New rules:
- Do not silence CA1805 any more
- Limit where we silence CA1707, CA1711, CA1720
- Enforce severity=warning for IDE0040
- Enforce Allman style braces
- Enforce naming conventions (IDE1006 is still severity=suggestion)
Fixes:
- Fix REFL045, CS1572, CS1573
- Suppress CS0618 when generating `InvokeGodotClassMethod`
- Fix indent when generating GD_constants.cs
- Temporarily silence CS1734 in generated code
- Fix a lot of naming rule violations
Misc.:
- Remove ReSharper comments for RedundantNameQualifier
- Remove suppression attributes for RedundantNameQualifier
- Remove severity=warnings for CA1716, CA1304 (already included in the level of analysis we run)
The Haiku platform port was never finalized, and moved to a separate repo in
Godot 3.2 days: https://github.com/godotengine/godot-platform-haiku
Sadly it didn't garner more interest there and is bitrotting. It was never
ported to Godot 4 so the bits of Haiku support left in Mono aren't useful.
The UWP platform port was never ported to the Godot 4.0+ API,
and it's now accumulating bitrot as it doesn't compile, and thus
we no longer propagate platform changes in it.
So we finally remove to acknowledge this state. There's still some
interest in reviving the UWP port eventually, especially as support
for Direct3D 12 will soon be merged, but when that happens it will
be easiest to redo it from scratch.
Ensures that the versions always match the Godot version, albeit following
SemVer 2.0 so inserting a dot between "beta" and the build number.
For "stable" status, we omit the suffix as this would be interpreted as a
pre-release build too.
So we have:
| Godot version | Nupkg version |
| -------------- | -------------- |
| 4.0.0-beta | 4.0.0-beta |
| 4.0.0-beta2 | 4.0.0-beta.2 |
| 4.0.0-rc1 | 4.0.0-rc.1 |
| 4.0.0-stable | 4.0.0 |
Implements https://github.com/godotengine/godot-proposals/issues/3371.
New `target` presets
====================
The `tools` option is removed and `target` changes to use three new presets,
which match the builds users are familiar with. These targets control the
default optimization level and enable editor-specific and debugging code:
- `editor`: Replaces `tools=yes target=release_debug`.
* Defines: `TOOLS_ENABLED`, `DEBUG_ENABLED`, `-O2`/`/O2`
- `template_debug`: Replaces `tools=no target=release_debug`.
* Defines: `DEBUG_ENABLED`, `-O2`/`/O2`
- `template_release`: Replaces `tools=no target=release`.
* Defines: `-O3`/`/O2`
New `dev_build` option
======================
The previous `target=debug` is now replaced by a separate `dev_build=yes`
option, which can be used in combination with either of the three targets,
and changes the following:
- `dev_build`: Defines `DEV_ENABLED`, disables optimization (`-O0`/`/0d`),
enables generating debug symbols, does not define `NDEBUG` so `assert()`
works in thirdparty libraries, adds a `.dev` suffix to the binary name.
Note: Unlike previously, `dev_build` defaults to off so that users who
compile Godot from source get an optimized and small build by default.
Engine contributors should now set `dev_build=yes` in their build scripts or
IDE configuration manually.
Changed binary names
====================
The name of generated binaries and object files are changed too, to follow
this format:
`godot.<platform>.<target>[.dev][.double].<arch>[.<extra_suffix>][.<ext>]`
For example:
- `godot.linuxbsd.editor.dev.arm64`
- `godot.windows.template_release.double.x86_64.mono.exe`
Be sure to update your links/scripts/IDE config accordingly.
More flexible `optimize` and `debug_symbols` options
====================================================
The optimization level and whether to generate debug symbols can be further
specified with the `optimize` and `debug_symbols` options. So the default
values listed above for the various `target` and `dev_build` combinations
are indicative and can be replaced when compiling, e.g.:
`scons p=linuxbsd target=template_debug dev_build=yes optimize=debug`
will make a "debug" export template with dev-only code enabled, `-Og`
optimization level for GCC/Clang, and debug symbols. Perfect for debugging
complex crashes at runtime in an exported project.
Ensures the `push_nupkgs_local` argument in build_assemblies.py is an
absolute path so the argument can be
given as a relative path and it will be converted.
We want to replace libnethost as it gives us issues with some compilers.
Our implementation tries to mimic libnethost's hostfxr_resolver search
logic. We try to use the same function names for easier comparing in
case we need to update this in the future.
`libnethost.a` detection failed on my Linux system (Mageia 9, using Fedora 36
dotnet repos), because it used the first match which isn't the one matching
the rest of the SDK:
```
$ dotnet --list-runtimes
Microsoft.AspNetCore.App 3.1.28 [/usr/share/dotnet/shared/Microsoft.AspNetCore.App]
Microsoft.AspNetCore.App 6.0.8 [/usr/share/dotnet/shared/Microsoft.AspNetCore.App]
Microsoft.NETCore.App 3.1.28 [/usr/share/dotnet/shared/Microsoft.NETCore.App]
Microsoft.NETCore.App 6.0.5 [/usr/share/dotnet/shared/Microsoft.NETCore.App]
Microsoft.NETCore.App 6.0.8 [/usr/share/dotnet/shared/Microsoft.NETCore.App]
```
No idea why I still have 6.0.5 installed but it should pick the highest I guess.
In the past, the Godot editor distributed the API assemblies and
copied them to project directories for projects to reference them.
This changed with the move to .NET 5/6. Godot no longer copies the
assemblies to project directories. However, the project Sdk still
tried to reference them from the same location.
From now on, the GodotSharp API is distributed as a NuGet package,
which the Sdk can reference.
Added an option to `build_assemblies.py` to copy all Godot NuGet
packages to an existing local NuGet source. This will be needed
during development, while packages are not published to a remote
NuGet repository.
This option also makes sure to remove packages of the same version
installed (~/.nuget/packages). Very useful during development, when
packages change, to make sure the package being used by a project is
the same we just built and not one from a previous build.
A local NuGet source can be created like this:
```
mkdir ~/MyLocalNuGetSource && \
dotnet nuget add source ~/MyLocalNuGetSource/ -n MyLocalNuGetSource
```
This base implementation is still very barebones but it defines the path
for how exporting will work (at least when embedding the .NET runtime).
Many manual steps are still needed, which should be automatized in the
future. For example, in addition to the API assemblies, now you also
need to copy the GodotPlugins assembly to each game project.
Some Linux distros use their distro name as the RID for directory names.
If the .NET Host directory cannot be found with the generic RID,
try to get the rid from `dotnet --info`.
The generic RID should still be the first choice. Some platforms like
Windows 10 define the RID as `win10-x64` but still use the generic
`win-x64` for directory names.
Co-authored-by: Lewis James <lewiji+github@gmail.com>
We're targeting .NET 5 for now to make development easier while
.NET 6 is not yet released.
TEMPORARY REGRESSIONS
---------------------
Assembly unloading is not implemented yet. As such, many Godot
resources are leaked at exit. This will be re-implemented later
together with assembly hot-reloading.
We will be progressively moving most code to C#.
The plan is to only use Mono's embedding APIs to set things at launch.
This will make it much easier to later support CoreCLR too which
doesn't have rich embedding APIs.
Additionally the code in C# is more maintainable and makes it easier
to implement new features, e.g.: runtime codegen which we could use to
avoid using reflection for marshaling everytime a field, property or
method is accessed.
SOME NOTES ON INTEROP
We make the same assumptions as GDNative about the size of the Godot
structures we use. We take it a bit further by also assuming the layout
of fields in some cases, which is riskier but let's us squeeze out some
performance by avoiding unnecessary managed to native calls.
Code that deals with native structs is less safe than before as there's
no RAII and copy constructors in C#. It's like using the GDNative C API
directly. One has to take special care to free values they own.
Perhaps we could use roslyn analyzers to check this, but I don't know
any that uses attributes to determine what's owned or borrowed.
As to why we maily use pointers for native structs instead of ref/out:
- AFAIK (and confirmed with a benchmark) ref/out are pinned
during P/Invoke calls and that has a cost.
- Native struct fields can't be ref/out in the first place.
- A `using` local can't be passed as ref/out, only `in`. Calling a
method or property on an `in` value makes a silent copy, so we want
to avoid `in`.
REGARDING THE BUILD SYSTEM
There's no longer a `mono_glue=yes/no` SCons options. We no longer
need to build with `mono_glue=no`, generate the glue and then build
again with `mono_glue=yes`. We build only once and generate the glue
(which is in C# now).
However, SCons no longer builds the C# projects for us. Instead one
must run `build_assemblies.py`, e.g.:
```sh
%godot_src_root%/modules/mono/build_scripts/build_assemblies.py \
--godot-output-dir=%godot_src_root%/bin \
--godot-target=release_debug`
```
We could turn this into a custom build target, but I don't know how
to do that with SCons (it's possible with Meson).
OTHER NOTES
Most of the moved code doesn't follow the C# naming convention and
still has the word Mono in the names despite no longer dealing with
Mono's embedding APIs. This is just temporary while transitioning,
to make it easier to understand what was moved where.
This source generator adds a newly introduced attribute,
`ScriptPath` to all classes that:
- Are top-level classes (not inner/nested).
- Have the `partial` modifier.
- Inherit `Godot.Object`.
- The class name matches the file name.
A build error is thrown if the generator finds a class that meets these
conditions but is not declared `partial`, unless the class is annotated
with the `DisableGodotGenerators` attribute.
We also generate an `AssemblyHasScripts` assembly attribute which Godot
uses to get all the script classes in the assembly, eliminating the need
for Godot to search them. We can also avoid searching in assemblies that
don't have this attribute. This will be good for performance in the
future once we support multiple assemblies with Godot script classes.
This is an example of what the generated code looks like:
```
using Godot;
namespace Foo {
[ScriptPathAttribute("res://Player.cs")]
// Multiple partial declarations are allowed
[ScriptPathAttribute("res://Foo/Player.cs")]
partial class Player {}
}
[assembly:AssemblyHasScripts(new System.Type[] { typeof(Foo.Player) })]
```
The new attributes replace script metadata which we were generating by
determining the namespace of script classes with a very simple parser.
This fixes several issues with the old approach related to parser
errors and conditional compilation.
It also makes the task part of the MSBuild project build, rather than
a separate step executed by the Godot editor.
Makes it let's bothersome to work with builds from our
godotengine/godot-mono-builds scripts, as they write the
BCL into an output directory separate from the runtime
(which is good as two runtimes may share the same BCL).
Main benefits:
- Projects can be built offline. Previously you needed internet
access the first time building to download the packages.
- Changes to packages like Godot.NET.Sdk can be easily tested
before publishing. This was already possible but required
too many manual steps.
- First time builds are a bit faster, as the Sdk package doesn't
need to be downloaded. In practice, the package is very small
so it makes little difference.
Bumped Godot.NET.Sdk to 4.0.0-dev3 in order to enable the
recent changes regarding '.mono/' -> '.godot/mono/'.
Until https://github.com/psf/black/pull/1328 makes it in a stable release,
we have to use the latest from Git.
Apply new style fixes done by latest black.