godot/scene/animation/animation_node_state_machine.cpp

1815 lines
68 KiB
C++

/**************************************************************************/
/* animation_node_state_machine.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "animation_node_state_machine.h"
#include "scene/main/window.h"
/////////////////////////////////////////////////
void AnimationNodeStateMachineTransition::set_switch_mode(SwitchMode p_mode) {
switch_mode = p_mode;
}
AnimationNodeStateMachineTransition::SwitchMode AnimationNodeStateMachineTransition::get_switch_mode() const {
return switch_mode;
}
void AnimationNodeStateMachineTransition::set_advance_mode(AdvanceMode p_mode) {
advance_mode = p_mode;
}
AnimationNodeStateMachineTransition::AdvanceMode AnimationNodeStateMachineTransition::get_advance_mode() const {
return advance_mode;
}
void AnimationNodeStateMachineTransition::set_advance_condition(const StringName &p_condition) {
String cs = p_condition;
ERR_FAIL_COND(cs.contains("/") || cs.contains(":"));
advance_condition = p_condition;
if (!cs.is_empty()) {
advance_condition_name = "conditions/" + cs;
} else {
advance_condition_name = StringName();
}
emit_signal(SNAME("advance_condition_changed"));
}
StringName AnimationNodeStateMachineTransition::get_advance_condition() const {
return advance_condition;
}
StringName AnimationNodeStateMachineTransition::get_advance_condition_name() const {
return advance_condition_name;
}
void AnimationNodeStateMachineTransition::set_advance_expression(const String &p_expression) {
advance_expression = p_expression;
String advance_expression_stripped = advance_expression.strip_edges();
if (advance_expression_stripped == String()) {
expression.unref();
return;
}
if (expression.is_null()) {
expression.instantiate();
}
expression->parse(advance_expression_stripped);
}
String AnimationNodeStateMachineTransition::get_advance_expression() const {
return advance_expression;
}
void AnimationNodeStateMachineTransition::set_xfade_time(float p_xfade) {
ERR_FAIL_COND(p_xfade < 0);
xfade_time = p_xfade;
emit_changed();
}
float AnimationNodeStateMachineTransition::get_xfade_time() const {
return xfade_time;
}
void AnimationNodeStateMachineTransition::set_xfade_curve(const Ref<Curve> &p_curve) {
xfade_curve = p_curve;
}
Ref<Curve> AnimationNodeStateMachineTransition::get_xfade_curve() const {
return xfade_curve;
}
void AnimationNodeStateMachineTransition::set_reset(bool p_reset) {
reset = p_reset;
emit_changed();
}
bool AnimationNodeStateMachineTransition::is_reset() const {
return reset;
}
void AnimationNodeStateMachineTransition::set_priority(int p_priority) {
priority = p_priority;
emit_changed();
}
int AnimationNodeStateMachineTransition::get_priority() const {
return priority;
}
void AnimationNodeStateMachineTransition::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_switch_mode", "mode"), &AnimationNodeStateMachineTransition::set_switch_mode);
ClassDB::bind_method(D_METHOD("get_switch_mode"), &AnimationNodeStateMachineTransition::get_switch_mode);
ClassDB::bind_method(D_METHOD("set_advance_mode", "mode"), &AnimationNodeStateMachineTransition::set_advance_mode);
ClassDB::bind_method(D_METHOD("get_advance_mode"), &AnimationNodeStateMachineTransition::get_advance_mode);
ClassDB::bind_method(D_METHOD("set_advance_condition", "name"), &AnimationNodeStateMachineTransition::set_advance_condition);
ClassDB::bind_method(D_METHOD("get_advance_condition"), &AnimationNodeStateMachineTransition::get_advance_condition);
ClassDB::bind_method(D_METHOD("set_xfade_time", "secs"), &AnimationNodeStateMachineTransition::set_xfade_time);
ClassDB::bind_method(D_METHOD("get_xfade_time"), &AnimationNodeStateMachineTransition::get_xfade_time);
ClassDB::bind_method(D_METHOD("set_xfade_curve", "curve"), &AnimationNodeStateMachineTransition::set_xfade_curve);
ClassDB::bind_method(D_METHOD("get_xfade_curve"), &AnimationNodeStateMachineTransition::get_xfade_curve);
ClassDB::bind_method(D_METHOD("set_reset", "reset"), &AnimationNodeStateMachineTransition::set_reset);
ClassDB::bind_method(D_METHOD("is_reset"), &AnimationNodeStateMachineTransition::is_reset);
ClassDB::bind_method(D_METHOD("set_priority", "priority"), &AnimationNodeStateMachineTransition::set_priority);
ClassDB::bind_method(D_METHOD("get_priority"), &AnimationNodeStateMachineTransition::get_priority);
ClassDB::bind_method(D_METHOD("set_advance_expression", "text"), &AnimationNodeStateMachineTransition::set_advance_expression);
ClassDB::bind_method(D_METHOD("get_advance_expression"), &AnimationNodeStateMachineTransition::get_advance_expression);
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "xfade_time", PROPERTY_HINT_RANGE, "0,240,0.01,suffix:s"), "set_xfade_time", "get_xfade_time");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "xfade_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_xfade_curve", "get_xfade_curve");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "reset"), "set_reset", "is_reset");
ADD_PROPERTY(PropertyInfo(Variant::INT, "priority", PROPERTY_HINT_RANGE, "0,32,1"), "set_priority", "get_priority");
ADD_GROUP("Switch", "");
ADD_PROPERTY(PropertyInfo(Variant::INT, "switch_mode", PROPERTY_HINT_ENUM, "Immediate,Sync,At End"), "set_switch_mode", "get_switch_mode");
ADD_GROUP("Advance", "advance_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "advance_mode", PROPERTY_HINT_ENUM, "Disabled,Enabled,Auto"), "set_advance_mode", "get_advance_mode");
ADD_PROPERTY(PropertyInfo(Variant::STRING_NAME, "advance_condition"), "set_advance_condition", "get_advance_condition");
ADD_PROPERTY(PropertyInfo(Variant::STRING, "advance_expression", PROPERTY_HINT_EXPRESSION, ""), "set_advance_expression", "get_advance_expression");
BIND_ENUM_CONSTANT(SWITCH_MODE_IMMEDIATE);
BIND_ENUM_CONSTANT(SWITCH_MODE_SYNC);
BIND_ENUM_CONSTANT(SWITCH_MODE_AT_END);
BIND_ENUM_CONSTANT(ADVANCE_MODE_DISABLED);
BIND_ENUM_CONSTANT(ADVANCE_MODE_ENABLED);
BIND_ENUM_CONSTANT(ADVANCE_MODE_AUTO);
ADD_SIGNAL(MethodInfo("advance_condition_changed"));
}
AnimationNodeStateMachineTransition::AnimationNodeStateMachineTransition() {
}
////////////////////////////////////////////////////////
void AnimationNodeStateMachinePlayback::_set_current(AnimationNodeStateMachine *p_state_machine, const StringName &p_state) {
current = p_state;
if (current == StringName()) {
group_start_transition = Ref<AnimationNodeStateMachineTransition>();
group_end_transition = Ref<AnimationNodeStateMachineTransition>();
return;
}
Ref<AnimationNodeStateMachine> anodesm = p_state_machine->find_node_by_path(current);
if (!anodesm.is_valid()) {
group_start_transition = Ref<AnimationNodeStateMachineTransition>();
group_end_transition = Ref<AnimationNodeStateMachineTransition>();
return;
}
Vector<int> indices = p_state_machine->find_transition_to(current);
int group_start_size = indices.size();
if (group_start_size) {
group_start_transition = p_state_machine->get_transition(indices[0]);
} else {
group_start_transition = Ref<AnimationNodeStateMachineTransition>();
}
indices = p_state_machine->find_transition_from(current);
int group_end_size = indices.size();
if (group_end_size) {
group_end_transition = p_state_machine->get_transition(indices[0]);
} else {
group_end_transition = Ref<AnimationNodeStateMachineTransition>();
}
// Validation.
if (anodesm->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
indices = anodesm->find_transition_from(anodesm->start_node);
int anodesm_start_size = indices.size();
indices = anodesm->find_transition_to(anodesm->end_node);
int anodesm_end_size = indices.size();
if (group_start_size > 1) {
WARN_PRINT_ED("There are two or more transitions to the Grouped AnimationNodeStateMachine in AnimationNodeStateMachine: " + base_path + ", which may result in unintended transitions.");
}
if (group_end_size > 1) {
WARN_PRINT_ED("There are two or more transitions from the Grouped AnimationNodeStateMachine in AnimationNodeStateMachine: " + base_path + ", which may result in unintended transitions.");
}
if (anodesm_start_size > 1) {
WARN_PRINT_ED("There are two or more transitions from the Start of Grouped AnimationNodeStateMachine in AnimationNodeStateMachine: " + base_path + current + ", which may result in unintended transitions.");
}
if (anodesm_end_size > 1) {
WARN_PRINT_ED("There are two or more transitions to the End of Grouped AnimationNodeStateMachine in AnimationNodeStateMachine: " + base_path + current + ", which may result in unintended transitions.");
}
if (anodesm_start_size != group_start_size) {
ERR_PRINT_ED("There is a mismatch in the number of start transitions in and out of the Grouped AnimationNodeStateMachine on AnimationNodeStateMachine: " + base_path + current + ".");
}
if (anodesm_end_size != group_end_size) {
ERR_PRINT_ED("There is a mismatch in the number of end transitions in and out of the Grouped AnimationNodeStateMachine on AnimationNodeStateMachine: " + base_path + current + ".");
}
}
}
void AnimationNodeStateMachinePlayback::_set_grouped(bool p_is_grouped) {
is_grouped = p_is_grouped;
}
void AnimationNodeStateMachinePlayback::travel(const StringName &p_state, bool p_reset_on_teleport) {
ERR_FAIL_COND_EDMSG(is_grouped, "Grouped AnimationNodeStateMachinePlayback must be handled by parent AnimationNodeStateMachinePlayback. You need to retrieve the parent Root/Nested AnimationNodeStateMachine.");
ERR_FAIL_COND_EDMSG(String(p_state).contains("/Start") || String(p_state).contains("/End"), "Grouped AnimationNodeStateMachinePlayback doesn't allow to play Start/End directly. Instead, play the prev or next state of group in the parent AnimationNodeStateMachine.");
_travel_main(p_state, p_reset_on_teleport);
}
void AnimationNodeStateMachinePlayback::start(const StringName &p_state, bool p_reset) {
ERR_FAIL_COND_EDMSG(is_grouped, "Grouped AnimationNodeStateMachinePlayback must be handled by parent AnimationNodeStateMachinePlayback. You need to retrieve the parent Root/Nested AnimationNodeStateMachine.");
ERR_FAIL_COND_EDMSG(String(p_state).contains("/Start") || String(p_state).contains("/End"), "Grouped AnimationNodeStateMachinePlayback doesn't allow to play Start/End directly. Instead, play the prev or next state of group in the parent AnimationNodeStateMachine.");
_start_main(p_state, p_reset);
}
void AnimationNodeStateMachinePlayback::next() {
ERR_FAIL_COND_EDMSG(is_grouped, "Grouped AnimationNodeStateMachinePlayback must be handled by parent AnimationNodeStateMachinePlayback. You need to retrieve the parent Root/Nested AnimationNodeStateMachine.");
_next_main();
}
void AnimationNodeStateMachinePlayback::stop() {
ERR_FAIL_COND_EDMSG(is_grouped, "Grouped AnimationNodeStateMachinePlayback must be handled by parent AnimationNodeStateMachinePlayback. You need to retrieve the parent Root/Nested AnimationNodeStateMachine.");
_stop_main();
}
void AnimationNodeStateMachinePlayback::_travel_main(const StringName &p_state, bool p_reset_on_teleport) {
travel_request = p_state;
reset_request_on_teleport = p_reset_on_teleport;
stop_request = false;
}
void AnimationNodeStateMachinePlayback::_start_main(const StringName &p_state, bool p_reset) {
travel_request = StringName();
path.clear();
reset_request = p_reset;
start_request = p_state;
stop_request = false;
}
void AnimationNodeStateMachinePlayback::_next_main() {
next_request = true;
}
void AnimationNodeStateMachinePlayback::_stop_main() {
stop_request = true;
}
bool AnimationNodeStateMachinePlayback::is_playing() const {
return playing;
}
bool AnimationNodeStateMachinePlayback::is_end() const {
return current == "End" && fading_from == StringName();
}
StringName AnimationNodeStateMachinePlayback::get_current_node() const {
return current;
}
StringName AnimationNodeStateMachinePlayback::get_fading_from_node() const {
return fading_from;
}
Vector<StringName> AnimationNodeStateMachinePlayback::get_travel_path() const {
return path;
}
float AnimationNodeStateMachinePlayback::get_current_play_pos() const {
return pos_current;
}
float AnimationNodeStateMachinePlayback::get_current_length() const {
return len_current;
}
float AnimationNodeStateMachinePlayback::get_fade_from_play_pos() const {
return pos_fade_from;
}
float AnimationNodeStateMachinePlayback::get_fade_from_length() const {
return len_fade_from;
}
float AnimationNodeStateMachinePlayback::get_fading_time() const {
return fading_time;
}
float AnimationNodeStateMachinePlayback::get_fading_pos() const {
return fading_pos;
}
void AnimationNodeStateMachinePlayback::_clear_path_children(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, bool p_test_only) {
List<AnimationNode::ChildNode> child_nodes;
p_state_machine->get_child_nodes(&child_nodes);
for (int i = 0; i < child_nodes.size(); i++) {
Ref<AnimationNodeStateMachine> anodesm = child_nodes[i].node;
if (anodesm.is_valid() && anodesm->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
Ref<AnimationNodeStateMachinePlayback> playback = p_tree->get(base_path + child_nodes[i].name + "/playback");
ERR_FAIL_COND(!playback.is_valid());
playback->_set_base_path(base_path + child_nodes[i].name + "/");
if (p_test_only) {
playback = playback->duplicate();
}
playback->path.clear();
playback->_clear_path_children(p_tree, anodesm.ptr(), p_test_only);
if (current != child_nodes[i].name) {
playback->_start(anodesm.ptr()); // Can restart.
}
}
}
}
void AnimationNodeStateMachinePlayback::_start_children(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, const String &p_path, bool p_test_only) {
if (p_state_machine->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
return; // This function must be fired only by the top state machine, do nothing in child state machine.
}
Vector<String> temp_path = p_path.split("/");
if (temp_path.size() > 1) {
for (int i = 1; i < temp_path.size(); i++) {
String concatenated;
for (int j = 0; j < i; j++) {
concatenated += temp_path[j] + (j == i - 1 ? "" : "/");
}
Ref<AnimationNodeStateMachine> anodesm = p_state_machine->find_node_by_path(concatenated);
if (anodesm.is_valid() && anodesm->get_state_machine_type() != AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
ERR_FAIL_MSG("Root/Nested AnimationNodeStateMachine can't have path from parent AnimationNodeStateMachine.");
}
Ref<AnimationNodeStateMachinePlayback> playback = p_tree->get(base_path + concatenated + "/playback");
ERR_FAIL_COND(!playback.is_valid());
playback->_set_base_path(base_path + concatenated + "/");
if (p_test_only) {
playback = playback->duplicate();
}
playback->_start_main(temp_path[i], i == temp_path.size() - 1 ? reset_request : false);
}
reset_request = false;
}
}
bool AnimationNodeStateMachinePlayback::_travel_children(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, const String &p_path, bool p_is_allow_transition_to_self, bool p_is_parent_same_state, bool p_test_only) {
if (p_state_machine->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
return false; // This function must be fired only by the top state machine, do nothing in child state machine.
}
Vector<String> temp_path = p_path.split("/");
Vector<ChildStateMachineInfo> children;
bool found_route = true;
bool is_parent_same_state = p_is_parent_same_state;
if (temp_path.size() > 1) {
for (int i = 1; i < temp_path.size(); i++) {
String concatenated;
for (int j = 0; j < i; j++) {
concatenated += temp_path[j] + (j == i - 1 ? "" : "/");
}
Ref<AnimationNodeStateMachine> anodesm = p_state_machine->find_node_by_path(concatenated);
if (anodesm.is_valid() && anodesm->get_state_machine_type() != AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
ERR_FAIL_V_MSG(false, "Root/Nested AnimationNodeStateMachine can't have path from parent AnimationNodeStateMachine.");
}
Ref<AnimationNodeStateMachinePlayback> playback = p_tree->get(base_path + concatenated + "/playback");
ERR_FAIL_COND_V(!playback.is_valid(), false);
playback->_set_base_path(base_path + concatenated + "/");
if (p_test_only) {
playback = playback->duplicate();
}
if (!playback->is_playing()) {
playback->_start(anodesm.ptr());
}
ChildStateMachineInfo child_info;
child_info.playback = playback;
// Process for the case that parent state is changed.
bool child_found_route = true;
bool is_current_same_state = temp_path[i] == playback->get_current_node();
if (!is_parent_same_state) {
// Force travel to end current child state machine.
String child_path = "/" + playback->get_current_node();
while (true) {
Ref<AnimationNodeStateMachine> child_anodesm = p_state_machine->find_node_by_path(concatenated + child_path);
if (!child_anodesm.is_valid() || child_anodesm->get_state_machine_type() != AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
break;
}
Ref<AnimationNodeStateMachinePlayback> child_playback = p_tree->get(base_path + concatenated + child_path + "/playback");
ERR_FAIL_COND_V(!child_playback.is_valid(), false);
child_playback->_set_base_path(base_path + concatenated + "/");
if (p_test_only) {
child_playback = child_playback->duplicate();
}
child_playback->_travel_main("End");
child_found_route &= child_playback->_travel(p_tree, child_anodesm.ptr(), false, p_test_only);
child_path += "/" + child_playback->get_current_node();
}
// Force restart target state machine.
playback->_start(anodesm.ptr());
}
is_parent_same_state = is_current_same_state;
bool is_deepest_state = i == temp_path.size() - 1;
child_info.is_reset = is_deepest_state ? reset_request_on_teleport : false;
playback->_travel_main(temp_path[i], child_info.is_reset);
if (playback->_make_travel_path(p_tree, anodesm.ptr(), is_deepest_state ? p_is_allow_transition_to_self : false, child_info.path, p_test_only)) {
found_route &= child_found_route;
} else {
child_info.path.push_back(temp_path[i]);
found_route = false;
}
children.push_back(child_info);
}
reset_request_on_teleport = false;
}
if (found_route) {
for (int i = 0; i < children.size(); i++) {
children.write[i].playback->clear_path();
for (int j = 0; j < children[i].path.size(); j++) {
children.write[i].playback->push_path(children[i].path[j]);
}
}
} else {
for (int i = 0; i < children.size(); i++) {
children.write[i].playback->_travel_main(StringName(), children[i].is_reset); // Clear travel.
if (children[i].path.size()) {
children.write[i].playback->_start_main(children[i].path[children[i].path.size() - 1], children[i].is_reset);
}
}
}
return found_route;
}
void AnimationNodeStateMachinePlayback::_start(AnimationNodeStateMachine *p_state_machine) {
playing = true;
_set_current(p_state_machine, start_request != StringName() ? start_request : p_state_machine->start_node);
teleport_request = true;
stop_request = false;
start_request = StringName();
}
bool AnimationNodeStateMachinePlayback::_travel(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, bool p_is_allow_transition_to_self, bool p_test_only) {
return _make_travel_path(p_tree, p_state_machine, p_is_allow_transition_to_self, path, p_test_only);
}
String AnimationNodeStateMachinePlayback::_validate_path(AnimationNodeStateMachine *p_state_machine, const String &p_path) {
if (p_state_machine->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
return p_path; // Grouped state machine doesn't allow validat-able request.
}
String target = p_path;
Ref<AnimationNodeStateMachine> anodesm = p_state_machine->find_node_by_path(target);
while (anodesm.is_valid() && anodesm->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
Vector<int> indices = anodesm->find_transition_from(anodesm->start_node);
if (indices.size()) {
target = target + "/" + anodesm->get_transition_to(indices[0]); // Find next state of Start.
} else {
break; // There is no transition in Start state of grouped state machine.
}
anodesm = p_state_machine->find_node_by_path(target);
}
return target;
}
bool AnimationNodeStateMachinePlayback::_make_travel_path(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, bool p_is_allow_transition_to_self, Vector<StringName> &r_path, bool p_test_only) {
StringName travel = travel_request;
travel_request = StringName();
if (!playing) {
_start(p_state_machine);
}
ERR_FAIL_COND_V(!p_state_machine->states.has(travel), false);
ERR_FAIL_COND_V(!p_state_machine->states.has(current), false);
if (current == travel) {
return !p_is_allow_transition_to_self;
}
Vector<StringName> new_path;
Vector2 current_pos = p_state_machine->states[current].position;
Vector2 target_pos = p_state_machine->states[travel].position;
bool found_route = false;
HashMap<StringName, AStarCost> cost_map;
List<int> open_list;
// Build open list.
for (int i = 0; i < p_state_machine->transitions.size(); i++) {
if (p_state_machine->transitions[i].transition->get_advance_mode() == AnimationNodeStateMachineTransition::ADVANCE_MODE_DISABLED) {
continue;
}
if (p_state_machine->transitions[i].from == current) {
open_list.push_back(i);
float cost = p_state_machine->states[p_state_machine->transitions[i].to].position.distance_to(current_pos);
cost *= p_state_machine->transitions[i].transition->get_priority();
AStarCost ap;
ap.prev = current;
ap.distance = cost;
cost_map[p_state_machine->transitions[i].to] = ap;
if (p_state_machine->transitions[i].to == travel) { // Prematurely found it! :D
found_route = true;
break;
}
}
}
// Begin astar.
while (!found_route) {
if (open_list.size() == 0) {
break; // No path found.
}
// Find the last cost transition.
List<int>::Element *least_cost_transition = nullptr;
float least_cost = 1e20;
for (List<int>::Element *E = open_list.front(); E; E = E->next()) {
float cost = cost_map[p_state_machine->transitions[E->get()].to].distance;
cost += p_state_machine->states[p_state_machine->transitions[E->get()].to].position.distance_to(target_pos);
if (cost < least_cost) {
least_cost_transition = E;
least_cost = cost;
}
}
StringName transition_prev = p_state_machine->transitions[least_cost_transition->get()].from;
StringName transition = p_state_machine->transitions[least_cost_transition->get()].to;
for (int i = 0; i < p_state_machine->transitions.size(); i++) {
if (p_state_machine->transitions[i].transition->get_advance_mode() == AnimationNodeStateMachineTransition::ADVANCE_MODE_DISABLED) {
continue;
}
if (p_state_machine->transitions[i].from != transition || p_state_machine->transitions[i].to == transition_prev) {
continue; // Not interested on those.
}
float distance = p_state_machine->states[p_state_machine->transitions[i].from].position.distance_to(p_state_machine->states[p_state_machine->transitions[i].to].position);
distance *= p_state_machine->transitions[i].transition->get_priority();
distance += cost_map[p_state_machine->transitions[i].from].distance;
if (cost_map.has(p_state_machine->transitions[i].to)) {
// Oh this was visited already, can we win the cost?
if (distance < cost_map[p_state_machine->transitions[i].to].distance) {
cost_map[p_state_machine->transitions[i].to].distance = distance;
cost_map[p_state_machine->transitions[i].to].prev = p_state_machine->transitions[i].from;
}
} else {
// Add to open list.
AStarCost ac;
ac.prev = p_state_machine->transitions[i].from;
ac.distance = distance;
cost_map[p_state_machine->transitions[i].to] = ac;
open_list.push_back(i);
if (p_state_machine->transitions[i].to == travel) {
found_route = true;
break;
}
}
}
if (found_route) {
break;
}
open_list.erase(least_cost_transition);
}
// Check child grouped state machine.
if (found_route) {
// Make path.
StringName at = travel;
while (at != current) {
new_path.push_back(at);
at = cost_map[at].prev;
}
new_path.reverse();
// Check internal paths of child grouped state machine.
// For example:
// [current - End] - [Start - End] - [Start - End] - [Start - target]
String current_path = current;
int len = new_path.size() + 1;
for (int i = 0; i < len; i++) {
Ref<AnimationNodeStateMachine> anodesm = p_state_machine->find_node_by_path(current_path);
if (anodesm.is_valid() && anodesm->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
Ref<AnimationNodeStateMachinePlayback> playback = p_tree->get(base_path + current_path + "/playback");
ERR_FAIL_COND_V(!playback.is_valid(), false);
playback->_set_base_path(base_path + current_path + "/");
if (p_test_only) {
playback = playback->duplicate();
}
if (i > 0) {
playback->_start(anodesm.ptr());
}
if (i >= new_path.size()) {
break; // Tracing has been finished, needs to break.
}
playback->_travel_main("End");
if (!playback->_travel(p_tree, anodesm.ptr(), false, p_test_only)) {
found_route = false;
break;
}
}
if (i >= new_path.size()) {
break; // Tracing has been finished, needs to break.
}
current_path = new_path[i];
}
}
// Finally, rewrite path if route is found.
if (found_route) {
r_path = new_path;
return true;
} else {
return false;
}
}
double AnimationNodeStateMachinePlayback::process(const String &p_base_path, AnimationNodeStateMachine *p_state_machine, double p_time, bool p_seek, bool p_is_external_seeking, bool p_test_only) {
double rem = _process(p_base_path, p_state_machine, p_time, p_seek, p_is_external_seeking, p_test_only);
start_request = StringName();
next_request = false;
stop_request = false;
reset_request_on_teleport = false;
return rem;
}
double AnimationNodeStateMachinePlayback::_process(const String &p_base_path, AnimationNodeStateMachine *p_state_machine, double p_time, bool p_seek, bool p_is_external_seeking, bool p_test_only) {
_set_base_path(p_base_path);
AnimationTree *tree = p_state_machine->state->tree;
// Check seek to 0 (means reset) by parent AnimationNode.
if (p_time == 0 && p_seek && !p_is_external_seeking) {
if (p_state_machine->state_machine_type != AnimationNodeStateMachine::STATE_MACHINE_TYPE_NESTED || is_end() || !playing) {
// Restart state machine.
if (p_state_machine->get_state_machine_type() != AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
path.clear();
_clear_path_children(tree, p_state_machine, p_test_only);
}
reset_request = true;
_start(p_state_machine);
} else {
// Reset current state.
reset_request = true;
teleport_request = true;
}
}
if (stop_request) {
start_request = StringName();
travel_request = StringName();
path.clear();
playing = false;
return 0;
}
if (!playing && start_request != StringName() && travel_request != StringName()) {
return 0;
}
// Process start/travel request.
if (start_request != StringName() || travel_request != StringName()) {
if (p_state_machine->get_state_machine_type() != AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
_clear_path_children(tree, p_state_machine, p_test_only);
}
}
if (start_request != StringName()) {
path.clear();
String start_target = _validate_path(p_state_machine, start_request);
Vector<String> start_path = String(start_target).split("/");
start_request = start_path[0];
if (start_path.size()) {
_start_children(tree, p_state_machine, start_target, p_test_only);
}
// Teleport to start.
if (p_state_machine->states.has(start_request)) {
_start(p_state_machine);
} else {
StringName node = start_request;
ERR_FAIL_V_MSG(0, "No such node: '" + node + "'");
}
}
if (travel_request != StringName()) {
// Fix path.
String travel_target = _validate_path(p_state_machine, travel_request);
Vector<String> travel_path = travel_target.split("/");
travel_request = travel_path[0];
StringName temp_travel_request = travel_request; // For the case that can't travel.
// Process children.
Vector<StringName> new_path;
bool can_travel = _make_travel_path(tree, p_state_machine, travel_path.size() <= 1 ? p_state_machine->is_allow_transition_to_self() : false, new_path, p_test_only);
if (travel_path.size()) {
if (can_travel) {
can_travel = _travel_children(tree, p_state_machine, travel_target, p_state_machine->is_allow_transition_to_self(), travel_path[0] == current, p_test_only);
} else {
_start_children(tree, p_state_machine, travel_target, p_test_only);
}
}
// Process to travel.
if (can_travel) {
path = new_path;
} else {
// Can't travel, then teleport.
if (p_state_machine->states.has(temp_travel_request)) {
path.clear();
if (current != temp_travel_request || reset_request_on_teleport) {
_set_current(p_state_machine, temp_travel_request);
reset_request = reset_request_on_teleport;
teleport_request = true;
}
} else {
ERR_FAIL_V_MSG(0, "No such node: '" + temp_travel_request + "'");
}
}
}
if (teleport_request) {
teleport_request = false;
// Clear fadeing on teleport.
fading_from = StringName();
fading_pos = 0;
// Init current length.
pos_current = 0; // Overwritten suddenly in main process.
len_current = p_state_machine->blend_node(current, p_state_machine->states[current].node, 0, true, false, 0, AnimationNode::FILTER_IGNORE, true, true);
// Don't process first node if not necessary, insteads process next node.
_transition_to_next_recursive(tree, p_state_machine, p_test_only);
}
// Check current node existence.
if (!p_state_machine->states.has(current)) {
playing = false; // Current does not exist.
_set_current(p_state_machine, StringName());
return 0;
}
// Special case for grouped state machine Start/End to make priority with parent blend (means don't treat Start and End states as RESET animations).
bool is_start_of_group = false;
bool is_end_of_group = false;
if (!p_state_machine->are_ends_reset() || p_state_machine->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
is_start_of_group = fading_from == p_state_machine->start_node;
is_end_of_group = current == p_state_machine->end_node;
}
// Calc blend amount by cross-fade.
float fade_blend = 1.0;
if (fading_time && fading_from != StringName()) {
if (!p_state_machine->states.has(fading_from)) {
fading_from = StringName();
} else {
if (!p_seek) {
fading_pos += p_time;
}
fade_blend = MIN(1.0, fading_pos / fading_time);
}
}
if (current_curve.is_valid()) {
fade_blend = current_curve->sample(fade_blend);
}
fade_blend = Math::is_zero_approx(fade_blend) ? CMP_EPSILON : fade_blend;
if (is_start_of_group) {
fade_blend = 1.0;
} else if (is_end_of_group) {
fade_blend = 0.0;
}
// Main process.
double rem = 0.0;
if (reset_request) {
reset_request = false;
len_current = p_state_machine->blend_node(current, p_state_machine->states[current].node, 0, true, p_is_external_seeking, fade_blend, AnimationNode::FILTER_IGNORE, true, p_test_only);
rem = len_current;
} else {
rem = p_state_machine->blend_node(current, p_state_machine->states[current].node, p_time, p_seek, p_is_external_seeking, fade_blend, AnimationNode::FILTER_IGNORE, true, p_test_only); // Blend values must be more than CMP_EPSILON to process discrete keys in edge.
}
// Cross-fade process.
if (fading_from != StringName()) {
double fade_blend_inv = 1.0 - fade_blend;
fade_blend_inv = Math::is_zero_approx(fade_blend_inv) ? CMP_EPSILON : fade_blend_inv;
if (is_start_of_group) {
fade_blend_inv = 0.0;
} else if (is_end_of_group) {
fade_blend_inv = 1.0;
}
float fading_from_rem = 0.0;
if (_reset_request_for_fading_from) {
_reset_request_for_fading_from = false;
fading_from_rem = p_state_machine->blend_node(fading_from, p_state_machine->states[fading_from].node, 0, true, p_is_external_seeking, fade_blend_inv, AnimationNode::FILTER_IGNORE, true); // Blend values must be more than CMP_EPSILON to process discrete keys in edge.
} else {
fading_from_rem = p_state_machine->blend_node(fading_from, p_state_machine->states[fading_from].node, p_time, p_seek, p_is_external_seeking, fade_blend_inv, AnimationNode::FILTER_IGNORE, true); // Blend values must be more than CMP_EPSILON to process discrete keys in edge.
}
// Guess playback position.
if (fading_from_rem > len_fade_from) { /// Weird but ok.
len_fade_from = fading_from_rem;
}
pos_fade_from = len_fade_from - fading_from_rem;
if (fading_pos >= fading_time) {
fading_from = StringName(); // Finish fading.
}
}
// Guess playback position.
if (rem > len_current) { // Weird but ok.
len_current = rem;
}
pos_current = len_current - rem;
// Find next and see when to transition.
_transition_to_next_recursive(tree, p_state_machine, p_test_only);
// Predict remaining time.
double remain = rem; // If we can't predict the end of state machine, the time remaining must be INFINITY.
if (p_state_machine->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_NESTED) {
// There is no next transition.
if (!p_state_machine->has_transition_from(current)) {
if (fading_from != StringName()) {
remain = MAX(rem, fading_time - fading_pos);
} else {
remain = rem;
}
return remain;
}
}
if (current == p_state_machine->end_node) {
if (fading_from != StringName()) {
remain = MAX(0, fading_time - fading_pos);
} else {
remain = 0;
}
return remain;
}
if (!is_end()) {
return HUGE_LENGTH;
}
return remain;
}
bool AnimationNodeStateMachinePlayback::_transition_to_next_recursive(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, bool p_test_only) {
_reset_request_for_fading_from = false;
bool is_state_changed = false;
NextInfo next;
StringName transition_start = current;
while (true) {
next = _find_next(p_tree, p_state_machine);
if (next.node == transition_start) {
is_state_changed = false;
break; // Maybe infinity loop, do noting more.
}
if (!_can_transition_to_next(p_tree, p_state_machine, next, p_test_only)) {
break; // Finish transition.
}
is_state_changed = true;
// Setting for fading.
if (next.xfade) {
// Time to fade.
fading_from = current;
fading_time = next.xfade;
fading_pos = 0;
} else {
if (reset_request) {
// There is no possibility of processing doubly. Now we can apply reset actually in here.
p_state_machine->blend_node(current, p_state_machine->states[current].node, 0, true, false, 0, AnimationNode::FILTER_IGNORE, true, p_test_only);
}
fading_from = StringName();
fading_time = 0;
fading_pos = 0;
}
// If it came from path, remove path.
if (path.size()) {
path.remove_at(0);
}
// Update current status.
_set_current(p_state_machine, next.node);
current_curve = next.curve;
_reset_request_for_fading_from = reset_request; // To avoid processing doubly, it must be reset in the fading process within _process().
reset_request = next.is_reset;
pos_fade_from = pos_current;
len_fade_from = len_current;
if (next.switch_mode == AnimationNodeStateMachineTransition::SWITCH_MODE_SYNC) {
p_state_machine->blend_node(current, p_state_machine->states[current].node, MIN(pos_current, len_current), true, false, 0, AnimationNode::FILTER_IGNORE, true);
}
// Just get length to find next recursive.
double rem = 0.0;
if (next.is_reset) {
len_current = p_state_machine->blend_node(current, p_state_machine->states[current].node, 0, true, false, 0, AnimationNode::FILTER_IGNORE, true, true); // Just retrieve remain length, don't process.
rem = len_current;
} else {
rem = p_state_machine->blend_node(current, p_state_machine->states[current].node, 0, false, false, 0, AnimationNode::FILTER_IGNORE, true, true); // Just retrieve remain length, don't process.
}
// Guess playback position.
if (rem > len_current) { // Weird but ok.
len_current = rem;
}
pos_current = len_current - rem;
// Fading must be processed.
if (fading_time) {
break;
}
}
return is_state_changed;
}
bool AnimationNodeStateMachinePlayback::_can_transition_to_next(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, NextInfo p_next, bool p_test_only) {
if (p_next.node == StringName()) {
return false;
}
if (next_request) {
// Process request only once.
next_request = false;
// Next request must be applied to only deepest state machine.
Ref<AnimationNodeStateMachine> anodesm = p_state_machine->find_node_by_path(current);
if (anodesm.is_valid() && anodesm->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
Ref<AnimationNodeStateMachinePlayback> playback = p_tree->get(base_path + current + "/playback");
ERR_FAIL_COND_V(!playback.is_valid(), false);
playback->_set_base_path(base_path + current + "/");
if (p_test_only) {
playback = playback->duplicate();
}
playback->_next_main();
// Then, fadeing should be end.
fading_from = StringName();
fading_pos = 0;
} else {
return true;
}
}
if (fading_from != StringName()) {
return false;
}
if (current != p_state_machine->start_node && p_next.switch_mode == AnimationNodeStateMachineTransition::SWITCH_MODE_AT_END) {
return pos_current >= len_current - p_next.xfade;
}
return true;
}
Ref<AnimationNodeStateMachineTransition> AnimationNodeStateMachinePlayback::_check_group_transition(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine, const AnimationNodeStateMachine::Transition &p_transition, Ref<AnimationNodeStateMachine> &r_state_machine, bool &r_bypass) const {
Ref<AnimationNodeStateMachineTransition> temp_transition;
Ref<AnimationNodeStateMachinePlayback> parent_playback;
if (r_state_machine->get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
if (p_transition.from == "Start") {
parent_playback = _get_parent_playback(p_tree);
if (parent_playback.is_valid()) {
r_bypass = true;
temp_transition = parent_playback->_get_group_start_transition();
}
} else if (p_transition.to == "End") {
parent_playback = _get_parent_playback(p_tree);
if (parent_playback.is_valid()) {
temp_transition = parent_playback->_get_group_end_transition();
}
}
if (temp_transition.is_valid()) {
r_state_machine = _get_parent_state_machine(p_tree);
return temp_transition;
}
}
return p_transition.transition;
}
AnimationNodeStateMachinePlayback::NextInfo AnimationNodeStateMachinePlayback::_find_next(AnimationTree *p_tree, AnimationNodeStateMachine *p_state_machine) const {
NextInfo next;
if (path.size()) {
for (int i = 0; i < p_state_machine->transitions.size(); i++) {
Ref<AnimationNodeStateMachine> anodesm = p_state_machine;
bool bypass = false;
Ref<AnimationNodeStateMachineTransition> ref_transition = _check_group_transition(p_tree, p_state_machine, p_state_machine->transitions[i], anodesm, bypass);
if (ref_transition->get_advance_mode() == AnimationNodeStateMachineTransition::ADVANCE_MODE_DISABLED) {
continue;
}
if (p_state_machine->transitions[i].from == current && p_state_machine->transitions[i].to == path[0]) {
next.node = path[0];
next.xfade = ref_transition->get_xfade_time();
next.curve = ref_transition->get_xfade_curve();
next.switch_mode = ref_transition->get_switch_mode();
next.is_reset = ref_transition->is_reset();
}
}
} else {
int auto_advance_to = -1;
float priority_best = 1e20;
for (int i = 0; i < p_state_machine->transitions.size(); i++) {
Ref<AnimationNodeStateMachine> anodesm = p_state_machine;
bool bypass = false;
Ref<AnimationNodeStateMachineTransition> ref_transition = _check_group_transition(p_tree, p_state_machine, p_state_machine->transitions[i], anodesm, bypass);
if (ref_transition->get_advance_mode() == AnimationNodeStateMachineTransition::ADVANCE_MODE_DISABLED) {
continue;
}
if (p_state_machine->transitions[i].from == current && (_check_advance_condition(anodesm, ref_transition) || bypass)) {
if (ref_transition->get_priority() <= priority_best) {
priority_best = ref_transition->get_priority();
auto_advance_to = i;
}
}
}
if (auto_advance_to != -1) {
next.node = p_state_machine->transitions[auto_advance_to].to;
Ref<AnimationNodeStateMachine> anodesm = p_state_machine;
bool bypass = false;
Ref<AnimationNodeStateMachineTransition> ref_transition = _check_group_transition(p_tree, p_state_machine, p_state_machine->transitions[auto_advance_to], anodesm, bypass);
next.xfade = ref_transition->get_xfade_time();
next.curve = ref_transition->get_xfade_curve();
next.switch_mode = ref_transition->get_switch_mode();
next.is_reset = ref_transition->is_reset();
}
}
return next;
}
bool AnimationNodeStateMachinePlayback::_check_advance_condition(const Ref<AnimationNodeStateMachine> state_machine, const Ref<AnimationNodeStateMachineTransition> transition) const {
if (transition->get_advance_mode() != AnimationNodeStateMachineTransition::ADVANCE_MODE_AUTO) {
return false;
}
StringName advance_condition_name = transition->get_advance_condition_name();
if (advance_condition_name != StringName() && !bool(state_machine->get_parameter(advance_condition_name))) {
return false;
}
if (transition->expression.is_valid()) {
AnimationTree *tree_base = state_machine->get_animation_tree();
ERR_FAIL_COND_V(tree_base == nullptr, false);
NodePath advance_expression_base_node_path = tree_base->get_advance_expression_base_node();
Node *expression_base = tree_base->get_node_or_null(advance_expression_base_node_path);
if (expression_base) {
Ref<Expression> exp = transition->expression;
bool ret = exp->execute(Array(), expression_base, false, Engine::get_singleton()->is_editor_hint()); // Avoids allowing the user to crash the system with an expression by only allowing const calls.
if (exp->has_execute_failed() || !ret) {
return false;
}
} else {
WARN_PRINT_ONCE("Animation transition has a valid expression, but no expression base node was set on its AnimationTree.");
}
}
return true;
}
void AnimationNodeStateMachinePlayback::clear_path() {
path.clear();
}
void AnimationNodeStateMachinePlayback::push_path(const StringName &p_state) {
path.push_back(p_state);
}
void AnimationNodeStateMachinePlayback::_set_base_path(const String &p_base_path) {
base_path = p_base_path;
}
Ref<AnimationNodeStateMachinePlayback> AnimationNodeStateMachinePlayback::_get_parent_playback(AnimationTree *p_tree) const {
if (base_path.is_empty()) {
return Ref<AnimationNodeStateMachinePlayback>();
}
Vector<String> split = base_path.split("/");
ERR_FAIL_COND_V_MSG(split.size() < 2, Ref<AnimationNodeStateMachinePlayback>(), "Path is too short.");
StringName self_path = split[split.size() - 2];
split.remove_at(split.size() - 2);
String playback_path = String("/").join(split) + "playback";
Ref<AnimationNodeStateMachinePlayback> playback = p_tree->get(playback_path);
if (!playback.is_valid()) {
ERR_PRINT_ONCE("Can't get parent AnimationNodeStateMachinePlayback with path: " + playback_path + ". Maybe there is no Root/Nested AnimationNodeStateMachine in the parent of the Grouped AnimationNodeStateMachine.");
return Ref<AnimationNodeStateMachinePlayback>();
}
if (playback->get_current_node() != self_path) {
return Ref<AnimationNodeStateMachinePlayback>();
}
return playback;
}
Ref<AnimationNodeStateMachine> AnimationNodeStateMachinePlayback::_get_parent_state_machine(AnimationTree *p_tree) const {
if (base_path.is_empty()) {
return Ref<AnimationNodeStateMachine>();
}
Vector<String> split = base_path.split("/");
ERR_FAIL_COND_V_MSG(split.size() < 3, Ref<AnimationNodeStateMachine>(), "Path is too short.");
split = split.slice(1, split.size() - 2);
Ref<AnimationNode> root = p_tree->get_tree_root();
ERR_FAIL_COND_V_MSG(root.is_null(), Ref<AnimationNodeStateMachine>(), "There is no root AnimationNode in AnimationTree: " + String(p_tree->get_name()));
String anodesm_path = String("/").join(split);
Ref<AnimationNodeStateMachine> anodesm = !anodesm_path.size() ? root : root->find_node_by_path(anodesm_path);
ERR_FAIL_COND_V_MSG(anodesm.is_null(), Ref<AnimationNodeStateMachine>(), "Can't get state machine with path: " + anodesm_path);
return anodesm;
}
Ref<AnimationNodeStateMachineTransition> AnimationNodeStateMachinePlayback::_get_group_start_transition() const {
ERR_FAIL_COND_V_MSG(group_start_transition.is_null(), Ref<AnimationNodeStateMachineTransition>(), "Group start transition is null.");
return group_start_transition;
}
Ref<AnimationNodeStateMachineTransition> AnimationNodeStateMachinePlayback::_get_group_end_transition() const {
ERR_FAIL_COND_V_MSG(group_end_transition.is_null(), Ref<AnimationNodeStateMachineTransition>(), "Group end transition is null.");
return group_end_transition;
}
void AnimationNodeStateMachinePlayback::_bind_methods() {
ClassDB::bind_method(D_METHOD("travel", "to_node", "reset_on_teleport"), &AnimationNodeStateMachinePlayback::travel, DEFVAL(true));
ClassDB::bind_method(D_METHOD("start", "node", "reset"), &AnimationNodeStateMachinePlayback::start, DEFVAL(true));
ClassDB::bind_method(D_METHOD("next"), &AnimationNodeStateMachinePlayback::next);
ClassDB::bind_method(D_METHOD("stop"), &AnimationNodeStateMachinePlayback::stop);
ClassDB::bind_method(D_METHOD("is_playing"), &AnimationNodeStateMachinePlayback::is_playing);
ClassDB::bind_method(D_METHOD("get_current_node"), &AnimationNodeStateMachinePlayback::get_current_node);
ClassDB::bind_method(D_METHOD("get_current_play_position"), &AnimationNodeStateMachinePlayback::get_current_play_pos);
ClassDB::bind_method(D_METHOD("get_current_length"), &AnimationNodeStateMachinePlayback::get_current_length);
ClassDB::bind_method(D_METHOD("get_fading_from_node"), &AnimationNodeStateMachinePlayback::get_fading_from_node);
ClassDB::bind_method(D_METHOD("get_travel_path"), &AnimationNodeStateMachinePlayback::get_travel_path);
}
AnimationNodeStateMachinePlayback::AnimationNodeStateMachinePlayback() {
set_local_to_scene(true); // Only one per instantiated scene.
default_transition.instantiate();
default_transition->set_xfade_time(0);
default_transition->set_reset(true);
default_transition->set_advance_mode(AnimationNodeStateMachineTransition::ADVANCE_MODE_AUTO);
default_transition->set_switch_mode(AnimationNodeStateMachineTransition::SWITCH_MODE_IMMEDIATE);
}
///////////////////////////////////////////////////////
void AnimationNodeStateMachine::get_parameter_list(List<PropertyInfo> *r_list) const {
r_list->push_back(PropertyInfo(Variant::OBJECT, playback, PROPERTY_HINT_RESOURCE_TYPE, "AnimationNodeStateMachinePlayback", PROPERTY_USAGE_EDITOR | PROPERTY_USAGE_ALWAYS_DUPLICATE)); // Don't store this object in .tres, it always needs to be made as unique object.
List<StringName> advance_conditions;
for (int i = 0; i < transitions.size(); i++) {
StringName ac = transitions[i].transition->get_advance_condition_name();
if (ac != StringName() && advance_conditions.find(ac) == nullptr) {
advance_conditions.push_back(ac);
}
}
advance_conditions.sort_custom<StringName::AlphCompare>();
for (const StringName &E : advance_conditions) {
r_list->push_back(PropertyInfo(Variant::BOOL, E));
}
}
Variant AnimationNodeStateMachine::get_parameter_default_value(const StringName &p_parameter) const {
if (p_parameter == playback) {
Ref<AnimationNodeStateMachinePlayback> p;
p.instantiate();
return p;
} else {
return false; // Advance condition.
}
}
bool AnimationNodeStateMachine::is_parameter_read_only(const StringName &p_parameter) const {
if (p_parameter == playback) {
return true;
}
return false;
}
void AnimationNodeStateMachine::add_node(const StringName &p_name, Ref<AnimationNode> p_node, const Vector2 &p_position) {
ERR_FAIL_COND(states.has(p_name));
ERR_FAIL_COND(p_node.is_null());
ERR_FAIL_COND(String(p_name).contains("/"));
State state_new;
state_new.node = p_node;
state_new.position = p_position;
states[p_name] = state_new;
emit_changed();
emit_signal(SNAME("tree_changed"));
p_node->connect("tree_changed", callable_mp(this, &AnimationNodeStateMachine::_tree_changed), CONNECT_REFERENCE_COUNTED);
p_node->connect("animation_node_renamed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_renamed), CONNECT_REFERENCE_COUNTED);
p_node->connect("animation_node_removed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_removed), CONNECT_REFERENCE_COUNTED);
}
void AnimationNodeStateMachine::replace_node(const StringName &p_name, Ref<AnimationNode> p_node) {
ERR_FAIL_COND(states.has(p_name) == false);
ERR_FAIL_COND(p_node.is_null());
ERR_FAIL_COND(String(p_name).contains("/"));
{
Ref<AnimationNode> node = states[p_name].node;
if (node.is_valid()) {
node->disconnect("tree_changed", callable_mp(this, &AnimationNodeStateMachine::_tree_changed));
node->disconnect("animation_node_renamed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_renamed));
node->disconnect("animation_node_removed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_removed));
}
}
states[p_name].node = p_node;
emit_changed();
emit_signal(SNAME("tree_changed"));
p_node->connect("tree_changed", callable_mp(this, &AnimationNodeStateMachine::_tree_changed), CONNECT_REFERENCE_COUNTED);
p_node->connect("animation_node_renamed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_renamed), CONNECT_REFERENCE_COUNTED);
p_node->connect("animation_node_removed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_removed), CONNECT_REFERENCE_COUNTED);
}
void AnimationNodeStateMachine::set_state_machine_type(StateMachineType p_state_machine_type) {
state_machine_type = p_state_machine_type;
emit_changed();
emit_signal(SNAME("tree_changed"));
notify_property_list_changed();
}
AnimationNodeStateMachine::StateMachineType AnimationNodeStateMachine::get_state_machine_type() const {
return state_machine_type;
}
void AnimationNodeStateMachine::set_allow_transition_to_self(bool p_enable) {
allow_transition_to_self = p_enable;
}
bool AnimationNodeStateMachine::is_allow_transition_to_self() const {
return allow_transition_to_self;
}
void AnimationNodeStateMachine::set_reset_ends(bool p_enable) {
reset_ends = p_enable;
}
bool AnimationNodeStateMachine::are_ends_reset() const {
return reset_ends;
}
bool AnimationNodeStateMachine::can_edit_node(const StringName &p_name) const {
if (states.has(p_name)) {
return !(states[p_name].node->is_class("AnimationNodeStartState") || states[p_name].node->is_class("AnimationNodeEndState"));
}
return true;
}
Ref<AnimationNode> AnimationNodeStateMachine::get_node(const StringName &p_name) const {
ERR_FAIL_COND_V_EDMSG(!states.has(p_name), Ref<AnimationNode>(), String(p_name) + " is not found current state.");
return states[p_name].node;
}
StringName AnimationNodeStateMachine::get_node_name(const Ref<AnimationNode> &p_node) const {
for (const KeyValue<StringName, State> &E : states) {
if (E.value.node == p_node) {
return E.key;
}
}
ERR_FAIL_V(StringName());
}
void AnimationNodeStateMachine::get_child_nodes(List<ChildNode> *r_child_nodes) {
Vector<StringName> nodes;
for (const KeyValue<StringName, State> &E : states) {
nodes.push_back(E.key);
}
nodes.sort_custom<StringName::AlphCompare>();
for (int i = 0; i < nodes.size(); i++) {
ChildNode cn;
cn.name = nodes[i];
cn.node = states[cn.name].node;
r_child_nodes->push_back(cn);
}
}
bool AnimationNodeStateMachine::has_node(const StringName &p_name) const {
return states.has(p_name);
}
void AnimationNodeStateMachine::remove_node(const StringName &p_name) {
ERR_FAIL_COND(!states.has(p_name));
if (!can_edit_node(p_name)) {
return;
}
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_name || transitions[i].to == p_name) {
remove_transition_by_index(i);
i--;
}
}
{
Ref<AnimationNode> node = states[p_name].node;
ERR_FAIL_COND(node.is_null());
node->disconnect("tree_changed", callable_mp(this, &AnimationNodeStateMachine::_tree_changed));
node->disconnect("animation_node_renamed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_renamed));
node->disconnect("animation_node_removed", callable_mp(this, &AnimationNodeStateMachine::_animation_node_removed));
}
states.erase(p_name);
emit_signal(SNAME("animation_node_removed"), get_instance_id(), p_name);
emit_changed();
emit_signal(SNAME("tree_changed"));
}
void AnimationNodeStateMachine::rename_node(const StringName &p_name, const StringName &p_new_name) {
ERR_FAIL_COND(!states.has(p_name));
ERR_FAIL_COND(states.has(p_new_name));
ERR_FAIL_COND(!can_edit_node(p_name));
states[p_new_name] = states[p_name];
states.erase(p_name);
_rename_transitions(p_name, p_new_name);
emit_signal(SNAME("animation_node_renamed"), get_instance_id(), p_name, p_new_name);
emit_changed();
emit_signal(SNAME("tree_changed"));
}
void AnimationNodeStateMachine::_rename_transitions(const StringName &p_name, const StringName &p_new_name) {
if (updating_transitions) {
return;
}
updating_transitions = true;
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_name) {
transitions.write[i].from = p_new_name;
}
if (transitions[i].to == p_name) {
transitions.write[i].to = p_new_name;
}
}
updating_transitions = false;
}
void AnimationNodeStateMachine::get_node_list(List<StringName> *r_nodes) const {
List<StringName> nodes;
for (const KeyValue<StringName, State> &E : states) {
nodes.push_back(E.key);
}
nodes.sort_custom<StringName::AlphCompare>();
for (const StringName &E : nodes) {
r_nodes->push_back(E);
}
}
bool AnimationNodeStateMachine::has_transition(const StringName &p_from, const StringName &p_to) const {
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_from && transitions[i].to == p_to) {
return true;
}
}
return false;
}
bool AnimationNodeStateMachine::has_transition_from(const StringName &p_from) const {
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_from) {
return true;
}
}
return false;
}
bool AnimationNodeStateMachine::has_transition_to(const StringName &p_to) const {
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].to == p_to) {
return true;
}
}
return false;
}
int AnimationNodeStateMachine::find_transition(const StringName &p_from, const StringName &p_to) const {
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_from && transitions[i].to == p_to) {
return i;
}
}
return -1;
}
Vector<int> AnimationNodeStateMachine::find_transition_from(const StringName &p_from) const {
Vector<int> ret;
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_from) {
ret.push_back(i);
}
}
return ret;
}
Vector<int> AnimationNodeStateMachine::find_transition_to(const StringName &p_to) const {
Vector<int> ret;
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].to == p_to) {
ret.push_back(i);
}
}
return ret;
}
bool AnimationNodeStateMachine::_can_connect(const StringName &p_name) {
if (states.has(p_name)) {
return true;
}
String node_name = p_name;
Vector<String> path = node_name.split("/");
if (path.size() < 2) {
return false;
}
return false;
}
void AnimationNodeStateMachine::add_transition(const StringName &p_from, const StringName &p_to, const Ref<AnimationNodeStateMachineTransition> &p_transition) {
if (updating_transitions) {
return;
}
ERR_FAIL_COND(p_from == end_node || p_to == start_node);
ERR_FAIL_COND(p_from == p_to);
ERR_FAIL_COND(!_can_connect(p_from));
ERR_FAIL_COND(!_can_connect(p_to));
ERR_FAIL_COND(p_transition.is_null());
for (int i = 0; i < transitions.size(); i++) {
ERR_FAIL_COND(transitions[i].from == p_from && transitions[i].to == p_to);
}
updating_transitions = true;
Transition tr;
tr.from = p_from;
tr.to = p_to;
tr.transition = p_transition;
tr.transition->connect("advance_condition_changed", callable_mp(this, &AnimationNodeStateMachine::_tree_changed), CONNECT_REFERENCE_COUNTED);
transitions.push_back(tr);
updating_transitions = false;
}
Ref<AnimationNodeStateMachineTransition> AnimationNodeStateMachine::get_transition(int p_transition) const {
ERR_FAIL_INDEX_V(p_transition, transitions.size(), Ref<AnimationNodeStateMachineTransition>());
return transitions[p_transition].transition;
}
StringName AnimationNodeStateMachine::get_transition_from(int p_transition) const {
ERR_FAIL_INDEX_V(p_transition, transitions.size(), StringName());
return transitions[p_transition].from;
}
StringName AnimationNodeStateMachine::get_transition_to(int p_transition) const {
ERR_FAIL_INDEX_V(p_transition, transitions.size(), StringName());
return transitions[p_transition].to;
}
bool AnimationNodeStateMachine::is_transition_across_group(int p_transition) const {
ERR_FAIL_INDEX_V(p_transition, transitions.size(), false);
if (get_state_machine_type() == AnimationNodeStateMachine::STATE_MACHINE_TYPE_GROUPED) {
if (transitions[p_transition].from == "Start" || transitions[p_transition].to == "End") {
return true;
}
}
return false;
}
int AnimationNodeStateMachine::get_transition_count() const {
return transitions.size();
}
void AnimationNodeStateMachine::remove_transition(const StringName &p_from, const StringName &p_to) {
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].from == p_from && transitions[i].to == p_to) {
remove_transition_by_index(i);
return;
}
}
}
void AnimationNodeStateMachine::remove_transition_by_index(const int p_transition) {
ERR_FAIL_INDEX(p_transition, transitions.size());
Transition tr = transitions[p_transition];
transitions.write[p_transition].transition->disconnect("advance_condition_changed", callable_mp(this, &AnimationNodeStateMachine::_tree_changed));
transitions.remove_at(p_transition);
Vector<String> path_from = String(tr.from).split("/");
Vector<String> path_to = String(tr.to).split("/");
List<Vector<String>> paths;
paths.push_back(path_from);
paths.push_back(path_to);
}
void AnimationNodeStateMachine::_remove_transition(const Ref<AnimationNodeStateMachineTransition> p_transition) {
for (int i = 0; i < transitions.size(); i++) {
if (transitions[i].transition == p_transition) {
remove_transition_by_index(i);
return;
}
}
}
void AnimationNodeStateMachine::set_graph_offset(const Vector2 &p_offset) {
graph_offset = p_offset;
}
Vector2 AnimationNodeStateMachine::get_graph_offset() const {
return graph_offset;
}
double AnimationNodeStateMachine::_process(double p_time, bool p_seek, bool p_is_external_seeking, bool p_test_only) {
Ref<AnimationNodeStateMachinePlayback> playback_new = get_parameter(playback);
ERR_FAIL_COND_V(playback_new.is_null(), 0.0);
playback_new->_set_grouped(state_machine_type == STATE_MACHINE_TYPE_GROUPED);
if (p_test_only) {
playback_new = playback_new->duplicate(); // Don't process original when testing.
}
return playback_new->process(base_path, this, p_time, p_seek, p_is_external_seeking, p_test_only);
}
String AnimationNodeStateMachine::get_caption() const {
return "StateMachine";
}
Ref<AnimationNode> AnimationNodeStateMachine::get_child_by_name(const StringName &p_name) const {
return get_node(p_name);
}
bool AnimationNodeStateMachine::_set(const StringName &p_name, const Variant &p_value) {
String prop_name = p_name;
if (prop_name.begins_with("states/")) {
String node_name = prop_name.get_slicec('/', 1);
String what = prop_name.get_slicec('/', 2);
if (what == "node") {
Ref<AnimationNode> anode = p_value;
if (anode.is_valid()) {
add_node(node_name, p_value);
}
return true;
}
if (what == "position") {
if (states.has(node_name)) {
states[node_name].position = p_value;
}
return true;
}
} else if (prop_name == "transitions") {
Array trans = p_value;
ERR_FAIL_COND_V(trans.size() % 3 != 0, false);
for (int i = 0; i < trans.size(); i += 3) {
add_transition(trans[i], trans[i + 1], trans[i + 2]);
}
return true;
} else if (prop_name == "graph_offset") {
set_graph_offset(p_value);
return true;
}
return false;
}
bool AnimationNodeStateMachine::_get(const StringName &p_name, Variant &r_ret) const {
String prop_name = p_name;
if (prop_name.begins_with("states/")) {
String node_name = prop_name.get_slicec('/', 1);
String what = prop_name.get_slicec('/', 2);
if (what == "node") {
if (states.has(node_name) && can_edit_node(node_name)) {
r_ret = states[node_name].node;
return true;
}
}
if (what == "position") {
if (states.has(node_name)) {
r_ret = states[node_name].position;
return true;
}
}
} else if (prop_name == "transitions") {
Array trans;
for (int i = 0; i < transitions.size(); i++) {
String from = transitions[i].from;
String to = transitions[i].to;
trans.push_back(from);
trans.push_back(to);
trans.push_back(transitions[i].transition);
}
r_ret = trans;
return true;
} else if (prop_name == "graph_offset") {
r_ret = get_graph_offset();
return true;
}
return false;
}
void AnimationNodeStateMachine::_get_property_list(List<PropertyInfo> *p_list) const {
List<StringName> names;
for (const KeyValue<StringName, State> &E : states) {
names.push_back(E.key);
}
names.sort_custom<StringName::AlphCompare>();
for (const StringName &prop_name : names) {
p_list->push_back(PropertyInfo(Variant::OBJECT, "states/" + prop_name + "/node", PROPERTY_HINT_RESOURCE_TYPE, "AnimationNode", PROPERTY_USAGE_NO_EDITOR));
p_list->push_back(PropertyInfo(Variant::VECTOR2, "states/" + prop_name + "/position", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR));
}
p_list->push_back(PropertyInfo(Variant::ARRAY, "transitions", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR));
p_list->push_back(PropertyInfo(Variant::VECTOR2, "graph_offset", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR));
for (PropertyInfo &E : *p_list) {
_validate_property(E);
}
}
void AnimationNodeStateMachine::_validate_property(PropertyInfo &p_property) const {
if (p_property.name == "allow_transition_to_self" || p_property.name == "reset_ends") {
if (state_machine_type == STATE_MACHINE_TYPE_GROUPED) {
p_property.usage = PROPERTY_USAGE_NONE;
}
}
}
void AnimationNodeStateMachine::reset_state() {
states.clear();
transitions.clear();
playback = "playback";
start_node = "Start";
end_node = "End";
graph_offset = Vector2();
Ref<AnimationNodeStartState> s;
s.instantiate();
State start;
start.node = s;
start.position = Vector2(200, 100);
states[start_node] = start;
Ref<AnimationNodeEndState> e;
e.instantiate();
State end;
end.node = e;
end.position = Vector2(900, 100);
states[end_node] = end;
emit_changed();
emit_signal(SNAME("tree_changed"));
}
void AnimationNodeStateMachine::set_node_position(const StringName &p_name, const Vector2 &p_position) {
ERR_FAIL_COND(!states.has(p_name));
states[p_name].position = p_position;
}
Vector2 AnimationNodeStateMachine::get_node_position(const StringName &p_name) const {
ERR_FAIL_COND_V(!states.has(p_name), Vector2());
return states[p_name].position;
}
void AnimationNodeStateMachine::_tree_changed() {
emit_changed();
AnimationRootNode::_tree_changed();
}
void AnimationNodeStateMachine::_animation_node_renamed(const ObjectID &p_oid, const String &p_old_name, const String &p_new_name) {
AnimationRootNode::_animation_node_renamed(p_oid, p_old_name, p_new_name);
}
void AnimationNodeStateMachine::_animation_node_removed(const ObjectID &p_oid, const StringName &p_node) {
AnimationRootNode::_animation_node_removed(p_oid, p_node);
}
void AnimationNodeStateMachine::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_node", "name", "node", "position"), &AnimationNodeStateMachine::add_node, DEFVAL(Vector2()));
ClassDB::bind_method(D_METHOD("replace_node", "name", "node"), &AnimationNodeStateMachine::replace_node);
ClassDB::bind_method(D_METHOD("get_node", "name"), &AnimationNodeStateMachine::get_node);
ClassDB::bind_method(D_METHOD("remove_node", "name"), &AnimationNodeStateMachine::remove_node);
ClassDB::bind_method(D_METHOD("rename_node", "name", "new_name"), &AnimationNodeStateMachine::rename_node);
ClassDB::bind_method(D_METHOD("has_node", "name"), &AnimationNodeStateMachine::has_node);
ClassDB::bind_method(D_METHOD("get_node_name", "node"), &AnimationNodeStateMachine::get_node_name);
ClassDB::bind_method(D_METHOD("set_node_position", "name", "position"), &AnimationNodeStateMachine::set_node_position);
ClassDB::bind_method(D_METHOD("get_node_position", "name"), &AnimationNodeStateMachine::get_node_position);
ClassDB::bind_method(D_METHOD("has_transition", "from", "to"), &AnimationNodeStateMachine::has_transition);
ClassDB::bind_method(D_METHOD("add_transition", "from", "to", "transition"), &AnimationNodeStateMachine::add_transition);
ClassDB::bind_method(D_METHOD("get_transition", "idx"), &AnimationNodeStateMachine::get_transition);
ClassDB::bind_method(D_METHOD("get_transition_from", "idx"), &AnimationNodeStateMachine::get_transition_from);
ClassDB::bind_method(D_METHOD("get_transition_to", "idx"), &AnimationNodeStateMachine::get_transition_to);
ClassDB::bind_method(D_METHOD("get_transition_count"), &AnimationNodeStateMachine::get_transition_count);
ClassDB::bind_method(D_METHOD("remove_transition_by_index", "idx"), &AnimationNodeStateMachine::remove_transition_by_index);
ClassDB::bind_method(D_METHOD("remove_transition", "from", "to"), &AnimationNodeStateMachine::remove_transition);
ClassDB::bind_method(D_METHOD("set_graph_offset", "offset"), &AnimationNodeStateMachine::set_graph_offset);
ClassDB::bind_method(D_METHOD("get_graph_offset"), &AnimationNodeStateMachine::get_graph_offset);
ClassDB::bind_method(D_METHOD("set_state_machine_type", "state_machine_type"), &AnimationNodeStateMachine::set_state_machine_type);
ClassDB::bind_method(D_METHOD("get_state_machine_type"), &AnimationNodeStateMachine::get_state_machine_type);
ClassDB::bind_method(D_METHOD("set_allow_transition_to_self", "enable"), &AnimationNodeStateMachine::set_allow_transition_to_self);
ClassDB::bind_method(D_METHOD("is_allow_transition_to_self"), &AnimationNodeStateMachine::is_allow_transition_to_self);
ClassDB::bind_method(D_METHOD("set_reset_ends", "enable"), &AnimationNodeStateMachine::set_reset_ends);
ClassDB::bind_method(D_METHOD("are_ends_reset"), &AnimationNodeStateMachine::are_ends_reset);
ADD_PROPERTY(PropertyInfo(Variant::INT, "state_machine_type", PROPERTY_HINT_ENUM, "Root,Nested,Grouped"), "set_state_machine_type", "get_state_machine_type");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "allow_transition_to_self"), "set_allow_transition_to_self", "is_allow_transition_to_self");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "reset_ends"), "set_reset_ends", "are_ends_reset");
BIND_ENUM_CONSTANT(STATE_MACHINE_TYPE_ROOT);
BIND_ENUM_CONSTANT(STATE_MACHINE_TYPE_NESTED);
BIND_ENUM_CONSTANT(STATE_MACHINE_TYPE_GROUPED);
}
AnimationNodeStateMachine::AnimationNodeStateMachine() {
Ref<AnimationNodeStartState> s;
s.instantiate();
State start;
start.node = s;
start.position = Vector2(200, 100);
states[start_node] = start;
Ref<AnimationNodeEndState> e;
e.instantiate();
State end;
end.node = e;
end.position = Vector2(900, 100);
states[end_node] = end;
}