godot/modules/recast/navigation_mesh_generator.cpp
jfons 298bd3f88a Add option to create navmesh from objects in group
Adds a new NavigationMesh property to select which objects will be taken
into account for the generation.

By default it will use all the NavigationMeshInstance children to keep
compatibility. The new modes allow to build the NavigationMesh from
all the nodes belonging to a specific group, and optionally include
their children too.
2019-10-16 12:01:10 +02:00

498 lines
18 KiB
C++

/*************************************************************************/
/* navigation_mesh_generator.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "navigation_mesh_generator.h"
#include "core/math/quick_hull.h"
#include "core/os/thread.h"
#include "editor/editor_settings.h"
#include "scene/3d/collision_shape.h"
#include "scene/3d/mesh_instance.h"
#include "scene/3d/physics_body.h"
#include "scene/resources/box_shape.h"
#include "scene/resources/capsule_shape.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "scene/resources/cylinder_shape.h"
#include "scene/resources/plane_shape.h"
#include "scene/resources/primitive_meshes.h"
#include "scene/resources/shape.h"
#include "scene/resources/sphere_shape.h"
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
#ifdef MODULE_GRIDMAP_ENABLED
#include "modules/gridmap/grid_map.h"
#endif
EditorNavigationMeshGenerator *EditorNavigationMeshGenerator::singleton = NULL;
void EditorNavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_verticies) {
p_verticies.push_back(p_vec3.x);
p_verticies.push_back(p_vec3.y);
p_verticies.push_back(p_vec3.z);
}
void EditorNavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform &p_xform, Vector<float> &p_verticies, Vector<int> &p_indices) {
int current_vertex_count = 0;
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
current_vertex_count = p_verticies.size() / 3;
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
continue;
int index_count = 0;
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
index_count = p_mesh->surface_get_array_index_len(i);
} else {
index_count = p_mesh->surface_get_array_len(i);
}
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
int face_count = index_count / 3;
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = mesh_vertices.read();
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
PoolVector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
PoolVector<int>::Read ir = mesh_indices.read();
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_verticies);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
} else {
face_count = mesh_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(vr[j * 3 + 0]), p_verticies);
_add_vertex(p_xform.xform(vr[j * 3 + 2]), p_verticies);
_add_vertex(p_xform.xform(vr[j * 3 + 1]), p_verticies);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
}
}
}
}
void EditorNavigationMeshGenerator::_add_faces(const PoolVector3Array &p_faces, const Transform &p_xform, Vector<float> &p_verticies, Vector<int> &p_indices) {
int face_count = p_faces.size() / 3;
int current_vertex_count = p_verticies.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_verticies);
_add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_verticies);
_add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_verticies);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
}
}
void EditorNavigationMeshGenerator::_parse_geometry(Transform p_accumulated_transform, Node *p_node, Vector<float> &p_verticies, Vector<int> &p_indices, int p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) {
if (Object::cast_to<MeshInstance>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(p_node);
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_add_mesh(mesh, p_accumulated_transform * mesh_instance->get_transform(), p_verticies, p_indices);
}
}
#ifdef MODULE_CSG_ENABLED
if (Object::cast_to<CSGShape>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
CSGShape *csg_shape = Object::cast_to<CSGShape>(p_node);
Array meshes = csg_shape->get_meshes();
if (!meshes.empty()) {
Ref<Mesh> mesh = meshes[1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_accumulated_transform * csg_shape->get_transform(), p_verticies, p_indices);
}
}
}
#endif
if (Object::cast_to<StaticBody>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) {
StaticBody *static_body = Object::cast_to<StaticBody>(p_node);
if (static_body->get_collision_layer() & p_collision_mask) {
for (int i = 0; i < p_node->get_child_count(); ++i) {
Node *child = p_node->get_child(i);
if (Object::cast_to<CollisionShape>(child)) {
CollisionShape *col_shape = Object::cast_to<CollisionShape>(child);
Transform transform = p_accumulated_transform * static_body->get_transform() * col_shape->get_transform();
Ref<Mesh> mesh;
Ref<Shape> s = col_shape->get_shape();
BoxShape *box = Object::cast_to<BoxShape>(*s);
if (box) {
Ref<CubeMesh> cube_mesh;
cube_mesh.instance();
cube_mesh->set_size(box->get_extents() * 2.0);
mesh = cube_mesh;
}
CapsuleShape *capsule = Object::cast_to<CapsuleShape>(*s);
if (capsule) {
Ref<CapsuleMesh> capsule_mesh;
capsule_mesh.instance();
capsule_mesh->set_radius(capsule->get_radius());
capsule_mesh->set_mid_height(capsule->get_height() / 2.0);
mesh = capsule_mesh;
}
CylinderShape *cylinder = Object::cast_to<CylinderShape>(*s);
if (cylinder) {
Ref<CylinderMesh> cylinder_mesh;
cylinder_mesh.instance();
cylinder_mesh->set_height(cylinder->get_height());
cylinder_mesh->set_bottom_radius(cylinder->get_radius());
cylinder_mesh->set_top_radius(cylinder->get_radius());
mesh = cylinder_mesh;
}
SphereShape *sphere = Object::cast_to<SphereShape>(*s);
if (sphere) {
Ref<SphereMesh> sphere_mesh;
sphere_mesh.instance();
sphere_mesh->set_radius(sphere->get_radius());
sphere_mesh->set_height(sphere->get_radius() * 2.0);
mesh = sphere_mesh;
}
ConcavePolygonShape *concave_polygon = Object::cast_to<ConcavePolygonShape>(*s);
if (concave_polygon) {
_add_faces(concave_polygon->get_faces(), transform, p_verticies, p_indices);
}
ConvexPolygonShape *convex_polygon = Object::cast_to<ConvexPolygonShape>(*s);
if (convex_polygon) {
Vector<Vector3> varr = Variant(convex_polygon->get_points());
Geometry::MeshData md;
Error err = QuickHull::build(varr, md);
if (err == OK) {
PoolVector3Array faces;
for (int j = 0; j < md.faces.size(); ++j) {
Geometry::MeshData::Face face = md.faces[j];
for (int k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, transform, p_verticies, p_indices);
}
}
if (mesh.is_valid()) {
_add_mesh(mesh, transform, p_verticies, p_indices);
}
}
}
}
}
#ifdef MODULE_GRIDMAP_ENABLED
if (Object::cast_to<GridMap>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
GridMap *gridmap_instance = Object::cast_to<GridMap>(p_node);
Array meshes = gridmap_instance->get_meshes();
Transform xform = gridmap_instance->get_transform();
for (int i = 0; i < meshes.size(); i += 2) {
Ref<Mesh> mesh = meshes[i + 1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_accumulated_transform * xform * meshes[i], p_verticies, p_indices);
}
}
}
#endif
if (Object::cast_to<Spatial>(p_node)) {
Spatial *spatial = Object::cast_to<Spatial>(p_node);
p_accumulated_transform = p_accumulated_transform * spatial->get_transform();
}
if (p_recurse_children) {
for (int i = 0; i < p_node->get_child_count(); i++) {
_parse_geometry(p_accumulated_transform, p_node->get_child(i), p_verticies, p_indices, p_generate_from, p_collision_mask, p_recurse_children);
}
}
}
void EditorNavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref<NavigationMesh> p_nav_mesh) {
PoolVector<Vector3> nav_vertices;
for (int i = 0; i < p_detail_mesh->nverts; i++) {
const float *v = &p_detail_mesh->verts[i * 3];
nav_vertices.append(Vector3(v[0], v[1], v[2]));
}
p_nav_mesh->set_vertices(nav_vertices);
for (int i = 0; i < p_detail_mesh->nmeshes; i++) {
const unsigned int *m = &p_detail_mesh->meshes[i * 4];
const unsigned int bverts = m[0];
const unsigned int btris = m[2];
const unsigned int ntris = m[3];
const unsigned char *tris = &p_detail_mesh->tris[btris * 4];
for (unsigned int j = 0; j < ntris; j++) {
Vector<int> nav_indices;
nav_indices.resize(3);
// Polygon order in recast is opposite than godot's
nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0]));
nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 2]));
nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 1]));
p_nav_mesh->add_polygon(nav_indices);
}
}
}
void EditorNavigationMeshGenerator::_build_recast_navigation_mesh(Ref<NavigationMesh> p_nav_mesh, EditorProgress *ep,
rcHeightfield *hf, rcCompactHeightfield *chf, rcContourSet *cset, rcPolyMesh *poly_mesh, rcPolyMeshDetail *detail_mesh,
Vector<float> &vertices, Vector<int> &indices) {
rcContext ctx;
ep->step(TTR("Setting up Configuration..."), 1);
const float *verts = vertices.ptr();
const int nverts = vertices.size() / 3;
const int *tris = indices.ptr();
const int ntris = indices.size() / 3;
float bmin[3], bmax[3];
rcCalcBounds(verts, nverts, bmin, bmax);
rcConfig cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.cs = p_nav_mesh->get_cell_size();
cfg.ch = p_nav_mesh->get_cell_height();
cfg.walkableSlopeAngle = p_nav_mesh->get_agent_max_slope();
cfg.walkableHeight = (int)Math::ceil(p_nav_mesh->get_agent_height() / cfg.ch);
cfg.walkableClimb = (int)Math::floor(p_nav_mesh->get_agent_max_climb() / cfg.ch);
cfg.walkableRadius = (int)Math::ceil(p_nav_mesh->get_agent_radius() / cfg.cs);
cfg.maxEdgeLen = (int)(p_nav_mesh->get_edge_max_length() / p_nav_mesh->get_cell_size());
cfg.maxSimplificationError = p_nav_mesh->get_edge_max_error();
cfg.minRegionArea = (int)(p_nav_mesh->get_region_min_size() * p_nav_mesh->get_region_min_size());
cfg.mergeRegionArea = (int)(p_nav_mesh->get_region_merge_size() * p_nav_mesh->get_region_merge_size());
cfg.maxVertsPerPoly = (int)p_nav_mesh->get_verts_per_poly();
cfg.detailSampleDist = p_nav_mesh->get_detail_sample_distance() < 0.9f ? 0 : p_nav_mesh->get_cell_size() * p_nav_mesh->get_detail_sample_distance();
cfg.detailSampleMaxError = p_nav_mesh->get_cell_height() * p_nav_mesh->get_detail_sample_max_error();
cfg.bmin[0] = bmin[0];
cfg.bmin[1] = bmin[1];
cfg.bmin[2] = bmin[2];
cfg.bmax[0] = bmax[0];
cfg.bmax[1] = bmax[1];
cfg.bmax[2] = bmax[2];
ep->step(TTR("Calculating grid size..."), 2);
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
ep->step(TTR("Creating heightfield..."), 3);
hf = rcAllocHeightfield();
ERR_FAIL_COND(!hf);
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
ep->step(TTR("Marking walkable triangles..."), 4);
{
Vector<unsigned char> tri_areas;
tri_areas.resize(ntris);
ERR_FAIL_COND(tri_areas.size() == 0);
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
}
if (p_nav_mesh->get_filter_low_hanging_obstacles())
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
if (p_nav_mesh->get_filter_ledge_spans())
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
if (p_nav_mesh->get_filter_walkable_low_height_spans())
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
ep->step(TTR("Constructing compact heightfield..."), 5);
chf = rcAllocCompactHeightfield();
ERR_FAIL_COND(!chf);
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
rcFreeHeightField(hf);
hf = 0;
ep->step(TTR("Eroding walkable area..."), 6);
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
ep->step(TTR("Partitioning..."), 7);
if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else {
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
}
ep->step(TTR("Creating contours..."), 8);
cset = rcAllocContourSet();
ERR_FAIL_COND(!cset);
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
ep->step(TTR("Creating polymesh..."), 9);
poly_mesh = rcAllocPolyMesh();
ERR_FAIL_COND(!poly_mesh);
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
detail_mesh = rcAllocPolyMeshDetail();
ERR_FAIL_COND(!detail_mesh);
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
ep->step(TTR("Converting to native navigation mesh..."), 10);
_convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_nav_mesh);
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
EditorNavigationMeshGenerator *EditorNavigationMeshGenerator::get_singleton() {
return singleton;
}
EditorNavigationMeshGenerator::EditorNavigationMeshGenerator() {
singleton = this;
}
EditorNavigationMeshGenerator::~EditorNavigationMeshGenerator() {
}
void EditorNavigationMeshGenerator::bake(Ref<NavigationMesh> p_nav_mesh, Node *p_node) {
ERR_FAIL_COND(!p_nav_mesh.is_valid());
EditorProgress ep("bake", TTR("Navigation Mesh Generator Setup:"), 11);
ep.step(TTR("Parsing Geometry..."), 0);
Vector<float> vertices;
Vector<int> indices;
List<Node *> parse_nodes;
if (p_nav_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_NAVMESH_CHILDREN) {
parse_nodes.push_back(p_node);
} else {
p_node->get_tree()->get_nodes_in_group(p_nav_mesh->get_source_group_name(), &parse_nodes);
}
Transform navmesh_xform = Object::cast_to<Spatial>(p_node)->get_transform().affine_inverse();
for (const List<Node *>::Element *E = parse_nodes.front(); E; E = E->next()) {
int geometry_type = p_nav_mesh->get_parsed_geometry_type();
uint32_t collision_mask = p_nav_mesh->get_collision_mask();
bool recurse_children = p_nav_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
_parse_geometry(navmesh_xform, E->get(), vertices, indices, geometry_type, collision_mask, recurse_children);
}
if (vertices.size() > 0 && indices.size() > 0) {
rcHeightfield *hf = NULL;
rcCompactHeightfield *chf = NULL;
rcContourSet *cset = NULL;
rcPolyMesh *poly_mesh = NULL;
rcPolyMeshDetail *detail_mesh = NULL;
_build_recast_navigation_mesh(p_nav_mesh, &ep, hf, chf, cset, poly_mesh, detail_mesh, vertices, indices);
rcFreeHeightField(hf);
hf = 0;
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
ep.step(TTR("Done!"), 11);
}
void EditorNavigationMeshGenerator::clear(Ref<NavigationMesh> p_nav_mesh) {
if (p_nav_mesh.is_valid()) {
p_nav_mesh->clear_polygons();
p_nav_mesh->set_vertices(PoolVector<Vector3>());
}
}
void EditorNavigationMeshGenerator::_bind_methods() {
ClassDB::bind_method(D_METHOD("bake", "nav_mesh", "root_node"), &EditorNavigationMeshGenerator::bake);
ClassDB::bind_method(D_METHOD("clear", "nav_mesh"), &EditorNavigationMeshGenerator::clear);
}