
<method name="normalized" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
Returns a copy of the quaternion, normalized to unit length.
|
|
</description>
|
|
</method>
|
|
<method name="slerp" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="to" type="Quaternion" />
|
|
<param index="1" name="weight" type="float" />
|
|
<description>
|
|
Returns the result of the spherical linear interpolation between this quaternion and [param to] by amount [param weight].
|
|
[b]Note:[/b] Both quaternions must be normalized.
|
|
</description>
|
|
</method>
|
|
<method name="slerpni" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="to" type="Quaternion" />
|
|
<param index="1" name="weight" type="float" />
|
|
<description>
|
|
Returns the result of the spherical linear interpolation between this quaternion and [param to] by amount [param weight], but without checking if the rotation path is not bigger than 90 degrees.
|
|
</description>
|
|
</method>
|
|
<method name="spherical_cubic_interpolate" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="b" type="Quaternion" />
|
|
<param index="1" name="pre_a" type="Quaternion" />
|
|
<param index="2" name="post_b" type="Quaternion" />
|
|
<param index="3" name="weight" type="float" />
|
|
<description>
|
|
Performs a spherical cubic interpolation between quaternions [param pre_a], this vector, [param b], and [param post_b], by the given amount [param weight].
|
|
</description>
|
|
</method>
|
|
<method name="spherical_cubic_interpolate_in_time" qualifiers="const">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="b" type="Quaternion" />
|
|
<param index="1" name="pre_a" type="Quaternion" />
|
|
<param index="2" name="post_b" type="Quaternion" />
|
|
<param index="3" name="weight" type="float" />
|
|
<param index="4" name="b_t" type="float" />
|
|
<param index="5" name="pre_a_t" type="float" />
|
|
<param index="6" name="post_b_t" type="float" />
|
|
<description>
|
|
Performs a spherical cubic interpolation between quaternions [param pre_a], this vector, [param b], and [param post_b], by the given amount [param weight].
|
|
It can perform smoother interpolation than [code]spherical_cubic_interpolate()[/code] by the time values.
|
|
</description>
|
|
</method>
|
|
</methods>
|
|
<members>
|
|
<member name="w" type="float" setter="" getter="" default="1.0">
|
|
W component of the quaternion (real part).
|
|
Quaternion components should usually not be manipulated directly.
|
|
</member>
|
|
<member name="x" type="float" setter="" getter="" default="0.0">
|
|
X component of the quaternion (imaginary [code]i[/code] axis part).
|
|
Quaternion components should usually not be manipulated directly.
|
|
</member>
|
|
<member name="y" type="float" setter="" getter="" default="0.0">
|
|
Y component of the quaternion (imaginary [code]j[/code] axis part).
|
|
Quaternion components should usually not be manipulated directly.
|
|
</member>
|
|
<member name="z" type="float" setter="" getter="" default="0.0">
|
|
Z component of the quaternion (imaginary [code]k[/code] axis part).
|
|
Quaternion components should usually not be manipulated directly.
|
|
</member>
|
|
</members>
|
|
<constants>
|
|
<constant name="IDENTITY" value="Quaternion(0, 0, 0, 1)">
|
|
The identity quaternion, representing no rotation. Equivalent to an identity [Basis] matrix. If a vector is transformed by an identity quaternion, it will not change.
|
|
</constant>
|
|
</constants>
|
|
<operators>
|
|
<operator name="operator !=">
|
|
<return type="bool" />
|
|
<param index="0" name="right" type="Quaternion" />
|
|
<description>
|
|
Returns [code]true[/code] if the quaternions are not equal.
|
|
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="Quaternion" />
|
|
<description>
|
|
Composes these two quaternions by multiplying them together. This has the effect of rotating the second quaternion (the child) by the first quaternion (the parent).
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Vector3" />
|
|
<param index="0" name="right" type="Vector3" />
|
|
<description>
|
|
Rotates (multiplies) the [Vector3] by the given [Quaternion].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="float" />
|
|
<description>
|
|
Multiplies each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator *">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="int" />
|
|
<description>
|
|
Multiplies each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator +">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="Quaternion" />
|
|
<description>
|
|
Adds each component of the left [Quaternion] to the right [Quaternion]. This operation is not meaningful on its own, but it can be used as a part of a larger expression, such as approximating an intermediate rotation between two nearby rotations.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator -">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="Quaternion" />
|
|
<description>
|
|
Subtracts each component of the left [Quaternion] by the right [Quaternion]. This operation is not meaningful on its own, but it can be used as a part of a larger expression.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator /">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="float" />
|
|
<description>
|
|
Divides each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator /">
|
|
<return type="Quaternion" />
|
|
<param index="0" name="right" type="int" />
|
|
<description>
|
|
Divides each component of the [Quaternion] by the given value. This operation is not meaningful on its own, but it can be used as a part of a larger expression.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator ==">
|
|
<return type="bool" />
|
|
<param index="0" name="right" type="Quaternion" />
|
|
<description>
|
|
Returns [code]true[/code] if the quaternions are exactly equal.
|
|
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator []">
|
|
<return type="float" />
|
|
<param index="0" name="index" type="int" />
|
|
<description>
|
|
Access quaternion components using their index. [code]q[0][/code] is equivalent to [code]q.x[/code], [code]q[1][/code] is equivalent to [code]q.y[/code], [code]q[2][/code] is equivalent to [code]q.z[/code], and [code]q[3][/code] is equivalent to [code]q.w[/code].
|
|
</description>
|
|
</operator>
|
|
<operator name="operator unary+">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
|
|
</description>
|
|
</operator>
|
|
<operator name="operator unary-">
|
|
<return type="Quaternion" />
|
|
<description>
|
|
Returns the negative value of the [Quaternion]. This is the same as writing [code]Quaternion(-q.x, -q.y, -q.z, -q.w)[/code]. This operation results in a quaternion that represents the same rotation.
|
|
</description>
|
|
</operator>
|
|
</operators>
|
|
</class>
|