godot/modules/navigation/navigation_mesh_generator.cpp
smix8 ea96f5259f Fix NavigationMesh not clearing old polygons
Fixes NavigationMesh not clearing old polygons.
2023-06-23 02:53:09 +02:00

793 lines
32 KiB
C++

/**************************************************************************/
/* navigation_mesh_generator.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef _3D_DISABLED
#include "navigation_mesh_generator.h"
#include "core/math/convex_hull.h"
#include "core/os/thread.h"
#include "scene/3d/mesh_instance_3d.h"
#include "scene/3d/multimesh_instance_3d.h"
#include "scene/3d/physics_body_3d.h"
#include "scene/resources/box_shape_3d.h"
#include "scene/resources/capsule_shape_3d.h"
#include "scene/resources/concave_polygon_shape_3d.h"
#include "scene/resources/convex_polygon_shape_3d.h"
#include "scene/resources/cylinder_shape_3d.h"
#include "scene/resources/height_map_shape_3d.h"
#include "scene/resources/navigation_mesh_source_geometry_data_3d.h"
#include "scene/resources/primitive_meshes.h"
#include "scene/resources/shape_3d.h"
#include "scene/resources/sphere_shape_3d.h"
#include "scene/resources/world_boundary_shape_3d.h"
#ifdef TOOLS_ENABLED
#include "editor/editor_node.h"
#endif
#include "modules/modules_enabled.gen.h" // For csg, gridmap.
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
#ifdef MODULE_GRIDMAP_ENABLED
#include "modules/gridmap/grid_map.h"
#endif
NavigationMeshGenerator *NavigationMeshGenerator::singleton = nullptr;
void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_vertices) {
p_vertices.push_back(p_vec3.x);
p_vertices.push_back(p_vec3.y);
p_vertices.push_back(p_vec3.z);
}
void NavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform3D &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
int current_vertex_count;
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
current_vertex_count = p_vertices.size() / 3;
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
int index_count = 0;
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
index_count = p_mesh->surface_get_array_index_len(i);
} else {
index_count = p_mesh->surface_get_array_len(i);
}
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
int face_count = index_count / 3;
Array a = p_mesh->surface_get_arrays(i);
ERR_CONTINUE(a.is_empty() || (a.size() != Mesh::ARRAY_MAX));
Vector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
ERR_CONTINUE(mesh_vertices.is_empty());
const Vector3 *vr = mesh_vertices.ptr();
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
ERR_CONTINUE(mesh_indices.is_empty() || (mesh_indices.size() != index_count));
const int *ir = mesh_indices.ptr();
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_vertices);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
} else {
ERR_CONTINUE(mesh_vertices.size() != index_count);
face_count = mesh_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(vr[j * 3 + 0]), p_vertices);
_add_vertex(p_xform.xform(vr[j * 3 + 2]), p_vertices);
_add_vertex(p_xform.xform(vr[j * 3 + 1]), p_vertices);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
}
}
}
}
void NavigationMeshGenerator::_add_mesh_array(const Array &p_array, const Transform3D &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
ERR_FAIL_COND(p_array.size() != Mesh::ARRAY_MAX);
Vector<Vector3> mesh_vertices = p_array[Mesh::ARRAY_VERTEX];
ERR_FAIL_COND(mesh_vertices.is_empty());
const Vector3 *vr = mesh_vertices.ptr();
Vector<int> mesh_indices = p_array[Mesh::ARRAY_INDEX];
ERR_FAIL_COND(mesh_indices.is_empty());
const int *ir = mesh_indices.ptr();
const int face_count = mesh_indices.size() / 3;
const int current_vertex_count = p_vertices.size() / 3;
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_vertices);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
}
void NavigationMeshGenerator::_add_faces(const PackedVector3Array &p_faces, const Transform3D &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
ERR_FAIL_COND(p_faces.is_empty());
ERR_FAIL_COND(p_faces.size() % 3 != 0);
int face_count = p_faces.size() / 3;
int current_vertex_count = p_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_vertices);
_add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_vertices);
_add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_vertices);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
}
}
void NavigationMeshGenerator::_parse_geometry(const Transform3D &p_navmesh_transform, Node *p_node, Vector<float> &p_vertices, Vector<int> &p_indices, NavigationMesh::ParsedGeometryType p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) {
if (Object::cast_to<MeshInstance3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MeshInstance3D *mesh_instance = Object::cast_to<MeshInstance3D>(p_node);
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_transform * mesh_instance->get_global_transform(), p_vertices, p_indices);
}
}
if (Object::cast_to<MultiMeshInstance3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MultiMeshInstance3D *multimesh_instance = Object::cast_to<MultiMeshInstance3D>(p_node);
Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
if (multimesh.is_valid()) {
Ref<Mesh> mesh = multimesh->get_mesh();
if (mesh.is_valid()) {
int n = multimesh->get_visible_instance_count();
if (n == -1) {
n = multimesh->get_instance_count();
}
for (int i = 0; i < n; i++) {
_add_mesh(mesh, p_navmesh_transform * multimesh_instance->get_global_transform() * multimesh->get_instance_transform(i), p_vertices, p_indices);
}
}
}
}
#ifdef MODULE_CSG_ENABLED
if (Object::cast_to<CSGShape3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
CSGShape3D *csg_shape = Object::cast_to<CSGShape3D>(p_node);
Array meshes = csg_shape->get_meshes();
if (!meshes.is_empty()) {
Ref<Mesh> mesh = meshes[1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_transform * csg_shape->get_global_transform(), p_vertices, p_indices);
}
}
}
#endif
if (Object::cast_to<StaticBody3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) {
StaticBody3D *static_body = Object::cast_to<StaticBody3D>(p_node);
if (static_body->get_collision_layer() & p_collision_mask) {
List<uint32_t> shape_owners;
static_body->get_shape_owners(&shape_owners);
for (uint32_t shape_owner : shape_owners) {
if (static_body->is_shape_owner_disabled(shape_owner)) {
continue;
}
const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
for (int i = 0; i < shape_count; i++) {
Ref<Shape3D> s = static_body->shape_owner_get_shape(shape_owner, i);
if (s.is_null()) {
continue;
}
const Transform3D transform = p_navmesh_transform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
BoxShape3D *box = Object::cast_to<BoxShape3D>(*s);
if (box) {
Array arr;
arr.resize(RS::ARRAY_MAX);
BoxMesh::create_mesh_array(arr, box->get_size());
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
CapsuleShape3D *capsule = Object::cast_to<CapsuleShape3D>(*s);
if (capsule) {
Array arr;
arr.resize(RS::ARRAY_MAX);
CapsuleMesh::create_mesh_array(arr, capsule->get_radius(), capsule->get_height());
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
CylinderShape3D *cylinder = Object::cast_to<CylinderShape3D>(*s);
if (cylinder) {
Array arr;
arr.resize(RS::ARRAY_MAX);
CylinderMesh::create_mesh_array(arr, cylinder->get_radius(), cylinder->get_radius(), cylinder->get_height());
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
SphereShape3D *sphere = Object::cast_to<SphereShape3D>(*s);
if (sphere) {
Array arr;
arr.resize(RS::ARRAY_MAX);
SphereMesh::create_mesh_array(arr, sphere->get_radius(), sphere->get_radius() * 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
ConcavePolygonShape3D *concave_polygon = Object::cast_to<ConcavePolygonShape3D>(*s);
if (concave_polygon) {
_add_faces(concave_polygon->get_faces(), transform, p_vertices, p_indices);
}
ConvexPolygonShape3D *convex_polygon = Object::cast_to<ConvexPolygonShape3D>(*s);
if (convex_polygon) {
Vector<Vector3> varr = Variant(convex_polygon->get_points());
Geometry3D::MeshData md;
Error err = ConvexHullComputer::convex_hull(varr, md);
if (err == OK) {
PackedVector3Array faces;
for (const Geometry3D::MeshData::Face &face : md.faces) {
for (uint32_t k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, transform, p_vertices, p_indices);
}
}
HeightMapShape3D *heightmap_shape = Object::cast_to<HeightMapShape3D>(*s);
if (heightmap_shape) {
int heightmap_depth = heightmap_shape->get_map_depth();
int heightmap_width = heightmap_shape->get_map_width();
if (heightmap_depth >= 2 && heightmap_width >= 2) {
const Vector<real_t> &map_data = heightmap_shape->get_map_data();
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
Vector2 start = heightmap_gridsize * -0.5;
Vector<Vector3> vertex_array;
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
int map_data_current_index = 0;
for (int d = 0; d < heightmap_depth; d++) {
for (int w = 0; w < heightmap_width; w++) {
if (map_data_current_index + 1 + heightmap_depth < map_data.size()) {
float top_left_height = map_data[map_data_current_index];
float top_right_height = map_data[map_data_current_index + 1];
float bottom_left_height = map_data[map_data_current_index + heightmap_depth];
float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth];
Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d);
Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d);
Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0);
Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_left);
vertex_array.push_back(top_left);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_right);
vertex_array.push_back(bottom_left);
}
map_data_current_index += 1;
}
}
if (vertex_array.size() > 0) {
_add_faces(vertex_array, transform, p_vertices, p_indices);
}
}
}
}
}
}
}
#ifdef MODULE_GRIDMAP_ENABLED
GridMap *gridmap = Object::cast_to<GridMap>(p_node);
if (gridmap) {
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
Array meshes = gridmap->get_meshes();
Transform3D xform = gridmap->get_global_transform();
for (int i = 0; i < meshes.size(); i += 2) {
Ref<Mesh> mesh = meshes[i + 1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_transform * xform * (Transform3D)meshes[i], p_vertices, p_indices);
}
}
}
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES && (gridmap->get_collision_layer() & p_collision_mask)) {
Array shapes = gridmap->get_collision_shapes();
for (int i = 0; i < shapes.size(); i += 2) {
RID shape = shapes[i + 1];
PhysicsServer3D::ShapeType type = PhysicsServer3D::get_singleton()->shape_get_type(shape);
Variant data = PhysicsServer3D::get_singleton()->shape_get_data(shape);
switch (type) {
case PhysicsServer3D::SHAPE_SPHERE: {
real_t radius = data;
Array arr;
arr.resize(RS::ARRAY_MAX);
SphereMesh::create_mesh_array(arr, radius, radius * 2.0);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer3D::SHAPE_BOX: {
Vector3 extents = data;
Array arr;
arr.resize(RS::ARRAY_MAX);
BoxMesh::create_mesh_array(arr, extents * 2.0);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer3D::SHAPE_CAPSULE: {
Dictionary dict = data;
real_t radius = dict["radius"];
real_t height = dict["height"];
Array arr;
arr.resize(RS::ARRAY_MAX);
CapsuleMesh::create_mesh_array(arr, radius, height);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer3D::SHAPE_CYLINDER: {
Dictionary dict = data;
real_t radius = dict["radius"];
real_t height = dict["height"];
Array arr;
arr.resize(RS::ARRAY_MAX);
CylinderMesh::create_mesh_array(arr, radius, radius, height);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer3D::SHAPE_CONVEX_POLYGON: {
PackedVector3Array vertices = data;
Geometry3D::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
PackedVector3Array faces;
for (const Geometry3D::MeshData::Face &face : md.faces) {
for (uint32_t k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, shapes[i], p_vertices, p_indices);
}
} break;
case PhysicsServer3D::SHAPE_CONCAVE_POLYGON: {
Dictionary dict = data;
PackedVector3Array faces = Variant(dict["faces"]);
_add_faces(faces, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer3D::SHAPE_HEIGHTMAP: {
Dictionary dict = data;
///< dict( int:"width", int:"depth",float:"cell_size", float_array:"heights"
int heightmap_depth = dict["depth"];
int heightmap_width = dict["width"];
if (heightmap_depth >= 2 && heightmap_width >= 2) {
const Vector<real_t> &map_data = dict["heights"];
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
Vector2 start = heightmap_gridsize * -0.5;
Vector<Vector3> vertex_array;
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
int map_data_current_index = 0;
for (int d = 0; d < heightmap_depth; d++) {
for (int w = 0; w < heightmap_width; w++) {
if (map_data_current_index + 1 + heightmap_depth < map_data.size()) {
float top_left_height = map_data[map_data_current_index];
float top_right_height = map_data[map_data_current_index + 1];
float bottom_left_height = map_data[map_data_current_index + heightmap_depth];
float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth];
Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d);
Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d);
Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0);
Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_left);
vertex_array.push_back(top_left);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_right);
vertex_array.push_back(bottom_left);
}
map_data_current_index += 1;
}
}
if (vertex_array.size() > 0) {
_add_faces(vertex_array, shapes[i], p_vertices, p_indices);
}
}
} break;
default: {
WARN_PRINT("Unsupported collision shape type.");
} break;
}
}
}
}
#endif
if (p_recurse_children) {
for (int i = 0; i < p_node->get_child_count(); i++) {
_parse_geometry(p_navmesh_transform, p_node->get_child(i), p_vertices, p_indices, p_generate_from, p_collision_mask, p_recurse_children);
}
}
}
NavigationMeshGenerator *NavigationMeshGenerator::get_singleton() {
return singleton;
}
NavigationMeshGenerator::NavigationMeshGenerator() {
singleton = this;
}
NavigationMeshGenerator::~NavigationMeshGenerator() {
}
void NavigationMeshGenerator::bake(const Ref<NavigationMesh> &p_navigation_mesh, Node *p_root_node) {
WARN_PRINT_ONCE("NavigationMeshGenerator::bake() is deprecated due to core threading changes. To upgrade existing code, first create a NavigationMeshSourceGeometryData3D resource. Use this resource with method parse_source_geometry_data() to parse the SceneTree for nodes that should contribute to the navigation mesh baking. The SceneTree parsing needs to happen on the main thread. After the parsing is finished use the resource with method bake_from_source_geometry_data() to bake a navigation mesh..");
}
void NavigationMeshGenerator::clear(Ref<NavigationMesh> p_navigation_mesh) {
if (p_navigation_mesh.is_valid()) {
p_navigation_mesh->clear_polygons();
p_navigation_mesh->set_vertices(Vector<Vector3>());
}
}
void NavigationMeshGenerator::parse_source_geometry_data(const Ref<NavigationMesh> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData3D> p_source_geometry_data, Node *p_root_node, const Callable &p_callback) {
ERR_FAIL_COND_MSG(!Thread::is_main_thread(), "The SceneTree can only be parsed on the main thread. Call this function from the main thread or use call_deferred().");
ERR_FAIL_COND_MSG(!p_navigation_mesh.is_valid(), "Invalid navigation mesh.");
ERR_FAIL_COND_MSG(p_root_node == nullptr, "No parsing root node specified.");
ERR_FAIL_COND_MSG(!p_root_node->is_inside_tree(), "The root node needs to be inside the SceneTree.");
Vector<float> vertices;
Vector<int> indices;
List<Node *> parse_nodes;
if (p_navigation_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) {
parse_nodes.push_back(p_root_node);
} else {
p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_group_name(), &parse_nodes);
}
Transform3D navmesh_xform = Transform3D();
if (Object::cast_to<Node3D>(p_root_node)) {
navmesh_xform = Object::cast_to<Node3D>(p_root_node)->get_global_transform().affine_inverse();
}
for (Node *E : parse_nodes) {
NavigationMesh::ParsedGeometryType geometry_type = p_navigation_mesh->get_parsed_geometry_type();
uint32_t collision_mask = p_navigation_mesh->get_collision_mask();
bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
_parse_geometry(navmesh_xform, E, vertices, indices, geometry_type, collision_mask, recurse_children);
}
p_source_geometry_data->set_vertices(vertices);
p_source_geometry_data->set_indices(indices);
if (p_callback.is_valid()) {
Callable::CallError ce;
Variant result;
p_callback.callp(nullptr, 0, result, ce);
if (ce.error == Callable::CallError::CALL_OK) {
//
}
}
}
void NavigationMeshGenerator::bake_from_source_geometry_data(Ref<NavigationMesh> p_navigation_mesh, const Ref<NavigationMeshSourceGeometryData3D> &p_source_geometry_data, const Callable &p_callback) {
ERR_FAIL_COND_MSG(!p_navigation_mesh.is_valid(), "Invalid navigation mesh.");
ERR_FAIL_COND_MSG(!p_source_geometry_data.is_valid(), "Invalid NavigationMeshSourceGeometryData3D.");
ERR_FAIL_COND_MSG(!p_source_geometry_data->has_data(), "NavigationMeshSourceGeometryData3D is empty. Parse source geometry first.");
generator_mutex.lock();
if (baking_navmeshes.has(p_navigation_mesh)) {
generator_mutex.unlock();
ERR_FAIL_MSG("NavigationMesh is already baking. Wait for current bake to finish.");
} else {
baking_navmeshes.insert(p_navigation_mesh);
generator_mutex.unlock();
}
#ifndef _3D_DISABLED
const Vector<float> vertices = p_source_geometry_data->get_vertices();
const Vector<int> indices = p_source_geometry_data->get_indices();
if (vertices.size() < 3 || indices.size() < 3) {
return;
}
rcHeightfield *hf = nullptr;
rcCompactHeightfield *chf = nullptr;
rcContourSet *cset = nullptr;
rcPolyMesh *poly_mesh = nullptr;
rcPolyMeshDetail *detail_mesh = nullptr;
rcContext ctx;
// added to keep track of steps, no functionality right now
String bake_state = "";
bake_state = "Setting up Configuration..."; // step #1
const float *verts = vertices.ptr();
const int nverts = vertices.size() / 3;
const int *tris = indices.ptr();
const int ntris = indices.size() / 3;
float bmin[3], bmax[3];
rcCalcBounds(verts, nverts, bmin, bmax);
rcConfig cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.cs = p_navigation_mesh->get_cell_size();
cfg.ch = p_navigation_mesh->get_cell_height();
cfg.walkableSlopeAngle = p_navigation_mesh->get_agent_max_slope();
cfg.walkableHeight = (int)Math::ceil(p_navigation_mesh->get_agent_height() / cfg.ch);
cfg.walkableClimb = (int)Math::floor(p_navigation_mesh->get_agent_max_climb() / cfg.ch);
cfg.walkableRadius = (int)Math::ceil(p_navigation_mesh->get_agent_radius() / cfg.cs);
cfg.maxEdgeLen = (int)(p_navigation_mesh->get_edge_max_length() / p_navigation_mesh->get_cell_size());
cfg.maxSimplificationError = p_navigation_mesh->get_edge_max_error();
cfg.minRegionArea = (int)(p_navigation_mesh->get_region_min_size() * p_navigation_mesh->get_region_min_size());
cfg.mergeRegionArea = (int)(p_navigation_mesh->get_region_merge_size() * p_navigation_mesh->get_region_merge_size());
cfg.maxVertsPerPoly = (int)p_navigation_mesh->get_vertices_per_polygon();
cfg.detailSampleDist = MAX(p_navigation_mesh->get_cell_size() * p_navigation_mesh->get_detail_sample_distance(), 0.1f);
cfg.detailSampleMaxError = p_navigation_mesh->get_cell_height() * p_navigation_mesh->get_detail_sample_max_error();
if (!Math::is_equal_approx((float)cfg.walkableHeight * cfg.ch, p_navigation_mesh->get_agent_height())) {
WARN_PRINT("Property agent_height is ceiled to cell_height voxel units and loses precision.");
}
if (!Math::is_equal_approx((float)cfg.walkableClimb * cfg.ch, p_navigation_mesh->get_agent_max_climb())) {
WARN_PRINT("Property agent_max_climb is floored to cell_height voxel units and loses precision.");
}
if (!Math::is_equal_approx((float)cfg.walkableRadius * cfg.cs, p_navigation_mesh->get_agent_radius())) {
WARN_PRINT("Property agent_radius is ceiled to cell_size voxel units and loses precision.");
}
if (!Math::is_equal_approx((float)cfg.maxEdgeLen * cfg.cs, p_navigation_mesh->get_edge_max_length())) {
WARN_PRINT("Property edge_max_length is rounded to cell_size voxel units and loses precision.");
}
if (!Math::is_equal_approx((float)cfg.minRegionArea, p_navigation_mesh->get_region_min_size() * p_navigation_mesh->get_region_min_size())) {
WARN_PRINT("Property region_min_size is converted to int and loses precision.");
}
if (!Math::is_equal_approx((float)cfg.mergeRegionArea, p_navigation_mesh->get_region_merge_size() * p_navigation_mesh->get_region_merge_size())) {
WARN_PRINT("Property region_merge_size is converted to int and loses precision.");
}
if (!Math::is_equal_approx((float)cfg.maxVertsPerPoly, p_navigation_mesh->get_vertices_per_polygon())) {
WARN_PRINT("Property vertices_per_polygon is converted to int and loses precision.");
}
if (p_navigation_mesh->get_cell_size() * p_navigation_mesh->get_detail_sample_distance() < 0.1f) {
WARN_PRINT("Property detail_sample_distance is clamped to 0.1 world units as the resulting value from multiplying with cell_size is too low.");
}
cfg.bmin[0] = bmin[0];
cfg.bmin[1] = bmin[1];
cfg.bmin[2] = bmin[2];
cfg.bmax[0] = bmax[0];
cfg.bmax[1] = bmax[1];
cfg.bmax[2] = bmax[2];
AABB baking_aabb = p_navigation_mesh->get_filter_baking_aabb();
if (baking_aabb.has_volume()) {
Vector3 baking_aabb_offset = p_navigation_mesh->get_filter_baking_aabb_offset();
cfg.bmin[0] = baking_aabb.position[0] + baking_aabb_offset.x;
cfg.bmin[1] = baking_aabb.position[1] + baking_aabb_offset.y;
cfg.bmin[2] = baking_aabb.position[2] + baking_aabb_offset.z;
cfg.bmax[0] = cfg.bmin[0] + baking_aabb.size[0];
cfg.bmax[1] = cfg.bmin[1] + baking_aabb.size[1];
cfg.bmax[2] = cfg.bmin[2] + baking_aabb.size[2];
}
bake_state = "Calculating grid size..."; // step #2
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
// ~30000000 seems to be around sweetspot where Editor baking breaks
if ((cfg.width * cfg.height) > 30000000) {
WARN_PRINT("NavigationMesh baking process will likely fail."
"\nSource geometry is suspiciously big for the current Cell Size and Cell Height in the NavMesh Resource bake settings."
"\nIf baking does not fail, the resulting NavigationMesh will create serious pathfinding performance issues."
"\nIt is advised to increase Cell Size and/or Cell Height in the NavMesh Resource bake settings or reduce the size / scale of the source geometry.");
}
bake_state = "Creating heightfield..."; // step #3
hf = rcAllocHeightfield();
ERR_FAIL_COND(!hf);
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
bake_state = "Marking walkable triangles..."; // step #4
{
Vector<unsigned char> tri_areas;
tri_areas.resize(ntris);
ERR_FAIL_COND(tri_areas.size() == 0);
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
}
if (p_navigation_mesh->get_filter_low_hanging_obstacles()) {
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
}
if (p_navigation_mesh->get_filter_ledge_spans()) {
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
}
if (p_navigation_mesh->get_filter_walkable_low_height_spans()) {
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
}
bake_state = "Constructing compact heightfield..."; // step #5
chf = rcAllocCompactHeightfield();
ERR_FAIL_COND(!chf);
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
rcFreeHeightField(hf);
hf = nullptr;
bake_state = "Eroding walkable area..."; // step #6
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
bake_state = "Partitioning..."; // step #7
if (p_navigation_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else if (p_navigation_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else {
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
}
bake_state = "Creating contours..."; // step #8
cset = rcAllocContourSet();
ERR_FAIL_COND(!cset);
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
bake_state = "Creating polymesh..."; // step #9
poly_mesh = rcAllocPolyMesh();
ERR_FAIL_COND(!poly_mesh);
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
detail_mesh = rcAllocPolyMeshDetail();
ERR_FAIL_COND(!detail_mesh);
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
rcFreeCompactHeightfield(chf);
chf = nullptr;
rcFreeContourSet(cset);
cset = nullptr;
bake_state = "Converting to native navigation mesh..."; // step #10
Vector<Vector3> nav_vertices;
for (int i = 0; i < detail_mesh->nverts; i++) {
const float *v = &detail_mesh->verts[i * 3];
nav_vertices.push_back(Vector3(v[0], v[1], v[2]));
}
p_navigation_mesh->set_vertices(nav_vertices);
p_navigation_mesh->clear_polygons();
for (int i = 0; i < detail_mesh->nmeshes; i++) {
const unsigned int *detail_mesh_m = &detail_mesh->meshes[i * 4];
const unsigned int detail_mesh_bverts = detail_mesh_m[0];
const unsigned int detail_mesh_m_btris = detail_mesh_m[2];
const unsigned int detail_mesh_ntris = detail_mesh_m[3];
const unsigned char *detail_mesh_tris = &detail_mesh->tris[detail_mesh_m_btris * 4];
for (unsigned int j = 0; j < detail_mesh_ntris; j++) {
Vector<int> nav_indices;
nav_indices.resize(3);
// Polygon order in recast is opposite than godot's
nav_indices.write[0] = ((int)(detail_mesh_bverts + detail_mesh_tris[j * 4 + 0]));
nav_indices.write[1] = ((int)(detail_mesh_bverts + detail_mesh_tris[j * 4 + 2]));
nav_indices.write[2] = ((int)(detail_mesh_bverts + detail_mesh_tris[j * 4 + 1]));
p_navigation_mesh->add_polygon(nav_indices);
}
}
bake_state = "Cleanup..."; // step #11
rcFreePolyMesh(poly_mesh);
poly_mesh = nullptr;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = nullptr;
bake_state = "Baking finished."; // step #12
#endif // _3D_DISABLED
generator_mutex.lock();
baking_navmeshes.erase(p_navigation_mesh);
generator_mutex.unlock();
if (p_callback.is_valid()) {
Callable::CallError ce;
Variant result;
p_callback.callp(nullptr, 0, result, ce);
if (ce.error == Callable::CallError::CALL_OK) {
//
}
}
}
void NavigationMeshGenerator::_bind_methods() {
ClassDB::bind_method(D_METHOD("bake", "navigation_mesh", "root_node"), &NavigationMeshGenerator::bake);
ClassDB::bind_method(D_METHOD("clear", "navigation_mesh"), &NavigationMeshGenerator::clear);
ClassDB::bind_method(D_METHOD("parse_source_geometry_data", "navigation_mesh", "source_geometry_data", "root_node", "callback"), &NavigationMeshGenerator::parse_source_geometry_data, DEFVAL(Callable()));
ClassDB::bind_method(D_METHOD("bake_from_source_geometry_data", "navigation_mesh", "source_geometry_data", "callback"), &NavigationMeshGenerator::bake_from_source_geometry_data, DEFVAL(Callable()));
}
#endif