/**************************************************************************/ /* dictionary.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "dictionary.h" #include "core/templates/hash_map.h" #include "core/templates/safe_refcount.h" #include "core/variant/variant.h" // required in this order by VariantInternal, do not remove this comment. #include "core/object/class_db.h" #include "core/object/object.h" #include "core/variant/type_info.h" #include "core/variant/variant_internal.h" struct DictionaryPrivate { SafeRefCount refcount; Variant *read_only = nullptr; // If enabled, a pointer is used to a temporary value that is used to return read-only values. HashMap variant_map; }; void Dictionary::get_key_list(List *p_keys) const { if (_p->variant_map.is_empty()) { return; } for (const KeyValue &E : _p->variant_map) { p_keys->push_back(E.key); } } Variant Dictionary::get_key_at_index(int p_index) const { int index = 0; for (const KeyValue &E : _p->variant_map) { if (index == p_index) { return E.key; } index++; } return Variant(); } Variant Dictionary::get_value_at_index(int p_index) const { int index = 0; for (const KeyValue &E : _p->variant_map) { if (index == p_index) { return E.value; } index++; } return Variant(); } Variant &Dictionary::operator[](const Variant &p_key) { if (unlikely(_p->read_only)) { if (p_key.get_type() == Variant::STRING_NAME) { const StringName *sn = VariantInternal::get_string_name(&p_key); const String &key = sn->operator String(); if (likely(_p->variant_map.has(key))) { *_p->read_only = _p->variant_map[key]; } else { *_p->read_only = Variant(); } } else if (likely(_p->variant_map.has(p_key))) { *_p->read_only = _p->variant_map[p_key]; } else { *_p->read_only = Variant(); } return *_p->read_only; } else { if (p_key.get_type() == Variant::STRING_NAME) { const StringName *sn = VariantInternal::get_string_name(&p_key); return _p->variant_map[sn->operator String()]; } else { return _p->variant_map[p_key]; } } } const Variant &Dictionary::operator[](const Variant &p_key) const { // Will not insert key, so no conversion is necessary. return _p->variant_map[p_key]; } const Variant *Dictionary::getptr(const Variant &p_key) const { HashMap::ConstIterator E(_p->variant_map.find(p_key)); if (!E) { return nullptr; } return &E->value; } Variant *Dictionary::getptr(const Variant &p_key) { HashMap::Iterator E(_p->variant_map.find(p_key)); if (!E) { return nullptr; } if (unlikely(_p->read_only != nullptr)) { *_p->read_only = E->value; return _p->read_only; } else { return &E->value; } } Variant Dictionary::get_valid(const Variant &p_key) const { HashMap::ConstIterator E(_p->variant_map.find(p_key)); if (!E) { return Variant(); } return E->value; } Variant Dictionary::get(const Variant &p_key, const Variant &p_default) const { const Variant *result = getptr(p_key); if (!result) { return p_default; } return *result; } Variant Dictionary::get_or_add(const Variant &p_key, const Variant &p_default) { const Variant *result = getptr(p_key); if (!result) { operator[](p_key) = p_default; return p_default; } return *result; } int Dictionary::size() const { return _p->variant_map.size(); } bool Dictionary::is_empty() const { return !_p->variant_map.size(); } bool Dictionary::has(const Variant &p_key) const { return _p->variant_map.has(p_key); } bool Dictionary::has_all(const Array &p_keys) const { for (int i = 0; i < p_keys.size(); i++) { if (!has(p_keys[i])) { return false; } } return true; } Variant Dictionary::find_key(const Variant &p_value) const { for (const KeyValue &E : _p->variant_map) { if (E.value == p_value) { return E.key; } } return Variant(); } bool Dictionary::erase(const Variant &p_key) { ERR_FAIL_COND_V_MSG(_p->read_only, false, "Dictionary is in read-only state."); return _p->variant_map.erase(p_key); } bool Dictionary::operator==(const Dictionary &p_dictionary) const { return recursive_equal(p_dictionary, 0); } bool Dictionary::operator!=(const Dictionary &p_dictionary) const { return !recursive_equal(p_dictionary, 0); } bool Dictionary::recursive_equal(const Dictionary &p_dictionary, int recursion_count) const { // Cheap checks if (_p == p_dictionary._p) { return true; } if (_p->variant_map.size() != p_dictionary._p->variant_map.size()) { return false; } // Heavy O(n) check if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return true; } recursion_count++; for (const KeyValue &this_E : _p->variant_map) { HashMap::ConstIterator other_E(p_dictionary._p->variant_map.find(this_E.key)); if (!other_E || !this_E.value.hash_compare(other_E->value, recursion_count, false)) { return false; } } return true; } void Dictionary::_ref(const Dictionary &p_from) const { //make a copy first (thread safe) if (!p_from._p->refcount.ref()) { return; // couldn't copy } //if this is the same, unreference the other one if (p_from._p == _p) { _p->refcount.unref(); return; } if (_p) { _unref(); } _p = p_from._p; } void Dictionary::clear() { ERR_FAIL_COND_MSG(_p->read_only, "Dictionary is in read-only state."); _p->variant_map.clear(); } void Dictionary::merge(const Dictionary &p_dictionary, bool p_overwrite) { ERR_FAIL_COND_MSG(_p->read_only, "Dictionary is in read-only state."); for (const KeyValue &E : p_dictionary._p->variant_map) { if (p_overwrite || !has(E.key)) { operator[](E.key) = E.value; } } } Dictionary Dictionary::merged(const Dictionary &p_dictionary, bool p_overwrite) const { Dictionary ret = duplicate(); ret.merge(p_dictionary, p_overwrite); return ret; } void Dictionary::_unref() const { ERR_FAIL_NULL(_p); if (_p->refcount.unref()) { if (_p->read_only) { memdelete(_p->read_only); } memdelete(_p); } _p = nullptr; } uint32_t Dictionary::hash() const { return recursive_hash(0); } uint32_t Dictionary::recursive_hash(int recursion_count) const { if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return 0; } uint32_t h = hash_murmur3_one_32(Variant::DICTIONARY); recursion_count++; for (const KeyValue &E : _p->variant_map) { h = hash_murmur3_one_32(E.key.recursive_hash(recursion_count), h); h = hash_murmur3_one_32(E.value.recursive_hash(recursion_count), h); } return hash_fmix32(h); } Array Dictionary::keys() const { Array varr; if (_p->variant_map.is_empty()) { return varr; } varr.resize(size()); int i = 0; for (const KeyValue &E : _p->variant_map) { varr[i] = E.key; i++; } return varr; } Array Dictionary::values() const { Array varr; if (_p->variant_map.is_empty()) { return varr; } varr.resize(size()); int i = 0; for (const KeyValue &E : _p->variant_map) { varr[i] = E.value; i++; } return varr; } const Variant *Dictionary::next(const Variant *p_key) const { if (p_key == nullptr) { // caller wants to get the first element if (_p->variant_map.begin()) { return &_p->variant_map.begin()->key; } return nullptr; } HashMap::Iterator E = _p->variant_map.find(*p_key); if (!E) { return nullptr; } ++E; if (E) { return &E->key; } return nullptr; } Dictionary Dictionary::duplicate(bool p_deep) const { return recursive_duplicate(p_deep, 0); } void Dictionary::make_read_only() { if (_p->read_only == nullptr) { _p->read_only = memnew(Variant); } } bool Dictionary::is_read_only() const { return _p->read_only != nullptr; } Dictionary Dictionary::recursive_duplicate(bool p_deep, int recursion_count) const { Dictionary n; if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return n; } if (p_deep) { recursion_count++; for (const KeyValue &E : _p->variant_map) { n[E.key.recursive_duplicate(true, recursion_count)] = E.value.recursive_duplicate(true, recursion_count); } } else { for (const KeyValue &E : _p->variant_map) { n[E.key] = E.value; } } return n; } void Dictionary::operator=(const Dictionary &p_dictionary) { if (this == &p_dictionary) { return; } _ref(p_dictionary); } const void *Dictionary::id() const { return _p; } Dictionary::Dictionary(const Dictionary &p_from) { _p = nullptr; _ref(p_from); } Dictionary::Dictionary() { _p = memnew(DictionaryPrivate); _p->refcount.init(); } Dictionary::~Dictionary() { _unref(); }