godot/doc/classes/Transform2D.xml

306 lines
14 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
A 2×3 matrix representing a 2D transformation.
</brief_description>
<description>
A 2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, and scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<constructors>
<constructor name="Transform2D">
<return type="Transform2D" />
<description>
Constructs a default-initialized [Transform2D] set to [constant IDENTITY].
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="from" type="Transform2D" />
<description>
Constructs a [Transform2D] as a copy of the given [Transform2D].
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="rotation" type="float" />
<param index="1" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="rotation" type="float" />
<param index="1" name="scale" type="Vector2" />
<param index="2" name="skew" type="float" />
<param index="3" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians), scale, skew (in radians) and position.
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="x_axis" type="Vector2" />
<param index="1" name="y_axis" type="Vector2" />
<param index="2" name="origin" type="Vector2" />
<description>
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</constructor>
</constructors>
<methods>
<method name="affine_inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the basis is invertible (must have non-zero determinant).
</description>
</method>
<method name="basis_xform" qualifiers="const">
<return type="Vector2" />
<param index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the [member origin] vector).
</description>
</method>
<method name="basis_xform_inv" qualifiers="const">
<return type="Vector2" />
<param index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix, under the assumption that the basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
This method does not account for translation (the [member origin] vector).
[code]transform.basis_xform_inv(vector)[/code] is equivalent to [code]transform.inverse().basis_xform(vector)[/code]. See [method inverse].
For non-orthonormal transforms (e.g. with scaling) [code]transform.affine_inverse().basis_xform(vector)[/code] can be used instead. See [method affine_inverse].
</description>
</method>
<method name="determinant" qualifiers="const">
<return type="float" />
<description>
Returns the determinant of the basis matrix. If the basis is uniformly scaled, then its determinant equals the square of the scale factor.
A negative determinant means the basis was flipped, so one part of the scale is negative. A zero determinant means the basis isn't invertible, and is usually considered invalid.
</description>
</method>
<method name="get_origin" qualifiers="const">
<return type="Vector2" />
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation" qualifiers="const">
<return type="float" />
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale" qualifiers="const">
<return type="Vector2" />
<description>
Returns the scale.
</description>
</method>
<method name="get_skew" qualifiers="const">
<return type="float" />
<description>
Returns the transform's skew (in radians).
</description>
</method>
<method name="interpolate_with" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="xform" type="Transform2D" />
<param index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [param weight] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not). Use [method affine_inverse] for non-orthonormal transforms (e.g. with scaling).
</description>
</method>
<method name="is_conformal" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the transform's basis is conformal, meaning it preserves angles and distance ratios, and may only be composed of rotation and uniform scale. Returns [code]false[/code] if the transform's basis has non-uniform scale or shear/skew. This can be used to validate if the transform is non-distorted, which is important for physics and other use cases.
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="xform" type="Transform2D" />
<description>
Returns [code]true[/code] if this transform and [param xform] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="is_finite" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this transform is finite, by calling [method @GlobalScope.is_finite] on each component.
</description>
</method>
<method name="looking_at" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="target" type="Vector2" default="Vector2(0, 0)" />
<description>
Returns a copy of the transform rotated such that the rotated X-axis points towards the [param target] position.
Operations take place in global space.
</description>
</method>
<method name="orthonormalized" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [param angle] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="rotated_local" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [param angle] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [param scale] factor.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="scaled_local" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [param scale] factor.
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="translated" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [param offset].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [param offset].
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2(0, 0)">
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2(1, 0)">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2(0, 1)">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D(1, 0, 0, 1, 0, 0)">
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D(-1, 0, 0, 1, 0, 0)">
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D(1, 0, 0, -1, 0, 0)">
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Transform2D" />
<description>
Returns [code]true[/code] if the transforms are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="PackedVector2Array" />
<param index="0" name="right" type="PackedVector2Array" />
<description>
Transforms (multiplies) each element of the [Vector2] array by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Rect2" />
<param index="0" name="right" type="Rect2" />
<description>
Transforms (multiplies) the [Rect2] by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<param index="0" name="right" type="Transform2D" />
<description>
Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent).
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<param index="0" name="right" type="Vector2" />
<description>
Transforms (multiplies) the [Vector2] by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<param index="0" name="right" type="float" />
<description>
This operator multiplies all components of the [Transform2D], including the [member origin] vector, which scales it uniformly.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<param index="0" name="right" type="int" />
<description>
This operator multiplies all components of the [Transform2D], including the [member origin] vector, which scales it uniformly.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Transform2D" />
<description>
Returns [code]true[/code] if the transforms are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator []">
<return type="Vector2" />
<param index="0" name="index" type="int" />
<description>
Access transform components using their index. [code]t[0][/code] is equivalent to [code]t.x[/code], [code]t[1][/code] is equivalent to [code]t.y[/code], and [code]t[2][/code] is equivalent to [code]t.origin[/code].
</description>
</operator>
</operators>
</class>