From 8b983bddfbf20d782cfee41d8f160ec1394f9b0f Mon Sep 17 00:00:00 2001 From: Marcel Admiraal Date: Sun, 24 Jan 2021 07:58:32 +0000 Subject: [PATCH] Remove Quat set methods in favour of constructors --- core/math/quat.cpp | 107 +++++++++++++-------------------- core/math/quat.h | 19 ++---- core/variant/variant_call.cpp | 4 -- modules/gltf/gltf_document.cpp | 7 +-- 4 files changed, 50 insertions(+), 87 deletions(-) diff --git a/core/math/quat.cpp b/core/math/quat.cpp index 4cecc20fefb9..a9a21a1ba3c3 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -33,32 +33,6 @@ #include "core/math/basis.h" #include "core/string/print_string.h" -// set_euler_xyz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -void Quat::set_euler_xyz(const Vector3 &p_euler) { - real_t half_a1 = p_euler.x * 0.5; - real_t half_a2 = p_euler.y * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = X(a1).Y(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = Math::cos(half_a1); - real_t sin_a1 = Math::sin(half_a1); - real_t cos_a2 = Math::cos(half_a2); - real_t sin_a2 = Math::sin(half_a2); - real_t cos_a3 = Math::cos(half_a3); - real_t sin_a3 = Math::sin(half_a3); - - set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, - -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, - sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, - -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); -} - // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. @@ -68,32 +42,6 @@ Vector3 Quat::get_euler_xyz() const { return m.get_euler_xyz(); } -// set_euler_yxz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -void Quat::set_euler_yxz(const Vector3 &p_euler) { - real_t half_a1 = p_euler.y * 0.5; - real_t half_a2 = p_euler.x * 0.5; - real_t half_a3 = p_euler.z * 0.5; - - // R = Y(a1).X(a2).Z(a3) convention for Euler angles. - // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) - // a3 is the angle of the first rotation, following the notation in this reference. - - real_t cos_a1 = Math::cos(half_a1); - real_t sin_a1 = Math::sin(half_a1); - real_t cos_a2 = Math::cos(half_a2); - real_t sin_a2 = Math::sin(half_a2); - real_t cos_a3 = Math::cos(half_a3); - real_t sin_a3 = Math::sin(half_a3); - - set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, - sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, - -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, - sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); -} - // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. @@ -107,10 +55,10 @@ Vector3 Quat::get_euler_yxz() const { } void Quat::operator*=(const Quat &p_q) { - set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y, - w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z, - w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x, - w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z); + x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; + y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; + z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; + w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; } Quat Quat::operator*(const Quat &p_q) const { @@ -233,18 +181,49 @@ Quat::operator String() const { return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); } -void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) { +Quat::Quat(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS - ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized."); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif - real_t d = axis.length(); + real_t d = p_axis.length(); if (d == 0) { - set(0, 0, 0, 0); + x = 0; + y = 0; + z = 0; + w = 0; } else { - real_t sin_angle = Math::sin(angle * 0.5); - real_t cos_angle = Math::cos(angle * 0.5); + real_t sin_angle = Math::sin(p_angle * 0.5); + real_t cos_angle = Math::cos(p_angle * 0.5); real_t s = sin_angle / d; - set(axis.x * s, axis.y * s, axis.z * s, - cos_angle); + x = p_axis.x * s; + y = p_axis.y * s; + z = p_axis.z * s; + w = cos_angle; } } + +// Euler constructor expects a vector containing the Euler angles in the format +// (ax, ay, az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses YXZ convention (Z is the first rotation). +Quat::Quat(const Vector3 &p_euler) { + real_t half_a1 = p_euler.y * 0.5; + real_t half_a2 = p_euler.x * 0.5; + real_t half_a3 = p_euler.z * 0.5; + + // R = Y(a1).X(a2).Z(a3) convention for Euler angles. + // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) + // a3 is the angle of the first rotation, following the notation in this reference. + + real_t cos_a1 = Math::cos(half_a1); + real_t sin_a1 = Math::sin(half_a1); + real_t cos_a2 = Math::cos(half_a2); + real_t sin_a2 = Math::sin(half_a2); + real_t cos_a3 = Math::cos(half_a3); + real_t sin_a3 = Math::sin(half_a3); + + x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; + y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; + z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; + w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; +} diff --git a/core/math/quat.h b/core/math/quat.h index 423a7f8dfe06..9db914fe52af 100644 --- a/core/math/quat.h +++ b/core/math/quat.h @@ -65,19 +65,14 @@ public: Quat inverse() const; _FORCE_INLINE_ real_t dot(const Quat &p_q) const; - void set_euler_xyz(const Vector3 &p_euler); Vector3 get_euler_xyz() const; - void set_euler_yxz(const Vector3 &p_euler); Vector3 get_euler_yxz() const; - - void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }; Vector3 get_euler() const { return get_euler_yxz(); }; Quat slerp(const Quat &p_to, const real_t &p_weight) const; Quat slerpni(const Quat &p_to, const real_t &p_weight) const; Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const; - void set_axis_angle(const Vector3 &axis, const real_t &angle); _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); @@ -124,23 +119,19 @@ public: operator String() const; - inline void set(real_t p_x, real_t p_y, real_t p_z, real_t p_w) { - x = p_x; - y = p_y; - z = p_z; - w = p_w; - } - _FORCE_INLINE_ Quat() {} + _FORCE_INLINE_ Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : x(p_x), y(p_y), z(p_z), w(p_w) { } - Quat(const Vector3 &axis, const real_t &angle) { set_axis_angle(axis, angle); } - Quat(const Vector3 &euler) { set_euler(euler); } + Quat(const Vector3 &p_axis, real_t p_angle); + + Quat(const Vector3 &p_euler); + Quat(const Quat &p_q) : x(p_q.x), y(p_q.y), diff --git a/core/variant/variant_call.cpp b/core/variant/variant_call.cpp index 85e3b2927944..6ff7602b4e05 100644 --- a/core/variant/variant_call.cpp +++ b/core/variant/variant_call.cpp @@ -1126,10 +1126,6 @@ static void _register_variant_builtin_methods() { bind_method(Quat, cubic_slerp, sarray("b", "pre_a", "post_b", "weight"), varray()); bind_method(Quat, get_euler, sarray(), varray()); - // FIXME: Quat is atomic, this should be done via construcror - //ADDFUNC1(QUAT, NIL, Quat, set_euler, VECTOR3, "euler", varray()); - //ADDFUNC2(QUAT, NIL, Quat, set_axis_angle, VECTOR3, "axis", FLOAT, "angle", varray()); - /* Color */ bind_method(Color, to_argb32, sarray(), varray()); diff --git a/modules/gltf/gltf_document.cpp b/modules/gltf/gltf_document.cpp index d07d4d603c2d..1c97bbfb86b0 100644 --- a/modules/gltf/gltf_document.cpp +++ b/modules/gltf/gltf_document.cpp @@ -5287,8 +5287,7 @@ void GLTFDocument::_convert_mult_mesh_instance_to_gltf(Node *p_scene_parent, con transform.origin = Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y); real_t rotation = xform_2d.get_rotation(); - Quat quat; - quat.set_axis_angle(Vector3(0, 1, 0), rotation); + Quat quat(Vector3(0, 1, 0), rotation); Size2 scale = xform_2d.get_scale(); transform.basis.set_quat_scale(quat, Vector3(scale.x, 0, scale.y)); @@ -6040,14 +6039,12 @@ GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref state p_track.rotation_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { - Quat rotation; Vector3 rotation_degrees = p_animation->track_get_key_value(p_track_i, key_i); Vector3 rotation_radian; rotation_radian.x = Math::deg2rad(rotation_degrees.x); rotation_radian.y = Math::deg2rad(rotation_degrees.y); rotation_radian.z = Math::deg2rad(rotation_degrees.z); - rotation.set_euler(rotation_radian); - p_track.rotation_track.values.write[key_i] = rotation; + p_track.rotation_track.values.write[key_i] = Quat(rotation_radian); } } else if (path.find(":scale") != -1) { p_track.scale_track.times = times;