godot/modules/gdscript/gdscript_functions.cpp

1976 lines
54 KiB
C++

/*************************************************************************/
/* gdscript_functions.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "gdscript_functions.h"
#include "core/class_db.h"
#include "core/func_ref.h"
#include "core/io/json.h"
#include "core/io/marshalls.h"
#include "core/math/math_funcs.h"
#include "core/os/os.h"
#include "core/reference.h"
#include "core/variant_parser.h"
#include "gdscript.h"
const char *GDScriptFunctions::get_func_name(Function p_func) {
ERR_FAIL_INDEX_V(p_func, FUNC_MAX, "");
static const char *_names[FUNC_MAX] = {
"sin",
"cos",
"tan",
"sinh",
"cosh",
"tanh",
"asin",
"acos",
"atan",
"atan2",
"sqrt",
"fmod",
"fposmod",
"posmod",
"floor",
"ceil",
"round",
"abs",
"sign",
"pow",
"log",
"exp",
"is_nan",
"is_inf",
"is_equal_approx",
"is_zero_approx",
"ease",
"step_decimals",
"stepify",
"lerp",
"lerp_angle",
"inverse_lerp",
"range_lerp",
"smoothstep",
"move_toward",
"dectime",
"randomize",
"randi",
"randf",
"randf_range",
"randi_range",
"seed",
"rand_seed",
"deg2rad",
"rad2deg",
"linear2db",
"db2linear",
"polar2cartesian",
"cartesian2polar",
"wrapi",
"wrapf",
"max",
"min",
"clamp",
"nearest_po2",
"weakref",
"funcref",
"convert",
"typeof",
"type_exists",
"char",
"ord",
"str",
"print",
"printt",
"prints",
"printerr",
"printraw",
"print_debug",
"push_error",
"push_warning",
"var2str",
"str2var",
"var2bytes",
"bytes2var",
"range",
"load",
"inst2dict",
"dict2inst",
"validate_json",
"parse_json",
"to_json",
"hash",
"Color8",
"ColorN",
"print_stack",
"get_stack",
"instance_from_id",
"len",
"is_instance_valid",
};
return _names[p_func];
}
void GDScriptFunctions::call(Function p_func, const Variant **p_args, int p_arg_count, Variant &r_ret, Callable::CallError &r_error) {
r_error.error = Callable::CallError::CALL_OK;
#ifdef DEBUG_ENABLED
#define VALIDATE_ARG_COUNT(m_count) \
if (p_arg_count < m_count) { \
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; \
r_error.argument = m_count; \
r_error.expected = m_count; \
r_ret = Variant(); \
return; \
} \
if (p_arg_count > m_count) { \
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; \
r_error.argument = m_count; \
r_error.expected = m_count; \
r_ret = Variant(); \
return; \
}
#define VALIDATE_ARG_NUM(m_arg) \
if (!p_args[m_arg]->is_num()) { \
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; \
r_error.argument = m_arg; \
r_error.expected = Variant::FLOAT; \
r_ret = Variant(); \
return; \
}
#else
#define VALIDATE_ARG_COUNT(m_count)
#define VALIDATE_ARG_NUM(m_arg)
#endif
//using a switch, so the compiler generates a jumptable
switch (p_func) {
case MATH_SIN: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::sin((double)*p_args[0]);
} break;
case MATH_COS: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::cos((double)*p_args[0]);
} break;
case MATH_TAN: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::tan((double)*p_args[0]);
} break;
case MATH_SINH: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::sinh((double)*p_args[0]);
} break;
case MATH_COSH: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::cosh((double)*p_args[0]);
} break;
case MATH_TANH: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::tanh((double)*p_args[0]);
} break;
case MATH_ASIN: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::asin((double)*p_args[0]);
} break;
case MATH_ACOS: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::acos((double)*p_args[0]);
} break;
case MATH_ATAN: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::atan((double)*p_args[0]);
} break;
case MATH_ATAN2: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::atan2((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_SQRT: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::sqrt((double)*p_args[0]);
} break;
case MATH_FMOD: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::fmod((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_FPOSMOD: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::fposmod((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_POSMOD: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::posmod((int)*p_args[0], (int)*p_args[1]);
} break;
case MATH_FLOOR: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::floor((double)*p_args[0]);
} break;
case MATH_CEIL: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::ceil((double)*p_args[0]);
} break;
case MATH_ROUND: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::round((double)*p_args[0]);
} break;
case MATH_ABS: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() == Variant::INT) {
int64_t i = *p_args[0];
r_ret = ABS(i);
} else if (p_args[0]->get_type() == Variant::FLOAT) {
double r = *p_args[0];
r_ret = Math::abs(r);
} else {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::FLOAT;
r_ret = Variant();
}
} break;
case MATH_SIGN: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() == Variant::INT) {
int64_t i = *p_args[0];
r_ret = i < 0 ? -1 : (i > 0 ? +1 : 0);
} else if (p_args[0]->get_type() == Variant::FLOAT) {
real_t r = *p_args[0];
r_ret = r < 0.0 ? -1.0 : (r > 0.0 ? +1.0 : 0.0);
} else {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::FLOAT;
r_ret = Variant();
}
} break;
case MATH_POW: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::pow((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_LOG: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::log((double)*p_args[0]);
} break;
case MATH_EXP: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::exp((double)*p_args[0]);
} break;
case MATH_ISNAN: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::is_nan((double)*p_args[0]);
} break;
case MATH_ISINF: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::is_inf((double)*p_args[0]);
} break;
case MATH_ISEQUALAPPROX: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::is_equal_approx((real_t)*p_args[0], (real_t)*p_args[1]);
} break;
case MATH_ISZEROAPPROX: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::is_zero_approx((real_t)*p_args[0]);
} break;
case MATH_EASE: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::ease((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_STEP_DECIMALS: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::step_decimals((double)*p_args[0]);
} break;
case MATH_STEPIFY: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::stepify((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_LERP: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(2);
const double t = (double)*p_args[2];
switch (p_args[0]->get_type() == p_args[1]->get_type() ? p_args[0]->get_type() : Variant::FLOAT) {
case Variant::VECTOR2: {
r_ret = ((Vector2)*p_args[0]).lerp((Vector2)*p_args[1], t);
} break;
case Variant::VECTOR3: {
r_ret = (p_args[0]->operator Vector3()).lerp(p_args[1]->operator Vector3(), t);
} break;
case Variant::COLOR: {
r_ret = ((Color)*p_args[0]).lerp((Color)*p_args[1], t);
} break;
default: {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::lerp((double)*p_args[0], (double)*p_args[1], t);
} break;
}
} break;
case MATH_LERP_ANGLE: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
r_ret = Math::lerp_angle((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_INVERSE_LERP: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
r_ret = Math::inverse_lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_RANGE_LERP: {
VALIDATE_ARG_COUNT(5);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
VALIDATE_ARG_NUM(3);
VALIDATE_ARG_NUM(4);
r_ret = Math::range_lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2], (double)*p_args[3], (double)*p_args[4]);
} break;
case MATH_SMOOTHSTEP: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
r_ret = Math::smoothstep((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_MOVE_TOWARD: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
r_ret = Math::move_toward((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_DECTIME: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
r_ret = Math::dectime((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_RANDOMIZE: {
VALIDATE_ARG_COUNT(0);
Math::randomize();
r_ret = Variant();
} break;
case MATH_RANDI: {
VALIDATE_ARG_COUNT(0);
r_ret = Math::rand();
} break;
case MATH_RANDF: {
VALIDATE_ARG_COUNT(0);
r_ret = Math::randf();
} break;
case MATH_RANDF_RANGE: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::random((double)*p_args[0], (double)*p_args[1]);
} break;
case MATH_RANDI_RANGE: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
r_ret = Math::random((int)*p_args[0], (int)*p_args[1]);
} break;
case MATH_SEED: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
uint64_t seed = *p_args[0];
Math::seed(seed);
r_ret = Variant();
} break;
case MATH_RANDSEED: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
uint64_t seed = *p_args[0];
int ret = Math::rand_from_seed(&seed);
Array reta;
reta.push_back(ret);
reta.push_back(seed);
r_ret = reta;
} break;
case MATH_DEG2RAD: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::deg2rad((double)*p_args[0]);
} break;
case MATH_RAD2DEG: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::rad2deg((double)*p_args[0]);
} break;
case MATH_LINEAR2DB: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::linear2db((double)*p_args[0]);
} break;
case MATH_DB2LINEAR: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
r_ret = Math::db2linear((double)*p_args[0]);
} break;
case MATH_POLAR2CARTESIAN: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
double r = *p_args[0];
double th = *p_args[1];
r_ret = Vector2(r * Math::cos(th), r * Math::sin(th));
} break;
case MATH_CARTESIAN2POLAR: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
double x = *p_args[0];
double y = *p_args[1];
r_ret = Vector2(Math::sqrt(x * x + y * y), Math::atan2(y, x));
} break;
case MATH_WRAP: {
VALIDATE_ARG_COUNT(3);
r_ret = Math::wrapi((int64_t)*p_args[0], (int64_t)*p_args[1], (int64_t)*p_args[2]);
} break;
case MATH_WRAPF: {
VALIDATE_ARG_COUNT(3);
r_ret = Math::wrapf((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case LOGIC_MAX: {
VALIDATE_ARG_COUNT(2);
if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT) {
int64_t a = *p_args[0];
int64_t b = *p_args[1];
r_ret = MAX(a, b);
} else {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
real_t a = *p_args[0];
real_t b = *p_args[1];
r_ret = MAX(a, b);
}
} break;
case LOGIC_MIN: {
VALIDATE_ARG_COUNT(2);
if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT) {
int64_t a = *p_args[0];
int64_t b = *p_args[1];
r_ret = MIN(a, b);
} else {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
real_t a = *p_args[0];
real_t b = *p_args[1];
r_ret = MIN(a, b);
}
} break;
case LOGIC_CLAMP: {
VALIDATE_ARG_COUNT(3);
if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT && p_args[2]->get_type() == Variant::INT) {
int64_t a = *p_args[0];
int64_t b = *p_args[1];
int64_t c = *p_args[2];
r_ret = CLAMP(a, b, c);
} else {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
real_t a = *p_args[0];
real_t b = *p_args[1];
real_t c = *p_args[2];
r_ret = CLAMP(a, b, c);
}
} break;
case LOGIC_NEAREST_PO2: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
int64_t num = *p_args[0];
r_ret = next_power_of_2(num);
} break;
case OBJ_WEAKREF: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() == Variant::OBJECT) {
if (p_args[0]->is_ref()) {
Ref<WeakRef> wref = memnew(WeakRef);
REF r = *p_args[0];
if (r.is_valid()) {
wref->set_ref(r);
}
r_ret = wref;
} else {
Ref<WeakRef> wref = memnew(WeakRef);
Object *obj = *p_args[0];
if (obj) {
wref->set_obj(obj);
}
r_ret = wref;
}
} else if (p_args[0]->get_type() == Variant::NIL) {
Ref<WeakRef> wref = memnew(WeakRef);
r_ret = wref;
} else {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = Variant();
return;
}
} break;
case FUNC_FUNCREF: {
VALIDATE_ARG_COUNT(2);
if (p_args[0]->get_type() != Variant::OBJECT) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = Variant();
return;
}
if (p_args[1]->get_type() != Variant::STRING && p_args[1]->get_type() != Variant::NODE_PATH) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 1;
r_error.expected = Variant::STRING;
r_ret = Variant();
return;
}
Ref<FuncRef> fr = memnew(FuncRef);
fr->set_instance(*p_args[0]);
fr->set_function(*p_args[1]);
r_ret = fr;
} break;
case TYPE_CONVERT: {
VALIDATE_ARG_COUNT(2);
VALIDATE_ARG_NUM(1);
int type = *p_args[1];
if (type < 0 || type >= Variant::VARIANT_MAX) {
r_ret = RTR("Invalid type argument to convert(), use TYPE_* constants.");
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::INT;
return;
} else {
r_ret = Variant::construct(Variant::Type(type), p_args, 1, r_error);
}
} break;
case TYPE_OF: {
VALIDATE_ARG_COUNT(1);
r_ret = p_args[0]->get_type();
} break;
case TYPE_EXISTS: {
VALIDATE_ARG_COUNT(1);
r_ret = ClassDB::class_exists(*p_args[0]);
} break;
case TEXT_CHAR: {
VALIDATE_ARG_COUNT(1);
VALIDATE_ARG_NUM(0);
char32_t result[2] = { *p_args[0], 0 };
r_ret = String(result);
} break;
case TEXT_ORD: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
return;
}
String str = p_args[0]->operator String();
if (str.length() != 1) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = RTR("Expected a string of length 1 (a character).");
return;
}
r_ret = str.get(0);
} break;
case TEXT_STR: {
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
r_ret = Variant();
return;
}
String str;
for (int i = 0; i < p_arg_count; i++) {
String os = p_args[i]->operator String();
if (i == 0) {
str = os;
} else {
str += os;
}
}
r_ret = str;
} break;
case TEXT_PRINT: {
String str;
for (int i = 0; i < p_arg_count; i++) {
str += p_args[i]->operator String();
}
print_line(str);
r_ret = Variant();
} break;
case TEXT_PRINT_TABBED: {
String str;
for (int i = 0; i < p_arg_count; i++) {
if (i) {
str += "\t";
}
str += p_args[i]->operator String();
}
print_line(str);
r_ret = Variant();
} break;
case TEXT_PRINT_SPACED: {
String str;
for (int i = 0; i < p_arg_count; i++) {
if (i) {
str += " ";
}
str += p_args[i]->operator String();
}
print_line(str);
r_ret = Variant();
} break;
case TEXT_PRINTERR: {
String str;
for (int i = 0; i < p_arg_count; i++) {
str += p_args[i]->operator String();
}
print_error(str);
r_ret = Variant();
} break;
case TEXT_PRINTRAW: {
String str;
for (int i = 0; i < p_arg_count; i++) {
str += p_args[i]->operator String();
}
OS::get_singleton()->print("%s", str.utf8().get_data());
r_ret = Variant();
} break;
case TEXT_PRINT_DEBUG: {
String str;
for (int i = 0; i < p_arg_count; i++) {
str += p_args[i]->operator String();
}
ScriptLanguage *script = GDScriptLanguage::get_singleton();
if (script->debug_get_stack_level_count() > 0) {
str += "\n At: " + script->debug_get_stack_level_source(0) + ":" + itos(script->debug_get_stack_level_line(0)) + ":" + script->debug_get_stack_level_function(0) + "()";
}
print_line(str);
r_ret = Variant();
} break;
case PUSH_ERROR: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
break;
}
String message = *p_args[0];
ERR_PRINT(message);
r_ret = Variant();
} break;
case PUSH_WARNING: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
break;
}
String message = *p_args[0];
WARN_PRINT(message);
r_ret = Variant();
} break;
case VAR_TO_STR: {
VALIDATE_ARG_COUNT(1);
String vars;
VariantWriter::write_to_string(*p_args[0], vars);
r_ret = vars;
} break;
case STR_TO_VAR: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
return;
}
r_ret = *p_args[0];
VariantParser::StreamString ss;
ss.s = *p_args[0];
String errs;
int line;
(void)VariantParser::parse(&ss, r_ret, errs, line);
} break;
case VAR_TO_BYTES: {
bool full_objects = false;
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
r_ret = Variant();
return;
} else if (p_arg_count > 2) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
r_error.argument = 2;
r_ret = Variant();
} else if (p_arg_count == 2) {
if (p_args[1]->get_type() != Variant::BOOL) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 1;
r_error.expected = Variant::BOOL;
r_ret = Variant();
return;
}
full_objects = *p_args[1];
}
PackedByteArray barr;
int len;
Error err = encode_variant(*p_args[0], nullptr, len, full_objects);
if (err) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::NIL;
r_ret = "Unexpected error encoding variable to bytes, likely unserializable type found (Object or RID).";
return;
}
barr.resize(len);
{
uint8_t *w = barr.ptrw();
encode_variant(*p_args[0], w, len, full_objects);
}
r_ret = barr;
} break;
case BYTES_TO_VAR: {
bool allow_objects = false;
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
r_ret = Variant();
return;
} else if (p_arg_count > 2) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
r_error.argument = 2;
r_ret = Variant();
} else if (p_arg_count == 2) {
if (p_args[1]->get_type() != Variant::BOOL) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 1;
r_error.expected = Variant::BOOL;
r_ret = Variant();
return;
}
allow_objects = *p_args[1];
}
if (p_args[0]->get_type() != Variant::PACKED_BYTE_ARRAY) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 1;
r_error.expected = Variant::PACKED_BYTE_ARRAY;
r_ret = Variant();
return;
}
PackedByteArray varr = *p_args[0];
Variant ret;
{
const uint8_t *r = varr.ptr();
Error err = decode_variant(ret, r, varr.size(), nullptr, allow_objects);
if (err != OK) {
r_ret = RTR("Not enough bytes for decoding bytes, or invalid format.");
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::PACKED_BYTE_ARRAY;
return;
}
}
r_ret = ret;
} break;
case GEN_RANGE: {
switch (p_arg_count) {
case 0: {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
r_error.expected = 1;
r_ret = Variant();
} break;
case 1: {
VALIDATE_ARG_NUM(0);
int count = *p_args[0];
Array arr;
if (count <= 0) {
r_ret = arr;
return;
}
Error err = arr.resize(count);
if (err != OK) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
r_ret = Variant();
return;
}
for (int i = 0; i < count; i++) {
arr[i] = i;
}
r_ret = arr;
} break;
case 2: {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
int from = *p_args[0];
int to = *p_args[1];
Array arr;
if (from >= to) {
r_ret = arr;
return;
}
Error err = arr.resize(to - from);
if (err != OK) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
r_ret = Variant();
return;
}
for (int i = from; i < to; i++) {
arr[i - from] = i;
}
r_ret = arr;
} break;
case 3: {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
int from = *p_args[0];
int to = *p_args[1];
int incr = *p_args[2];
if (incr == 0) {
r_ret = RTR("Step argument is zero!");
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
return;
}
Array arr;
if (from >= to && incr > 0) {
r_ret = arr;
return;
}
if (from <= to && incr < 0) {
r_ret = arr;
return;
}
//calculate how many
int count = 0;
if (incr > 0) {
count = ((to - from - 1) / incr) + 1;
} else {
count = ((from - to - 1) / -incr) + 1;
}
Error err = arr.resize(count);
if (err != OK) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD;
r_ret = Variant();
return;
}
if (incr > 0) {
int idx = 0;
for (int i = from; i < to; i += incr) {
arr[idx++] = i;
}
} else {
int idx = 0;
for (int i = from; i > to; i += incr) {
arr[idx++] = i;
}
}
r_ret = arr;
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
r_error.argument = 3;
r_error.expected = 3;
r_ret = Variant();
} break;
}
} break;
case RESOURCE_LOAD: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
} else {
r_ret = ResourceLoader::load(*p_args[0]);
}
} break;
case INST2DICT: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() == Variant::NIL) {
r_ret = Variant();
} else if (p_args[0]->get_type() != Variant::OBJECT) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_ret = Variant();
} else {
Object *obj = *p_args[0];
if (!obj) {
r_ret = Variant();
} else if (!obj->get_script_instance() || obj->get_script_instance()->get_language() != GDScriptLanguage::get_singleton()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::DICTIONARY;
r_ret = RTR("Not a script with an instance");
return;
} else {
GDScriptInstance *ins = static_cast<GDScriptInstance *>(obj->get_script_instance());
Ref<GDScript> base = ins->get_script();
if (base.is_null()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::DICTIONARY;
r_ret = RTR("Not based on a script");
return;
}
GDScript *p = base.ptr();
Vector<StringName> sname;
while (p->_owner) {
sname.push_back(p->name);
p = p->_owner;
}
sname.invert();
if (!p->path.is_resource_file()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::DICTIONARY;
r_ret = Variant();
r_ret = RTR("Not based on a resource file");
return;
}
NodePath cp(sname, Vector<StringName>(), false);
Dictionary d;
d["@subpath"] = cp;
d["@path"] = p->get_path();
for (Map<StringName, GDScript::MemberInfo>::Element *E = base->member_indices.front(); E; E = E->next()) {
if (!d.has(E->key())) {
d[E->key()] = ins->members[E->get().index];
}
}
r_ret = d;
}
}
} break;
case DICT2INST: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::DICTIONARY) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::DICTIONARY;
r_ret = Variant();
return;
}
Dictionary d = *p_args[0];
if (!d.has("@path")) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = RTR("Invalid instance dictionary format (missing @path)");
return;
}
Ref<Script> scr = ResourceLoader::load(d["@path"]);
if (!scr.is_valid()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = RTR("Invalid instance dictionary format (can't load script at @path)");
return;
}
Ref<GDScript> gdscr = scr;
if (!gdscr.is_valid()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = Variant();
r_ret = RTR("Invalid instance dictionary format (invalid script at @path)");
return;
}
NodePath sub;
if (d.has("@subpath")) {
sub = d["@subpath"];
}
for (int i = 0; i < sub.get_name_count(); i++) {
gdscr = gdscr->subclasses[sub.get_name(i)];
if (!gdscr.is_valid()) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = Variant();
r_ret = RTR("Invalid instance dictionary (invalid subclasses)");
return;
}
}
r_ret = gdscr->_new(nullptr, -1 /*skip initializer*/, r_error);
if (r_error.error != Callable::CallError::CALL_OK) {
r_ret = Variant();
return;
}
GDScriptInstance *ins = static_cast<GDScriptInstance *>(static_cast<Object *>(r_ret)->get_script_instance());
Ref<GDScript> gd_ref = ins->get_script();
for (Map<StringName, GDScript::MemberInfo>::Element *E = gd_ref->member_indices.front(); E; E = E->next()) {
if (d.has(E->key())) {
ins->members.write[E->get().index] = d[E->key()];
}
}
} break;
case VALIDATE_JSON: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
return;
}
String errs;
int errl;
Error err = JSON::parse(*p_args[0], r_ret, errs, errl);
if (err != OK) {
r_ret = itos(errl) + ":" + errs;
} else {
r_ret = "";
}
} break;
case PARSE_JSON: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::STRING;
r_ret = Variant();
return;
}
String errs;
int errl;
Error err = JSON::parse(*p_args[0], r_ret, errs, errl);
if (err != OK) {
r_ret = Variant();
ERR_PRINT(vformat("Error parsing JSON at line %s: %s", errl, errs));
}
} break;
case TO_JSON: {
VALIDATE_ARG_COUNT(1);
r_ret = JSON::print(*p_args[0]);
} break;
case HASH: {
VALIDATE_ARG_COUNT(1);
r_ret = p_args[0]->hash();
} break;
case COLOR8: {
if (p_arg_count < 3) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 3;
r_ret = Variant();
return;
}
if (p_arg_count > 4) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
r_error.argument = 4;
r_ret = Variant();
return;
}
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
Color color((float)*p_args[0] / 255.0f, (float)*p_args[1] / 255.0f, (float)*p_args[2] / 255.0f);
if (p_arg_count == 4) {
VALIDATE_ARG_NUM(3);
color.a = (float)*p_args[3] / 255.0f;
}
r_ret = color;
} break;
case COLORN: {
if (p_arg_count < 1) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS;
r_error.argument = 1;
r_ret = Variant();
return;
}
if (p_arg_count > 2) {
r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS;
r_error.argument = 2;
r_ret = Variant();
return;
}
if (p_args[0]->get_type() != Variant::STRING) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_ret = Variant();
} else {
Color color = Color::named(*p_args[0]);
if (p_arg_count == 2) {
VALIDATE_ARG_NUM(1);
color.a = *p_args[1];
}
r_ret = color;
}
} break;
case PRINT_STACK: {
VALIDATE_ARG_COUNT(0);
ScriptLanguage *script = GDScriptLanguage::get_singleton();
for (int i = 0; i < script->debug_get_stack_level_count(); i++) {
print_line("Frame " + itos(i) + " - " + script->debug_get_stack_level_source(i) + ":" + itos(script->debug_get_stack_level_line(i)) + " in function '" + script->debug_get_stack_level_function(i) + "'");
};
} break;
case GET_STACK: {
VALIDATE_ARG_COUNT(0);
ScriptLanguage *script = GDScriptLanguage::get_singleton();
Array ret;
for (int i = 0; i < script->debug_get_stack_level_count(); i++) {
Dictionary frame;
frame["source"] = script->debug_get_stack_level_source(i);
frame["function"] = script->debug_get_stack_level_function(i);
frame["line"] = script->debug_get_stack_level_line(i);
ret.push_back(frame);
};
r_ret = ret;
} break;
case INSTANCE_FROM_ID: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::INT && p_args[0]->get_type() != Variant::FLOAT) {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::INT;
r_ret = Variant();
break;
}
ObjectID id = *p_args[0];
r_ret = ObjectDB::get_instance(id);
} break;
case LEN: {
VALIDATE_ARG_COUNT(1);
switch (p_args[0]->get_type()) {
case Variant::STRING: {
String d = *p_args[0];
r_ret = d.length();
} break;
case Variant::DICTIONARY: {
Dictionary d = *p_args[0];
r_ret = d.size();
} break;
case Variant::ARRAY: {
Array d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_BYTE_ARRAY: {
Vector<uint8_t> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_INT32_ARRAY: {
Vector<int32_t> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_INT64_ARRAY: {
Vector<int64_t> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_FLOAT32_ARRAY: {
Vector<float> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_FLOAT64_ARRAY: {
Vector<double> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_STRING_ARRAY: {
Vector<String> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_VECTOR2_ARRAY: {
Vector<Vector2> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_VECTOR3_ARRAY: {
Vector<Vector3> d = *p_args[0];
r_ret = d.size();
} break;
case Variant::PACKED_COLOR_ARRAY: {
Vector<Color> d = *p_args[0];
r_ret = d.size();
} break;
default: {
r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument = 0;
r_error.expected = Variant::OBJECT;
r_ret = Variant();
r_ret = RTR("Object can't provide a length.");
}
}
} break;
case IS_INSTANCE_VALID: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type() != Variant::OBJECT) {
r_ret = false;
} else {
Object *obj = p_args[0]->get_validated_object();
r_ret = obj != nullptr;
}
} break;
case FUNC_MAX: {
ERR_FAIL();
} break;
}
}
bool GDScriptFunctions::is_deterministic(Function p_func) {
//man i couldn't have chosen a worse function name,
//way too controversial..
switch (p_func) {
case MATH_SIN:
case MATH_COS:
case MATH_TAN:
case MATH_SINH:
case MATH_COSH:
case MATH_TANH:
case MATH_ASIN:
case MATH_ACOS:
case MATH_ATAN:
case MATH_ATAN2:
case MATH_SQRT:
case MATH_FMOD:
case MATH_FPOSMOD:
case MATH_POSMOD:
case MATH_FLOOR:
case MATH_CEIL:
case MATH_ROUND:
case MATH_ABS:
case MATH_SIGN:
case MATH_POW:
case MATH_LOG:
case MATH_EXP:
case MATH_ISNAN:
case MATH_ISINF:
case MATH_EASE:
case MATH_STEP_DECIMALS:
case MATH_STEPIFY:
case MATH_LERP:
case MATH_INVERSE_LERP:
case MATH_RANGE_LERP:
case MATH_SMOOTHSTEP:
case MATH_MOVE_TOWARD:
case MATH_DECTIME:
case MATH_DEG2RAD:
case MATH_RAD2DEG:
case MATH_LINEAR2DB:
case MATH_DB2LINEAR:
case MATH_POLAR2CARTESIAN:
case MATH_CARTESIAN2POLAR:
case MATH_WRAP:
case MATH_WRAPF:
case LOGIC_MAX:
case LOGIC_MIN:
case LOGIC_CLAMP:
case LOGIC_NEAREST_PO2:
case TYPE_CONVERT:
case TYPE_OF:
case TYPE_EXISTS:
case TEXT_CHAR:
case TEXT_ORD:
case TEXT_STR:
case COLOR8:
case LEN:
// enable for debug only, otherwise not desirable - case GEN_RANGE:
return true;
default:
return false;
}
return false;
}
MethodInfo GDScriptFunctions::get_info(Function p_func) {
#ifdef DEBUG_ENABLED
//using a switch, so the compiler generates a jumptable
switch (p_func) {
case MATH_SIN: {
MethodInfo mi("sin", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_COS: {
MethodInfo mi("cos", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_TAN: {
MethodInfo mi("tan", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_SINH: {
MethodInfo mi("sinh", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_COSH: {
MethodInfo mi("cosh", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_TANH: {
MethodInfo mi("tanh", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ASIN: {
MethodInfo mi("asin", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ACOS: {
MethodInfo mi("acos", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ATAN: {
MethodInfo mi("atan", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ATAN2: {
MethodInfo mi("atan2", PropertyInfo(Variant::FLOAT, "y"), PropertyInfo(Variant::FLOAT, "x"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_SQRT: {
MethodInfo mi("sqrt", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_FMOD: {
MethodInfo mi("fmod", PropertyInfo(Variant::FLOAT, "a"), PropertyInfo(Variant::FLOAT, "b"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_FPOSMOD: {
MethodInfo mi("fposmod", PropertyInfo(Variant::FLOAT, "a"), PropertyInfo(Variant::FLOAT, "b"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_POSMOD: {
MethodInfo mi("posmod", PropertyInfo(Variant::INT, "a"), PropertyInfo(Variant::INT, "b"));
mi.return_val.type = Variant::INT;
return mi;
} break;
case MATH_FLOOR: {
MethodInfo mi("floor", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_CEIL: {
MethodInfo mi("ceil", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ROUND: {
MethodInfo mi("round", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ABS: {
MethodInfo mi("abs", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_SIGN: {
MethodInfo mi("sign", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_POW: {
MethodInfo mi("pow", PropertyInfo(Variant::FLOAT, "base"), PropertyInfo(Variant::FLOAT, "exp"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_LOG: {
MethodInfo mi("log", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_EXP: {
MethodInfo mi("exp", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_ISNAN: {
MethodInfo mi("is_nan", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::BOOL;
return mi;
} break;
case MATH_ISINF: {
MethodInfo mi("is_inf", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::BOOL;
return mi;
} break;
case MATH_ISEQUALAPPROX: {
MethodInfo mi("is_equal_approx", PropertyInfo(Variant::FLOAT, "a"), PropertyInfo(Variant::FLOAT, "b"));
mi.return_val.type = Variant::BOOL;
return mi;
} break;
case MATH_ISZEROAPPROX: {
MethodInfo mi("is_zero_approx", PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::BOOL;
return mi;
} break;
case MATH_EASE: {
MethodInfo mi("ease", PropertyInfo(Variant::FLOAT, "s"), PropertyInfo(Variant::FLOAT, "curve"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_STEP_DECIMALS: {
MethodInfo mi("step_decimals", PropertyInfo(Variant::FLOAT, "step"));
mi.return_val.type = Variant::INT;
return mi;
} break;
case MATH_STEPIFY: {
MethodInfo mi("stepify", PropertyInfo(Variant::FLOAT, "s"), PropertyInfo(Variant::FLOAT, "step"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_LERP: {
MethodInfo mi("lerp", PropertyInfo(Variant::NIL, "from"), PropertyInfo(Variant::NIL, "to"), PropertyInfo(Variant::FLOAT, "weight"));
mi.return_val.type = Variant::NIL;
mi.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
return mi;
} break;
case MATH_LERP_ANGLE: {
MethodInfo mi("lerp_angle", PropertyInfo(Variant::FLOAT, "from"), PropertyInfo(Variant::FLOAT, "to"), PropertyInfo(Variant::FLOAT, "weight"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_INVERSE_LERP: {
MethodInfo mi("inverse_lerp", PropertyInfo(Variant::FLOAT, "from"), PropertyInfo(Variant::FLOAT, "to"), PropertyInfo(Variant::FLOAT, "weight"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_RANGE_LERP: {
MethodInfo mi("range_lerp", PropertyInfo(Variant::FLOAT, "value"), PropertyInfo(Variant::FLOAT, "istart"), PropertyInfo(Variant::FLOAT, "istop"), PropertyInfo(Variant::FLOAT, "ostart"), PropertyInfo(Variant::FLOAT, "ostop"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_SMOOTHSTEP: {
MethodInfo mi("smoothstep", PropertyInfo(Variant::FLOAT, "from"), PropertyInfo(Variant::FLOAT, "to"), PropertyInfo(Variant::FLOAT, "s"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_MOVE_TOWARD: {
MethodInfo mi("move_toward", PropertyInfo(Variant::FLOAT, "from"), PropertyInfo(Variant::FLOAT, "to"), PropertyInfo(Variant::FLOAT, "delta"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_DECTIME: {
MethodInfo mi("dectime", PropertyInfo(Variant::FLOAT, "value"), PropertyInfo(Variant::FLOAT, "amount"), PropertyInfo(Variant::FLOAT, "step"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_RANDOMIZE: {
MethodInfo mi("randomize");
mi.return_val.type = Variant::NIL;
return mi;
} break;
case MATH_RANDI: {
MethodInfo mi("randi");
mi.return_val.type = Variant::INT;
return mi;
} break;
case MATH_RANDF: {
MethodInfo mi("randf");
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_RANDF_RANGE: {
MethodInfo mi("randf_range", PropertyInfo(Variant::FLOAT, "from"), PropertyInfo(Variant::FLOAT, "to"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_RANDI_RANGE: {
MethodInfo mi("randi_range", PropertyInfo(Variant::INT, "from"), PropertyInfo(Variant::INT, "to"));
mi.return_val.type = Variant::INT;
return mi;
} break;
case MATH_SEED: {
MethodInfo mi("seed", PropertyInfo(Variant::INT, "seed"));
mi.return_val.type = Variant::NIL;
return mi;
} break;
case MATH_RANDSEED: {
MethodInfo mi("rand_seed", PropertyInfo(Variant::INT, "seed"));
mi.return_val.type = Variant::ARRAY;
return mi;
} break;
case MATH_DEG2RAD: {
MethodInfo mi("deg2rad", PropertyInfo(Variant::FLOAT, "deg"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_RAD2DEG: {
MethodInfo mi("rad2deg", PropertyInfo(Variant::FLOAT, "rad"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_LINEAR2DB: {
MethodInfo mi("linear2db", PropertyInfo(Variant::FLOAT, "nrg"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_DB2LINEAR: {
MethodInfo mi("db2linear", PropertyInfo(Variant::FLOAT, "db"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case MATH_POLAR2CARTESIAN: {
MethodInfo mi("polar2cartesian", PropertyInfo(Variant::FLOAT, "r"), PropertyInfo(Variant::FLOAT, "th"));
mi.return_val.type = Variant::VECTOR2;
return mi;
} break;
case MATH_CARTESIAN2POLAR: {
MethodInfo mi("cartesian2polar", PropertyInfo(Variant::FLOAT, "x"), PropertyInfo(Variant::FLOAT, "y"));
mi.return_val.type = Variant::VECTOR2;
return mi;
} break;
case MATH_WRAP: {
MethodInfo mi("wrapi", PropertyInfo(Variant::INT, "value"), PropertyInfo(Variant::INT, "min"), PropertyInfo(Variant::INT, "max"));
mi.return_val.type = Variant::INT;
return mi;
} break;
case MATH_WRAPF: {
MethodInfo mi("wrapf", PropertyInfo(Variant::FLOAT, "value"), PropertyInfo(Variant::FLOAT, "min"), PropertyInfo(Variant::FLOAT, "max"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case LOGIC_MAX: {
MethodInfo mi("max", PropertyInfo(Variant::FLOAT, "a"), PropertyInfo(Variant::FLOAT, "b"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case LOGIC_MIN: {
MethodInfo mi("min", PropertyInfo(Variant::FLOAT, "a"), PropertyInfo(Variant::FLOAT, "b"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case LOGIC_CLAMP: {
MethodInfo mi("clamp", PropertyInfo(Variant::FLOAT, "value"), PropertyInfo(Variant::FLOAT, "min"), PropertyInfo(Variant::FLOAT, "max"));
mi.return_val.type = Variant::FLOAT;
return mi;
} break;
case LOGIC_NEAREST_PO2: {
MethodInfo mi("nearest_po2", PropertyInfo(Variant::INT, "value"));
mi.return_val.type = Variant::INT;
return mi;
} break;
case OBJ_WEAKREF: {
MethodInfo mi("weakref", PropertyInfo(Variant::OBJECT, "obj"));
mi.return_val.type = Variant::OBJECT;
mi.return_val.class_name = "WeakRef";
return mi;
} break;
case FUNC_FUNCREF: {
MethodInfo mi("funcref", PropertyInfo(Variant::OBJECT, "instance"), PropertyInfo(Variant::STRING, "funcname"));
mi.return_val.type = Variant::OBJECT;
mi.return_val.class_name = "FuncRef";
return mi;
} break;
case TYPE_CONVERT: {
MethodInfo mi("convert", PropertyInfo(Variant::NIL, "what", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT), PropertyInfo(Variant::INT, "type"));
mi.return_val.type = Variant::NIL;
mi.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
return mi;
} break;
case TYPE_OF: {
MethodInfo mi("typeof", PropertyInfo(Variant::NIL, "what", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT));
mi.return_val.type = Variant::INT;
return mi;
} break;
case TYPE_EXISTS: {
MethodInfo mi("type_exists", PropertyInfo(Variant::STRING, "type"));
mi.return_val.type = Variant::BOOL;
return mi;
} break;
case TEXT_CHAR: {
MethodInfo mi("char", PropertyInfo(Variant::INT, "code"));
mi.return_val.type = Variant::STRING;
return mi;
} break;
case TEXT_ORD: {
MethodInfo mi("ord", PropertyInfo(Variant::STRING, "char"));
mi.return_val.type = Variant::INT;
return mi;
} break;
case TEXT_STR: {
MethodInfo mi("str");
mi.return_val.type = Variant::STRING;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case TEXT_PRINT: {
MethodInfo mi("print");
mi.return_val.type = Variant::NIL;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case TEXT_PRINT_TABBED: {
MethodInfo mi("printt");
mi.return_val.type = Variant::NIL;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case TEXT_PRINT_SPACED: {
MethodInfo mi("prints");
mi.return_val.type = Variant::NIL;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case TEXT_PRINTERR: {
MethodInfo mi("printerr");
mi.return_val.type = Variant::NIL;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case TEXT_PRINTRAW: {
MethodInfo mi("printraw");
mi.return_val.type = Variant::NIL;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case TEXT_PRINT_DEBUG: {
MethodInfo mi("print_debug");
mi.return_val.type = Variant::NIL;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case PUSH_ERROR: {
MethodInfo mi(Variant::NIL, "push_error", PropertyInfo(Variant::STRING, "message"));
mi.return_val.type = Variant::NIL;
return mi;
} break;
case PUSH_WARNING: {
MethodInfo mi(Variant::NIL, "push_warning", PropertyInfo(Variant::STRING, "message"));
mi.return_val.type = Variant::NIL;
return mi;
} break;
case VAR_TO_STR: {
MethodInfo mi("var2str", PropertyInfo(Variant::NIL, "var", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT));
mi.return_val.type = Variant::STRING;
return mi;
} break;
case STR_TO_VAR: {
MethodInfo mi(Variant::NIL, "str2var", PropertyInfo(Variant::STRING, "string"));
mi.return_val.type = Variant::NIL;
mi.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
return mi;
} break;
case VAR_TO_BYTES: {
MethodInfo mi("var2bytes", PropertyInfo(Variant::NIL, "var", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT), PropertyInfo(Variant::BOOL, "full_objects"));
mi.default_arguments.push_back(false);
mi.return_val.type = Variant::PACKED_BYTE_ARRAY;
return mi;
} break;
case BYTES_TO_VAR: {
MethodInfo mi(Variant::NIL, "bytes2var", PropertyInfo(Variant::PACKED_BYTE_ARRAY, "bytes"), PropertyInfo(Variant::BOOL, "allow_objects"));
mi.default_arguments.push_back(false);
mi.return_val.type = Variant::NIL;
mi.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
return mi;
} break;
case GEN_RANGE: {
MethodInfo mi("range");
mi.return_val.type = Variant::ARRAY;
mi.flags |= METHOD_FLAG_VARARG;
return mi;
} break;
case RESOURCE_LOAD: {
MethodInfo mi("load", PropertyInfo(Variant::STRING, "path"));
mi.return_val.type = Variant::OBJECT;
mi.return_val.class_name = "Resource";
return mi;
} break;
case INST2DICT: {
MethodInfo mi("inst2dict", PropertyInfo(Variant::OBJECT, "inst"));
mi.return_val.type = Variant::DICTIONARY;
return mi;
} break;
case DICT2INST: {
MethodInfo mi("dict2inst", PropertyInfo(Variant::DICTIONARY, "dict"));
mi.return_val.type = Variant::OBJECT;
return mi;
} break;
case VALIDATE_JSON: {
MethodInfo mi("validate_json", PropertyInfo(Variant::STRING, "json"));
mi.return_val.type = Variant::STRING;
return mi;
} break;
case PARSE_JSON: {
MethodInfo mi(Variant::NIL, "parse_json", PropertyInfo(Variant::STRING, "json"));
mi.return_val.type = Variant::NIL;
mi.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
return mi;
} break;
case TO_JSON: {
MethodInfo mi("to_json", PropertyInfo(Variant::NIL, "var", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT));
mi.return_val.type = Variant::STRING;
return mi;
} break;
case HASH: {
MethodInfo mi("hash", PropertyInfo(Variant::NIL, "var", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT));
mi.return_val.type = Variant::INT;
return mi;
} break;
case COLOR8: {
MethodInfo mi("Color8", PropertyInfo(Variant::INT, "r8"), PropertyInfo(Variant::INT, "g8"), PropertyInfo(Variant::INT, "b8"), PropertyInfo(Variant::INT, "a8"));
mi.default_arguments.push_back(255);
mi.return_val.type = Variant::COLOR;
return mi;
} break;
case COLORN: {
MethodInfo mi("ColorN", PropertyInfo(Variant::STRING, "name"), PropertyInfo(Variant::FLOAT, "alpha"));
mi.default_arguments.push_back(1.0f);
mi.return_val.type = Variant::COLOR;
return mi;
} break;
case PRINT_STACK: {
MethodInfo mi("print_stack");
mi.return_val.type = Variant::NIL;
return mi;
} break;
case GET_STACK: {
MethodInfo mi("get_stack");
mi.return_val.type = Variant::ARRAY;
return mi;
} break;
case INSTANCE_FROM_ID: {
MethodInfo mi("instance_from_id", PropertyInfo(Variant::INT, "instance_id"));
mi.return_val.type = Variant::OBJECT;
return mi;
} break;
case LEN: {
MethodInfo mi("len", PropertyInfo(Variant::NIL, "var", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_NIL_IS_VARIANT));
mi.return_val.type = Variant::INT;
return mi;
} break;
case IS_INSTANCE_VALID: {
MethodInfo mi("is_instance_valid", PropertyInfo(Variant::OBJECT, "instance"));
mi.return_val.type = Variant::BOOL;
return mi;
} break;
default: {
ERR_FAIL_V(MethodInfo());
} break;
}
#endif
MethodInfo mi;
mi.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT;
return mi;
}