godot/core/math/transform_3d.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

233 lines
7.9 KiB
C++

/**************************************************************************/
/* transform_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "transform_3d.h"
#include "core/math/math_funcs.h"
#include "core/string/ustring.h"
void Transform3D::affine_invert() {
basis.invert();
origin = basis.xform(-origin);
}
Transform3D Transform3D::affine_inverse() const {
Transform3D ret = *this;
ret.affine_invert();
return ret;
}
void Transform3D::invert() {
basis.transpose();
origin = basis.xform(-origin);
}
Transform3D Transform3D::inverse() const {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform3D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
Transform3D ret = *this;
ret.invert();
return ret;
}
void Transform3D::rotate(const Vector3 &p_axis, real_t p_angle) {
*this = rotated(p_axis, p_angle);
}
Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_angle) const {
// Equivalent to left multiplication
Basis p_basis(p_axis, p_angle);
return Transform3D(p_basis * basis, p_basis.xform(origin));
}
Transform3D Transform3D::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
// Equivalent to right multiplication
Basis p_basis(p_axis, p_angle);
return Transform3D(basis * p_basis, origin);
}
void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) {
basis.rotate(p_axis, p_angle);
}
Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(origin.is_equal_approx(p_target), Transform3D(), "The transform's origin and target can't be equal.");
#endif
Transform3D t = *this;
t.basis = Basis::looking_at(p_target - origin, p_up);
return t;
}
void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
ERR_FAIL_COND_MSG(p_eye.is_equal_approx(p_target), "The eye and target vectors can't be equal.");
#endif
basis = Basis::looking_at(p_target - p_eye, p_up);
origin = p_eye;
}
Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const {
Transform3D interp;
Vector3 src_scale = basis.get_scale();
Quaternion src_rot = basis.get_rotation_quaternion();
Vector3 src_loc = origin;
Vector3 dst_scale = p_transform.basis.get_scale();
Quaternion dst_rot = p_transform.basis.get_rotation_quaternion();
Vector3 dst_loc = p_transform.origin;
interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c));
interp.origin = src_loc.lerp(dst_loc, p_c);
return interp;
}
void Transform3D::scale(const Vector3 &p_scale) {
basis.scale(p_scale);
origin *= p_scale;
}
Transform3D Transform3D::scaled(const Vector3 &p_scale) const {
// Equivalent to left multiplication
return Transform3D(basis.scaled(p_scale), origin * p_scale);
}
Transform3D Transform3D::scaled_local(const Vector3 &p_scale) const {
// Equivalent to right multiplication
return Transform3D(basis.scaled_local(p_scale), origin);
}
void Transform3D::scale_basis(const Vector3 &p_scale) {
basis.scale(p_scale);
}
void Transform3D::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) {
translate_local(Vector3(p_tx, p_ty, p_tz));
}
void Transform3D::translate_local(const Vector3 &p_translation) {
for (int i = 0; i < 3; i++) {
origin[i] += basis[i].dot(p_translation);
}
}
Transform3D Transform3D::translated(const Vector3 &p_translation) const {
// Equivalent to left multiplication
return Transform3D(basis, origin + p_translation);
}
Transform3D Transform3D::translated_local(const Vector3 &p_translation) const {
// Equivalent to right multiplication
return Transform3D(basis, origin + basis.xform(p_translation));
}
void Transform3D::orthonormalize() {
basis.orthonormalize();
}
Transform3D Transform3D::orthonormalized() const {
Transform3D _copy = *this;
_copy.orthonormalize();
return _copy;
}
void Transform3D::orthogonalize() {
basis.orthogonalize();
}
Transform3D Transform3D::orthogonalized() const {
Transform3D _copy = *this;
_copy.orthogonalize();
return _copy;
}
bool Transform3D::is_equal_approx(const Transform3D &p_transform) const {
return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin);
}
bool Transform3D::is_finite() const {
return basis.is_finite() && origin.is_finite();
}
bool Transform3D::operator==(const Transform3D &p_transform) const {
return (basis == p_transform.basis && origin == p_transform.origin);
}
bool Transform3D::operator!=(const Transform3D &p_transform) const {
return (basis != p_transform.basis || origin != p_transform.origin);
}
void Transform3D::operator*=(const Transform3D &p_transform) {
origin = xform(p_transform.origin);
basis *= p_transform.basis;
}
Transform3D Transform3D::operator*(const Transform3D &p_transform) const {
Transform3D t = *this;
t *= p_transform;
return t;
}
void Transform3D::operator*=(const real_t p_val) {
origin *= p_val;
basis *= p_val;
}
Transform3D Transform3D::operator*(const real_t p_val) const {
Transform3D ret(*this);
ret *= p_val;
return ret;
}
Transform3D::operator String() const {
return "[X: " + basis.get_column(0).operator String() +
", Y: " + basis.get_column(1).operator String() +
", Z: " + basis.get_column(2).operator String() +
", O: " + origin.operator String() + "]";
}
Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) :
basis(p_basis),
origin(p_origin) {
}
Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) :
origin(p_origin) {
basis.set_column(0, p_x);
basis.set_column(1, p_y);
basis.set_column(2, p_z);
}
Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) {
basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz);
origin = Vector3(ox, oy, oz);
}