Merge pull request #48080 from aaronfranke/real-serialization

Binary serialization for reals
This commit is contained in:
Rémi Verschelde 2021-06-20 00:33:30 +02:00 committed by GitHub
commit bbf6d645fb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 377 additions and 178 deletions

View file

@ -111,6 +111,9 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
*r_len = 4;
}
// Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded.
// Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
// This does lead to some code duplication for decoding, but compatibility is the priority.
switch (type & ENCODE_MASK) {
case Variant::NIL: {
r_variant = Variant();
@ -144,18 +147,18 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
} break;
case Variant::FLOAT: {
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
double val = decode_double(buf);
r_variant = val;
if (r_len) {
(*r_len) += 8;
(*r_len) += sizeof(double);
}
} else {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
float val = decode_float(buf);
r_variant = val;
if (r_len) {
(*r_len) += 4;
(*r_len) += sizeof(float);
}
}
@ -172,15 +175,25 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
// math types
case Variant::VECTOR2: {
ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
Vector2 val;
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[4]);
r_variant = val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
if (r_len) {
(*r_len) += 4 * 2;
if (r_len) {
(*r_len) += sizeof(double) * 2;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
if (r_len) {
(*r_len) += sizeof(float) * 2;
}
}
r_variant = val;
} break;
case Variant::VECTOR2I: {
@ -196,17 +209,29 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
} break;
case Variant::RECT2: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Rect2 val;
val.position.x = decode_float(&buf[0]);
val.position.y = decode_float(&buf[4]);
val.size.x = decode_float(&buf[8]);
val.size.y = decode_float(&buf[12]);
r_variant = val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.position.x = decode_double(&buf[0]);
val.position.y = decode_double(&buf[sizeof(double)]);
val.size.x = decode_double(&buf[sizeof(double) * 2]);
val.size.y = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += 4 * 4;
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.position.x = decode_float(&buf[0]);
val.position.y = decode_float(&buf[sizeof(float)]);
val.size.x = decode_float(&buf[sizeof(float) * 2]);
val.size.y = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::RECT2I: {
@ -224,16 +249,27 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
} break;
case Variant::VECTOR3: {
ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
Vector3 val;
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[4]);
val.z = decode_float(&buf[8]);
r_variant = val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
val.z = decode_double(&buf[sizeof(double) * 2]);
if (r_len) {
(*r_len) += 4 * 3;
if (r_len) {
(*r_len) += sizeof(double) * 3;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
val.z = decode_float(&buf[sizeof(float) * 2]);
if (r_len) {
(*r_len) += sizeof(float) * 3;
}
}
r_variant = val;
} break;
case Variant::VECTOR3I: {
@ -250,101 +286,177 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
} break;
case Variant::TRANSFORM2D: {
ERR_FAIL_COND_V(len < 4 * 6, ERR_INVALID_DATA);
Transform2D val;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
val.elements[i][j] = decode_float(&buf[(i * 2 + j) * 4]);
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
val.elements[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
}
}
if (r_len) {
(*r_len) += sizeof(double) * 6;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
val.elements[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
}
}
if (r_len) {
(*r_len) += sizeof(float) * 6;
}
}
r_variant = val;
if (r_len) {
(*r_len) += 4 * 6;
}
} break;
case Variant::PLANE: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Plane val;
val.normal.x = decode_float(&buf[0]);
val.normal.y = decode_float(&buf[4]);
val.normal.z = decode_float(&buf[8]);
val.d = decode_float(&buf[12]);
r_variant = val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.normal.x = decode_double(&buf[0]);
val.normal.y = decode_double(&buf[sizeof(double)]);
val.normal.z = decode_double(&buf[sizeof(double) * 2]);
val.d = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += 4 * 4;
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.normal.x = decode_float(&buf[0]);
val.normal.y = decode_float(&buf[sizeof(float)]);
val.normal.z = decode_float(&buf[sizeof(float) * 2]);
val.d = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::QUATERNION: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Quaternion val;
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[4]);
val.z = decode_float(&buf[8]);
val.w = decode_float(&buf[12]);
r_variant = val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
val.z = decode_double(&buf[sizeof(double) * 2]);
val.w = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += 4 * 4;
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
val.z = decode_float(&buf[sizeof(float) * 2]);
val.w = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::AABB: {
ERR_FAIL_COND_V(len < 4 * 6, ERR_INVALID_DATA);
AABB val;
val.position.x = decode_float(&buf[0]);
val.position.y = decode_float(&buf[4]);
val.position.z = decode_float(&buf[8]);
val.size.x = decode_float(&buf[12]);
val.size.y = decode_float(&buf[16]);
val.size.z = decode_float(&buf[20]);
r_variant = val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
val.position.x = decode_double(&buf[0]);
val.position.y = decode_double(&buf[sizeof(double)]);
val.position.z = decode_double(&buf[sizeof(double) * 2]);
val.size.x = decode_double(&buf[sizeof(double) * 3]);
val.size.y = decode_double(&buf[sizeof(double) * 4]);
val.size.z = decode_double(&buf[sizeof(double) * 5]);
if (r_len) {
(*r_len) += 4 * 6;
if (r_len) {
(*r_len) += sizeof(double) * 6;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
val.position.x = decode_float(&buf[0]);
val.position.y = decode_float(&buf[sizeof(float)]);
val.position.z = decode_float(&buf[sizeof(float) * 2]);
val.size.x = decode_float(&buf[sizeof(float) * 3]);
val.size.y = decode_float(&buf[sizeof(float) * 4]);
val.size.z = decode_float(&buf[sizeof(float) * 5]);
if (r_len) {
(*r_len) += sizeof(float) * 6;
}
}
r_variant = val;
} break;
case Variant::BASIS: {
ERR_FAIL_COND_V(len < 4 * 9, ERR_INVALID_DATA);
Basis val;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]);
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.elements[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
}
}
if (r_len) {
(*r_len) += sizeof(double) * 9;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.elements[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
}
}
if (r_len) {
(*r_len) += sizeof(float) * 9;
}
}
r_variant = val;
if (r_len) {
(*r_len) += 4 * 9;
}
} break;
case Variant::TRANSFORM3D: {
ERR_FAIL_COND_V(len < 4 * 12, ERR_INVALID_DATA);
Transform3D val;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]);
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.basis.elements[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
}
}
val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
if (r_len) {
(*r_len) += sizeof(double) * 12;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
}
}
val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
if (r_len) {
(*r_len) += sizeof(float) * 12;
}
}
val.origin[0] = decode_float(&buf[36]);
val.origin[1] = decode_float(&buf[40]);
val.origin[2] = decode_float(&buf[44]);
r_variant = val;
if (r_len) {
(*r_len) += 4 * 12;
}
} break;
// misc types
case Variant::COLOR: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
@ -356,9 +468,8 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
r_variant = val;
if (r_len) {
(*r_len) += 4 * 4;
(*r_len) += 4 * 4; // Colors should always be in single-precision.
}
} break;
case Variant::STRING_NAME: {
String str;
@ -463,7 +574,7 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4;
(*r_len) += 4; // Size of count number.
}
for (int i = 0; i < count; i++) {
@ -516,7 +627,7 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
len -= 4;
if (r_len) {
(*r_len) += 4;
(*r_len) += 4; // Size of count number.
}
Dictionary d;
@ -559,7 +670,7 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
len -= 4;
if (r_len) {
(*r_len) += 4;
(*r_len) += 4; // Size of count number.
}
Array varr;
@ -716,9 +827,8 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
len -= 4;
if (r_len) {
(*r_len) += 4;
(*r_len) += 4; // Size of count number.
}
//printf("string count: %i\n",count);
for (int32_t i = 0; i < count; i++) {
String str;
@ -739,30 +849,57 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4 * 2, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 * 2 > len, ERR_INVALID_DATA);
Vector<Vector2> varray;
if (r_len) {
(*r_len) += 4;
}
if (count) {
varray.resize(count);
Vector2 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * 4 * 2 + 4 * 0);
w[i].y = decode_float(buf + i * 4 * 2 + 4 * 1);
}
int adv = 4 * 2 * count;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += adv;
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector2 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
}
int adv = sizeof(double) * 2 * count;
if (r_len) {
(*r_len) += adv;
}
len -= adv;
buf += adv;
}
} else {
ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector2 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
}
int adv = sizeof(float) * 2 * count;
if (r_len) {
(*r_len) += adv;
}
}
}
r_variant = varray;
} break;
@ -772,32 +909,61 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4 * 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 * 3 > len, ERR_INVALID_DATA);
Vector<Vector3> varray;
if (r_len) {
(*r_len) += 4;
}
if (count) {
varray.resize(count);
Vector3 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * 4 * 3 + 4 * 0);
w[i].y = decode_float(buf + i * 4 * 3 + 4 * 1);
w[i].z = decode_float(buf + i * 4 * 3 + 4 * 2);
}
int adv = 4 * 3 * count;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += adv;
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector3 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
}
int adv = sizeof(double) * 3 * count;
if (r_len) {
(*r_len) += adv;
}
len -= adv;
buf += adv;
}
} else {
ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector3 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
}
int adv = sizeof(float) * 3 * count;
if (r_len) {
(*r_len) += adv;
}
len -= adv;
buf += adv;
}
}
r_variant = varray;
} break;
@ -813,7 +979,7 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
Vector<Color> carray;
if (r_len) {
(*r_len) += 4;
(*r_len) += 4; // Size of count number.
}
if (count) {
@ -821,6 +987,7 @@ Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int
Color *w = carray.ptrw();
for (int32_t i = 0; i < count; i++) {
// Colors should always be in single-precision.
w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
@ -882,7 +1049,7 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
double d = p_variant;
float f = d;
if (double(f) != d) {
flags |= ENCODE_FLAG_64; //always encode real as double
flags |= ENCODE_FLAG_64;
}
} break;
case Variant::OBJECT: {
@ -1013,11 +1180,11 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
case Variant::VECTOR2: {
if (buf) {
Vector2 v2 = p_variant;
encode_float(v2.x, &buf[0]);
encode_float(v2.y, &buf[4]);
encode_real(v2.x, &buf[0]);
encode_real(v2.y, &buf[sizeof(real_t)]);
}
r_len += 2 * 4;
r_len += 2 * sizeof(real_t);
} break;
case Variant::VECTOR2I: {
@ -1033,12 +1200,12 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
case Variant::RECT2: {
if (buf) {
Rect2 r2 = p_variant;
encode_float(r2.position.x, &buf[0]);
encode_float(r2.position.y, &buf[4]);
encode_float(r2.size.x, &buf[8]);
encode_float(r2.size.y, &buf[12]);
encode_real(r2.position.x, &buf[0]);
encode_real(r2.position.y, &buf[sizeof(real_t)]);
encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * 4;
r_len += 4 * sizeof(real_t);
} break;
case Variant::RECT2I: {
@ -1055,12 +1222,12 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
case Variant::VECTOR3: {
if (buf) {
Vector3 v3 = p_variant;
encode_float(v3.x, &buf[0]);
encode_float(v3.y, &buf[4]);
encode_float(v3.z, &buf[8]);
encode_real(v3.x, &buf[0]);
encode_real(v3.y, &buf[sizeof(real_t)]);
encode_real(v3.z, &buf[sizeof(real_t) * 2]);
}
r_len += 3 * 4;
r_len += 3 * sizeof(real_t);
} break;
case Variant::VECTOR3I: {
@ -1079,50 +1246,50 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
Transform2D val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
memcpy(&buf[(i * 2 + j) * 4], &val.elements[i][j], sizeof(float));
memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.elements[i][j], sizeof(real_t));
}
}
}
r_len += 6 * 4;
r_len += 6 * sizeof(real_t);
} break;
case Variant::PLANE: {
if (buf) {
Plane p = p_variant;
encode_float(p.normal.x, &buf[0]);
encode_float(p.normal.y, &buf[4]);
encode_float(p.normal.z, &buf[8]);
encode_float(p.d, &buf[12]);
encode_real(p.normal.x, &buf[0]);
encode_real(p.normal.y, &buf[sizeof(real_t)]);
encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
encode_real(p.d, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * 4;
r_len += 4 * sizeof(real_t);
} break;
case Variant::QUATERNION: {
if (buf) {
Quaternion q = p_variant;
encode_float(q.x, &buf[0]);
encode_float(q.y, &buf[4]);
encode_float(q.z, &buf[8]);
encode_float(q.w, &buf[12]);
encode_real(q.x, &buf[0]);
encode_real(q.y, &buf[sizeof(real_t)]);
encode_real(q.z, &buf[sizeof(real_t) * 2]);
encode_real(q.w, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * 4;
r_len += 4 * sizeof(real_t);
} break;
case Variant::AABB: {
if (buf) {
AABB aabb = p_variant;
encode_float(aabb.position.x, &buf[0]);
encode_float(aabb.position.y, &buf[4]);
encode_float(aabb.position.z, &buf[8]);
encode_float(aabb.size.x, &buf[12]);
encode_float(aabb.size.y, &buf[16]);
encode_float(aabb.size.z, &buf[20]);
encode_real(aabb.position.x, &buf[0]);
encode_real(aabb.position.y, &buf[sizeof(real_t)]);
encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
}
r_len += 6 * 4;
r_len += 6 * sizeof(real_t);
} break;
case Variant::BASIS: {
@ -1130,12 +1297,12 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
Basis val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
memcpy(&buf[(i * 3 + j) * 4], &val.elements[i][j], sizeof(float));
memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.elements[i][j], sizeof(real_t));
}
}
}
r_len += 9 * 4;
r_len += 9 * sizeof(real_t);
} break;
case Variant::TRANSFORM3D: {
@ -1143,16 +1310,16 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
Transform3D val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
memcpy(&buf[(i * 3 + j) * 4], &val.basis.elements[i][j], sizeof(float));
memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.elements[i][j], sizeof(real_t));
}
}
encode_float(val.origin.x, &buf[36]);
encode_float(val.origin.y, &buf[40]);
encode_float(val.origin.z, &buf[44]);
encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
}
r_len += 12 * 4;
r_len += 12 * sizeof(real_t);
} break;
@ -1166,7 +1333,7 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
encode_float(c.a, &buf[12]);
}
r_len += 4 * 4;
r_len += 4 * 4; // Colors should always be in single-precision.
} break;
case Variant::RID: {
@ -1441,13 +1608,13 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
for (int i = 0; i < len; i++) {
Vector2 v = data.get(i);
encode_float(v.x, &buf[0]);
encode_float(v.y, &buf[4]);
buf += 4 * 2;
encode_real(v.x, &buf[0]);
encode_real(v.y, &buf[sizeof(real_t)]);
buf += sizeof(real_t) * 2;
}
}
r_len += 4 * 2 * len;
r_len += sizeof(real_t) * 2 * len;
} break;
case Variant::PACKED_VECTOR3_ARRAY: {
@ -1465,14 +1632,14 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
for (int i = 0; i < len; i++) {
Vector3 v = data.get(i);
encode_float(v.x, &buf[0]);
encode_float(v.y, &buf[4]);
encode_float(v.z, &buf[8]);
buf += 4 * 3;
encode_real(v.x, &buf[0]);
encode_real(v.y, &buf[sizeof(real_t)]);
encode_real(v.z, &buf[sizeof(real_t) * 2]);
buf += sizeof(real_t) * 3;
}
}
r_len += 4 * 3 * len;
r_len += sizeof(real_t) * 3 * len;
} break;
case Variant::PACKED_COLOR_ARRAY: {
@ -1494,7 +1661,7 @@ Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bo
encode_float(c.g, &buf[4]);
encode_float(c.b, &buf[8]);
encode_float(c.a, &buf[12]);
buf += 4 * 4;
buf += 4 * 4; // Colors should always be in single-precision.
}
}

View file

@ -31,10 +31,18 @@
#ifndef MARSHALLS_H
#define MARSHALLS_H
#include "core/math/math_defs.h"
#include "core/object/ref_counted.h"
#include "core/typedefs.h"
#include "core/variant/variant.h"
// uintr_t is only for pairing with real_t, and we only need it in here.
#ifdef REAL_T_IS_DOUBLE
typedef uint64_t uintr_t;
#else
typedef uint32_t uintr_t;
#endif
/**
* Miscellaneous helpers for marshalling data types, and encoding
* in an endian independent way
@ -50,6 +58,12 @@ union MarshallDouble {
double d; ///< double
};
// Behaves like one of the above, depending on compilation setting.
union MarshallReal {
uintr_t i;
real_t r;
};
static inline unsigned int encode_uint16(uint16_t p_uint, uint8_t *p_arr) {
for (int i = 0; i < 2; i++) {
*p_arr = p_uint & 0xFF;
@ -96,6 +110,24 @@ static inline unsigned int encode_double(double p_double, uint8_t *p_arr) {
return sizeof(uint64_t);
}
static inline unsigned int encode_uintr(uintr_t p_uint, uint8_t *p_arr) {
for (size_t i = 0; i < sizeof(uintr_t); i++) {
*p_arr = p_uint & 0xFF;
p_arr++;
p_uint >>= 8;
}
return sizeof(uintr_t);
}
static inline unsigned int encode_real(real_t p_real, uint8_t *p_arr) {
MarshallReal mr;
mr.r = p_real;
encode_uintr(mr.i, p_arr);
return sizeof(uintr_t);
}
static inline int encode_cstring(const char *p_string, uint8_t *p_data) {
int len = 0;