1
0
mirror of https://github.com/godotengine/godot synced 2024-07-08 18:10:44 +00:00
godot/modules/xatlas_unwrap/register_types.cpp
Rémi Verschelde 25b2f1780a
Style: Harmonize header includes in modules
This applies our existing style guide, and adds a new rule to that style
guide for modular components such as platform ports and modules:

Includes from the platform port or module ("local" includes) should be listed
first in their own block using relative paths, before Godot's "core" includes
which use "absolute" (project folder relative) paths, and finally thirdparty
includes.

Includes in `#ifdef`s come after their relevant section, i.e. the overall
structure is:

- Local includes
  * Conditional local includes
- Core includes
  * Conditional core includes
- Thirdparty includes
  * Conditional thirdparty includes
2023-06-15 14:35:45 +02:00

240 lines
8.7 KiB
C++

/**************************************************************************/
/* register_types.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "register_types.h"
#include "core/crypto/crypto_core.h"
#include <xatlas.h>
extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y);
bool xatlas_mesh_lightmap_unwrap_callback(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) {
CryptoCore::MD5Context ctx;
ctx.start();
ctx.update((unsigned char *)&p_texel_size, sizeof(float));
ctx.update((unsigned char *)p_indices, sizeof(int) * p_index_count);
ctx.update((unsigned char *)p_vertices, sizeof(float) * p_vertex_count * 3);
ctx.update((unsigned char *)p_normals, sizeof(float) * p_vertex_count * 3);
unsigned char hash[16];
ctx.finish(hash);
bool cached = false;
unsigned int cache_idx = 0;
*r_mesh_cache = nullptr;
*r_mesh_cache_size = 0;
if (p_cache_data) {
//Check if hash is in cache data
int *cache_data = (int *)p_cache_data;
int n_entries = cache_data[0];
unsigned int read_idx = 1;
for (int i = 0; i < n_entries; ++i) {
if (memcmp(&cache_data[read_idx], hash, 16) == 0) {
cached = true;
cache_idx = read_idx;
break;
}
read_idx += 4; // hash
read_idx += 2; // size hint
int vertex_count = cache_data[read_idx];
read_idx += 1; // vertex count
read_idx += vertex_count; // vertex
read_idx += vertex_count * 2; // uvs
int index_count = cache_data[read_idx];
read_idx += 1; // index count
read_idx += index_count; // indices
}
}
if (cached) {
int *cache_data = (int *)p_cache_data;
cache_idx += 4;
// Load size
*r_size_hint_x = cache_data[cache_idx];
*r_size_hint_y = cache_data[cache_idx + 1];
cache_idx += 2;
// Load vertices
*r_vertex_count = cache_data[cache_idx];
cache_idx++;
*r_vertex = &cache_data[cache_idx];
cache_idx += *r_vertex_count;
// Load UVs
*r_uv = (float *)&cache_data[cache_idx];
cache_idx += *r_vertex_count * 2;
// Load indices
*r_index_count = cache_data[cache_idx];
cache_idx++;
*r_index = &cache_data[cache_idx];
} else {
// set up input mesh
xatlas::MeshDecl input_mesh;
input_mesh.indexData = p_indices;
input_mesh.indexCount = p_index_count;
input_mesh.indexFormat = xatlas::IndexFormat::UInt32;
input_mesh.vertexCount = p_vertex_count;
input_mesh.vertexPositionData = p_vertices;
input_mesh.vertexPositionStride = sizeof(float) * 3;
input_mesh.vertexNormalData = p_normals;
input_mesh.vertexNormalStride = sizeof(uint32_t) * 3;
input_mesh.vertexUvData = nullptr;
input_mesh.vertexUvStride = 0;
xatlas::ChartOptions chart_options;
chart_options.fixWinding = true;
ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, false, "Texel size must be greater than 0.");
xatlas::PackOptions pack_options;
pack_options.padding = 1;
pack_options.maxChartSize = 4094; // Lightmap atlassing needs 2 for padding between meshes, so 4096-2
pack_options.blockAlign = true;
pack_options.texelsPerUnit = 1.0 / p_texel_size;
xatlas::Atlas *atlas = xatlas::Create();
xatlas::AddMeshError err = xatlas::AddMesh(atlas, input_mesh, 1);
ERR_FAIL_COND_V_MSG(err != xatlas::AddMeshError::Success, false, xatlas::StringForEnum(err));
xatlas::Generate(atlas, chart_options, pack_options);
*r_size_hint_x = atlas->width;
*r_size_hint_y = atlas->height;
float w = *r_size_hint_x;
float h = *r_size_hint_y;
if (w == 0 || h == 0) {
xatlas::Destroy(atlas);
return false; //could not bake because there is no area
}
const xatlas::Mesh &output = atlas->meshes[0];
*r_vertex = (int *)memalloc(sizeof(int) * output.vertexCount);
ERR_FAIL_NULL_V_MSG(*r_vertex, false, "Out of memory.");
*r_uv = (float *)memalloc(sizeof(float) * output.vertexCount * 2);
ERR_FAIL_NULL_V_MSG(*r_uv, false, "Out of memory.");
*r_index = (int *)memalloc(sizeof(int) * output.indexCount);
ERR_FAIL_NULL_V_MSG(*r_index, false, "Out of memory.");
float max_x = 0;
float max_y = 0;
for (uint32_t i = 0; i < output.vertexCount; i++) {
(*r_vertex)[i] = output.vertexArray[i].xref;
(*r_uv)[i * 2 + 0] = output.vertexArray[i].uv[0] / w;
(*r_uv)[i * 2 + 1] = output.vertexArray[i].uv[1] / h;
max_x = MAX(max_x, output.vertexArray[i].uv[0]);
max_y = MAX(max_y, output.vertexArray[i].uv[1]);
}
*r_vertex_count = output.vertexCount;
for (uint32_t i = 0; i < output.indexCount; i++) {
(*r_index)[i] = output.indexArray[i];
}
*r_index_count = output.indexCount;
xatlas::Destroy(atlas);
}
if (*r_use_cache) {
// Build cache data for current mesh
unsigned int new_cache_size = 4 + 2 + 1 + *r_vertex_count + (*r_vertex_count * 2) + 1 + *r_index_count; // hash + size hint + vertex_count + vertices + uvs + index_count + indices
new_cache_size *= sizeof(int);
int *new_cache_data = (int *)memalloc(new_cache_size);
unsigned int new_cache_idx = 0;
// hash
memcpy(&new_cache_data[new_cache_idx], hash, 16);
new_cache_idx += 4;
// size hint
new_cache_data[new_cache_idx] = *r_size_hint_x;
new_cache_data[new_cache_idx + 1] = *r_size_hint_y;
new_cache_idx += 2;
// vertex count
new_cache_data[new_cache_idx] = *r_vertex_count;
new_cache_idx++;
// vertices
memcpy(&new_cache_data[new_cache_idx], *r_vertex, sizeof(int) * (*r_vertex_count));
new_cache_idx += *r_vertex_count;
// uvs
memcpy(&new_cache_data[new_cache_idx], *r_uv, sizeof(float) * (*r_vertex_count) * 2);
new_cache_idx += *r_vertex_count * 2;
// index count
new_cache_data[new_cache_idx] = *r_index_count;
new_cache_idx++;
// indices
memcpy(&new_cache_data[new_cache_idx], *r_index, sizeof(int) * (*r_index_count));
// Return cache data to the caller
*r_mesh_cache = (uint8_t *)new_cache_data;
*r_mesh_cache_size = new_cache_size;
}
*r_use_cache = cached; // Return whether cache was used.
return true;
}
void initialize_xatlas_unwrap_module(ModuleInitializationLevel p_level) {
if (p_level != MODULE_INITIALIZATION_LEVEL_SCENE) {
return;
}
array_mesh_lightmap_unwrap_callback = xatlas_mesh_lightmap_unwrap_callback;
}
void uninitialize_xatlas_unwrap_module(ModuleInitializationLevel p_level) {
if (p_level != MODULE_INITIALIZATION_LEVEL_SCENE) {
return;
}
}