Merge pull request #80329 from xiongyaohua/path3d_tilt_gizmo

Add handles to control Curve3D tilt
This commit is contained in:
Rémi Verschelde 2023-08-17 12:29:55 +02:00
commit 446dfdbd87
No known key found for this signature in database
GPG key ID: C3336907360768E1
4 changed files with 340 additions and 153 deletions

View file

@ -40,39 +40,29 @@
#include "scene/gui/menu_button.h"
#include "scene/resources/curve.h"
static bool _is_in_handle(int p_id, int p_num_points) {
int t = (p_id + 1) % 2;
int idx = (p_id + 1) / 2;
// order of points is [out_0, out_1, in_1, out_2, in_2, ... out_n-1, in_n-1, in_n]
if (idx == 0) {
return false;
} else if (idx == (p_num_points - 1)) {
return true;
} else {
return (t == 1);
}
}
String Path3DGizmo::get_handle_name(int p_id, bool p_secondary) const {
Ref<Curve3D> c = path->get_curve();
if (c.is_null()) {
return "";
}
// Primary handles: position.
if (!p_secondary) {
return TTR("Curve Point #") + itos(p_id);
}
// (p_id + 1) Accounts for the first point only having an "out" handle
int idx = (p_id + 1) / 2;
String n = TTR("Curve Point #") + itos(idx);
if (_is_in_handle(p_id, c->get_point_count())) {
n += " In";
} else {
n += " Out";
// Secondary handles: in, out, tilt.
const HandleInfo info = _secondary_handles_info[p_id];
switch (info.type) {
case HandleType::HANDLE_TYPE_IN:
return TTR("Handle In #") + itos(info.point_idx);
case HandleType::HANDLE_TYPE_OUT:
return TTR("Handle Out #") + itos(info.point_idx);
case HandleType::HANDLE_TYPE_TILT:
return TTR("Handle Tilt #") + itos(info.point_idx);
}
return n;
return "";
}
Variant Path3DGizmo::get_handle_value(int p_id, bool p_secondary) const {
@ -81,23 +71,27 @@ Variant Path3DGizmo::get_handle_value(int p_id, bool p_secondary) const {
return Variant();
}
// Primary handles: position.
if (!p_secondary) {
original = c->get_point_position(p_id);
return original;
}
// (p_id + 1) Accounts for the first point only having an "out" handle
int idx = (p_id + 1) / 2;
// Secondary handles: in, out, tilt.
const HandleInfo info = _secondary_handles_info[p_id];
Vector3 ofs;
if (_is_in_handle(p_id, c->get_point_count())) {
ofs = c->get_point_in(idx);
} else {
ofs = c->get_point_out(idx);
switch (info.type) {
case HandleType::HANDLE_TYPE_TILT:
return c->get_point_tilt(info.point_idx);
case HandleType::HANDLE_TYPE_IN:
ofs = c->get_point_in(info.point_idx);
break;
case HandleType::HANDLE_TYPE_OUT:
ofs = c->get_point_out(info.point_idx);
break;
}
original = ofs + c->get_point_position(idx);
original = ofs + c->get_point_position(info.point_idx);
return ofs;
}
@ -107,17 +101,17 @@ void Path3DGizmo::set_handle(int p_id, bool p_secondary, Camera3D *p_camera, con
return;
}
Transform3D gt = path->get_global_transform();
Transform3D gi = gt.affine_inverse();
Vector3 ray_from = p_camera->project_ray_origin(p_point);
Vector3 ray_dir = p_camera->project_ray_normal(p_point);
const Transform3D gt = path->get_global_transform();
const Transform3D gi = gt.affine_inverse();
const Vector3 ray_from = p_camera->project_ray_origin(p_point);
const Vector3 ray_dir = p_camera->project_ray_normal(p_point);
const Plane p = Plane(p_camera->get_transform().basis.get_column(2), gt.xform(original));
// Setting curve point positions
// Primary handles: position.
if (!p_secondary) {
const Plane p = Plane(p_camera->get_transform().basis.get_column(2), gt.xform(original));
Vector3 inters;
// Special cas for primary handle, the handle id equals control point id.
const int idx = p_id;
if (p.intersects_ray(ray_from, ray_dir, &inters)) {
if (Node3DEditor::get_singleton()->is_snap_enabled()) {
float snap = Node3DEditor::get_singleton()->get_translate_snap();
@ -125,45 +119,74 @@ void Path3DGizmo::set_handle(int p_id, bool p_secondary, Camera3D *p_camera, con
}
Vector3 local = gi.xform(inters);
c->set_point_position(p_id, local);
c->set_point_position(idx, local);
}
return;
}
// (p_id + 1) Accounts for the first point only having an "out" handle
int idx = (p_id + 1) / 2;
// Secondary handles: in, out, tilt.
const HandleInfo info = _secondary_handles_info[p_id];
switch (info.type) {
case HandleType::HANDLE_TYPE_OUT:
case HandleType::HANDLE_TYPE_IN: {
const int idx = info.point_idx;
const Vector3 base = c->get_point_position(idx);
Vector3 base = c->get_point_position(idx);
Vector3 inters;
if (p.intersects_ray(ray_from, ray_dir, &inters)) {
if (!Path3DEditorPlugin::singleton->is_handle_clicked()) {
orig_in_length = c->get_point_in(idx).length();
orig_out_length = c->get_point_out(idx).length();
Path3DEditorPlugin::singleton->set_handle_clicked(true);
}
Plane p(p_camera->get_transform().basis.get_column(2), gt.xform(original));
Vector3 local = gi.xform(inters) - base;
if (Node3DEditor::get_singleton()->is_snap_enabled()) {
float snap = Node3DEditor::get_singleton()->get_translate_snap();
local.snap(Vector3(snap, snap, snap));
}
Vector3 inters;
// Setting curve in/out positions
if (p.intersects_ray(ray_from, ray_dir, &inters)) {
if (!Path3DEditorPlugin::singleton->is_handle_clicked()) {
orig_in_length = c->get_point_in(idx).length();
orig_out_length = c->get_point_out(idx).length();
Path3DEditorPlugin::singleton->set_handle_clicked(true);
}
Vector3 local = gi.xform(inters) - base;
if (Node3DEditor::get_singleton()->is_snap_enabled()) {
float snap = Node3DEditor::get_singleton()->get_translate_snap();
local.snap(Vector3(snap, snap, snap));
}
if (_is_in_handle(p_id, c->get_point_count())) {
c->set_point_in(idx, local);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
c->set_point_out(idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -local : (-local.normalized() * orig_out_length));
if (info.type == HandleType::HANDLE_TYPE_IN) {
c->set_point_in(idx, local);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
c->set_point_out(idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -local : (-local.normalized() * orig_out_length));
}
} else {
c->set_point_out(idx, local);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
c->set_point_in(idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -local : (-local.normalized() * orig_in_length));
}
}
}
} else {
c->set_point_out(idx, local);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
c->set_point_in(idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -local : (-local.normalized() * orig_in_length));
break;
}
case HandleType::HANDLE_TYPE_TILT: {
const int idx = info.point_idx;
const Vector3 position = c->get_point_position(idx);
const Basis posture = c->get_point_baked_posture(idx);
const Vector3 tangent = -posture.get_column(2);
const Vector3 up = posture.get_column(1);
const Plane p_tilt = Plane(tangent, position);
Vector3 intersection;
if (p_tilt.intersects_ray(ray_from, ray_dir, &intersection)) {
Vector3 direction = intersection - position;
direction.normalize(); // FIXME: redundant?
real_t tilt_angle = up.signed_angle_to(direction, tangent);
if (Node3DEditor::get_singleton()->is_snap_enabled()) {
real_t snap = Node3DEditor::get_singleton()->get_rotate_snap();
tilt_angle = Math::rad_to_deg(tilt_angle) + snap * 0.5; // Else it won't reach +180.
tilt_angle -= Math::fmod(tilt_angle, snap);
tilt_angle = Math::deg_to_rad(tilt_angle);
}
c->set_point_tilt(idx, tilt_angle);
}
break;
}
}
}
@ -176,54 +199,72 @@ void Path3DGizmo::commit_handle(int p_id, bool p_secondary, const Variant &p_res
EditorUndoRedoManager *ur = EditorUndoRedoManager::get_singleton();
// Primary handles: position.
if (!p_secondary) {
// Special cas for primary handle, the handle id equals control point id.
const int idx = p_id;
if (p_cancel) {
c->set_point_position(p_id, p_restore);
c->set_point_position(idx, p_restore);
return;
}
ur->create_action(TTR("Set Curve Point Position"));
ur->add_do_method(c.ptr(), "set_point_position", p_id, c->get_point_position(p_id));
ur->add_undo_method(c.ptr(), "set_point_position", p_id, p_restore);
ur->add_do_method(c.ptr(), "set_point_position", idx, c->get_point_position(idx));
ur->add_undo_method(c.ptr(), "set_point_position", idx, p_restore);
ur->commit_action();
return;
}
// (p_id + 1) Accounts for the first point only having an "out" handle
int idx = (p_id + 1) / 2;
// Secondary handles: in, out, tilt.
const HandleInfo info = _secondary_handles_info[p_id];
const int idx = info.point_idx;
switch (info.type) {
case HandleType::HANDLE_TYPE_OUT: {
if (p_cancel) {
c->set_point_out(idx, p_restore);
if (_is_in_handle(p_id, c->get_point_count())) {
if (p_cancel) {
c->set_point_in(p_id, p_restore);
return;
return;
}
ur->create_action(TTR("Set Curve Out Position"));
ur->add_do_method(c.ptr(), "set_point_out", idx, c->get_point_out(idx));
ur->add_undo_method(c.ptr(), "set_point_out", idx, p_restore);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
ur->add_do_method(c.ptr(), "set_point_in", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -c->get_point_out(idx) : (-c->get_point_out(idx).normalized() * orig_in_length));
ur->add_undo_method(c.ptr(), "set_point_in", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -static_cast<Vector3>(p_restore) : (-static_cast<Vector3>(p_restore).normalized() * orig_in_length));
}
ur->commit_action();
break;
}
case HandleType::HANDLE_TYPE_IN: {
if (p_cancel) {
c->set_point_in(idx, p_restore);
return;
}
ur->create_action(TTR("Set Curve In Position"));
ur->add_do_method(c.ptr(), "set_point_in", idx, c->get_point_in(idx));
ur->add_undo_method(c.ptr(), "set_point_in", idx, p_restore);
ur->create_action(TTR("Set Curve In Position"));
ur->add_do_method(c.ptr(), "set_point_in", idx, c->get_point_in(idx));
ur->add_undo_method(c.ptr(), "set_point_in", idx, p_restore);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
ur->add_do_method(c.ptr(), "set_point_out", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -c->get_point_in(idx) : (-c->get_point_in(idx).normalized() * orig_out_length));
ur->add_undo_method(c.ptr(), "set_point_out", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -static_cast<Vector3>(p_restore) : (-static_cast<Vector3>(p_restore).normalized() * orig_out_length));
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
ur->add_do_method(c.ptr(), "set_point_out", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -c->get_point_in(idx) : (-c->get_point_in(idx).normalized() * orig_out_length));
ur->add_undo_method(c.ptr(), "set_point_out", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -static_cast<Vector3>(p_restore) : (-static_cast<Vector3>(p_restore).normalized() * orig_out_length));
}
ur->commit_action();
break;
}
ur->commit_action();
} else {
if (p_cancel) {
c->set_point_out(idx, p_restore);
return;
case HandleType::HANDLE_TYPE_TILT: {
if (p_cancel) {
c->set_point_tilt(idx, p_restore);
return;
}
ur->create_action(TTR("Set Curve Point Tilt"));
ur->add_do_method(c.ptr(), "set_point_tilt", idx, c->get_point_tilt(idx));
ur->add_undo_method(c.ptr(), "set_point_tilt", idx, p_restore);
ur->commit_action();
break;
}
ur->create_action(TTR("Set Curve Out Position"));
ur->add_do_method(c.ptr(), "set_point_out", idx, c->get_point_out(idx));
ur->add_undo_method(c.ptr(), "set_point_out", idx, p_restore);
if (Path3DEditorPlugin::singleton->mirror_angle_enabled()) {
ur->add_do_method(c.ptr(), "set_point_in", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -c->get_point_out(idx) : (-c->get_point_out(idx).normalized() * orig_in_length));
ur->add_undo_method(c.ptr(), "set_point_in", idx, Path3DEditorPlugin::singleton->mirror_length_enabled() ? -static_cast<Vector3>(p_restore) : (-static_cast<Vector3>(p_restore).normalized() * orig_in_length));
}
ur->commit_action();
}
}
@ -260,60 +301,126 @@ void Path3DGizmo::redraw() {
}
const Transform3D *r = frames.ptr();
Vector<Vector3> v3p;
for (int i = 0; i < sample_count - 1; i++) {
Vector<Vector3> _collision_segments;
Vector<Vector3> bones;
Vector<Vector3> ribbon;
for (int i = 0; i < sample_count; i++) {
const Vector3 p1 = r[i].origin;
const Vector3 p2 = r[i + 1].origin;
const Vector3 side = r[i].basis.get_column(0);
const Vector3 up = r[i].basis.get_column(1);
const Vector3 forward = r[i].basis.get_column(2);
// Curve segment.
v3p.push_back(p1);
v3p.push_back(p2);
// Collision segments.
if (i != sample_count) {
const Vector3 p2 = r[i + 1].origin;
_collision_segments.push_back(p1);
_collision_segments.push_back(p2);
}
// Path3D as a ribbon.
ribbon.push_back(p1);
// Fish Bone.
v3p.push_back(p1);
v3p.push_back(p1 + (side + forward + up * 0.3) * 0.06);
const Vector3 p_left = p1 + (side + forward - up * 0.3) * 0.06;
const Vector3 p_right = p1 + (-side + forward - up * 0.3) * 0.06;
bones.push_back(p1);
bones.push_back(p_left);
v3p.push_back(p1);
v3p.push_back(p1 + (-side + forward + up * 0.3) * 0.06);
bones.push_back(p1);
bones.push_back(p_right);
}
add_lines(v3p, path_material);
add_collision_segments(v3p);
add_collision_segments(_collision_segments);
add_lines(bones, path_material);
add_vertices(ribbon, path_material, Mesh::PRIMITIVE_LINE_STRIP);
}
// 2. Draw handles.
// 2. Draw handles when selected.
if (Path3DEditorPlugin::singleton->get_edited_path() == path) {
Vector<Vector3> v3p;
Vector<Vector3> handle_points;
Vector<Vector3> sec_handle_points;
PackedVector3Array handle_lines;
PackedVector3Array primary_handle_points;
PackedVector3Array secondary_handle_points;
PackedInt32Array collected_secondary_handle_ids; // Avoid shadowing member on Node3DEditorGizmo.
for (int i = 0; i < c->get_point_count(); i++) {
Vector3 p = c->get_point_position(i);
handle_points.push_back(p);
// Push out points first so they get selected if the In and Out points are on top of each other.
if (i < c->get_point_count() - 1) {
v3p.push_back(p);
v3p.push_back(p + c->get_point_out(i));
sec_handle_points.push_back(p + c->get_point_out(i));
_secondary_handles_info.resize(c->get_point_count() * 3);
for (int idx = 0; idx < c->get_point_count(); idx++) {
// Collect primary-handles.
const Vector3 pos = c->get_point_position(idx);
primary_handle_points.append(pos);
HandleInfo info;
info.point_idx = idx;
// Collect in-handles except for the first point.
if (idx > 0) {
info.type = HandleType::HANDLE_TYPE_IN;
const int handle_idx = idx * 3 + 0;
collected_secondary_handle_ids.append(handle_idx);
_secondary_handles_info.write[handle_idx] = info;
const Vector3 in = c->get_point_in(idx);
secondary_handle_points.append(pos + in);
handle_lines.append(pos);
handle_lines.append(pos + in);
}
if (i > 0) {
v3p.push_back(p);
v3p.push_back(p + c->get_point_in(i));
sec_handle_points.push_back(p + c->get_point_in(i));
// Collect out-handles except for the last point.
if (idx < c->get_point_count()) {
info.type = HandleType::HANDLE_TYPE_OUT;
const int handle_idx = idx * 3 + 1;
collected_secondary_handle_ids.append(handle_idx);
_secondary_handles_info.write[handle_idx] = info;
const Vector3 out = c->get_point_out(idx);
secondary_handle_points.append(pos + out);
handle_lines.append(pos);
handle_lines.append(pos + out);
}
// Collect tilt-handles.
{
{
info.type = HandleType::HANDLE_TYPE_TILT;
const int handle_idx = idx * 3 + 2;
collected_secondary_handle_ids.append(handle_idx);
_secondary_handles_info.write[handle_idx] = info;
const Basis posture = c->get_point_baked_posture(idx, true);
const Vector3 up = posture.get_column(1);
secondary_handle_points.append(pos + up);
handle_lines.append(pos);
handle_lines.append(pos + up);
}
// Tilt disk.
{
const Basis posture = c->get_point_baked_posture(idx, false);
const Vector3 up = posture.get_column(1);
const Vector3 side = posture.get_column(0);
PackedVector3Array disk;
disk.append(pos);
const int n = 24;
for (int i = 0; i <= n; i++) {
const float a = Math_TAU * i / n;
const Vector3 edge = sin(a) * side + cos(a) * up;
disk.append(pos + edge);
}
add_vertices(disk, path_material, Mesh::PRIMITIVE_LINE_STRIP);
}
}
}
if (v3p.size() > 1) {
add_lines(v3p, path_thin_material);
if (handle_lines.size() > 1) {
add_lines(handle_lines, path_thin_material);
}
if (handle_points.size()) {
add_handles(handle_points, handles_material);
if (primary_handle_points.size()) {
add_handles(primary_handle_points, handles_material);
}
if (sec_handle_points.size()) {
add_handles(sec_handle_points, sec_handles_material, Vector<int>(), false, true);
if (secondary_handle_points.size()) {
add_handles(secondary_handle_points, sec_handles_material, collected_secondary_handle_ids, false, true);
}
}
}
@ -447,6 +554,7 @@ EditorPlugin::AfterGUIInput Path3DEditorPlugin::forward_3d_gui_input(Camera3D *p
real_t dist_to_p = p_camera->unproject_position(gt.xform(c->get_point_position(i))).distance_to(mbpos);
real_t dist_to_p_out = p_camera->unproject_position(gt.xform(c->get_point_position(i) + c->get_point_out(i))).distance_to(mbpos);
real_t dist_to_p_in = p_camera->unproject_position(gt.xform(c->get_point_position(i) + c->get_point_in(i))).distance_to(mbpos);
real_t dist_to_p_up = p_camera->unproject_position(gt.xform(c->get_point_position(i) + c->get_point_baked_posture(i, true).get_column(1))).distance_to(mbpos);
// Find the offset and point index of the place to break up.
// Also check for the control points.
@ -459,18 +567,25 @@ EditorPlugin::AfterGUIInput Path3DEditorPlugin::forward_3d_gui_input(Camera3D *p
return EditorPlugin::AFTER_GUI_INPUT_STOP;
} else if (dist_to_p_out < click_dist) {
EditorUndoRedoManager *ur = EditorUndoRedoManager::get_singleton();
ur->create_action(TTR("Remove Out-Control Point"));
ur->create_action(TTR("Reset Out-Control Point"));
ur->add_do_method(c.ptr(), "set_point_out", i, Vector3());
ur->add_undo_method(c.ptr(), "set_point_out", i, c->get_point_out(i));
ur->commit_action();
return EditorPlugin::AFTER_GUI_INPUT_STOP;
} else if (dist_to_p_in < click_dist) {
EditorUndoRedoManager *ur = EditorUndoRedoManager::get_singleton();
ur->create_action(TTR("Remove In-Control Point"));
ur->create_action(TTR("Reset In-Control Point"));
ur->add_do_method(c.ptr(), "set_point_in", i, Vector3());
ur->add_undo_method(c.ptr(), "set_point_in", i, c->get_point_in(i));
ur->commit_action();
return EditorPlugin::AFTER_GUI_INPUT_STOP;
} else if (dist_to_p_up < click_dist) {
EditorUndoRedoManager *ur = EditorUndoRedoManager::get_singleton();
ur->create_action(TTR("Reset Point Tilt"));
ur->add_do_method(c.ptr(), "set_point_tilt", i, 0.0f);
ur->add_undo_method(c.ptr(), "set_point_tilt", i, c->get_point_tilt(i));
ur->commit_action();
return EditorPlugin::AFTER_GUI_INPUT_STOP;
}
}
}
@ -497,6 +612,8 @@ void Path3DEditorPlugin::edit(Object *p_object) {
pre->get_curve()->emit_signal(SNAME("changed"));
}
}
update_overlays();
//collision_polygon_editor->edit(Object::cast_to<Node>(p_object));
}

View file

@ -42,11 +42,26 @@ class MenuButton;
class Path3DGizmo : public EditorNode3DGizmo {
GDCLASS(Path3DGizmo, EditorNode3DGizmo);
// Map handle id to control point id and handle type.
enum HandleType {
HANDLE_TYPE_IN,
HANDLE_TYPE_OUT,
HANDLE_TYPE_TILT,
};
struct HandleInfo {
int point_idx; // Index of control point.
HandleType type; // Type of this handle.
};
Path3D *path = nullptr;
mutable Vector3 original;
mutable float orig_in_length;
mutable float orig_out_length;
// Cache information of secondary handles.
Vector<HandleInfo> _secondary_handles_info;
public:
virtual String get_handle_name(int p_id, bool p_secondary) const override;
virtual Variant get_handle_value(int p_id, bool p_secondary) const override;

View file

@ -1551,6 +1551,9 @@ void Curve3D::_bake() const {
baked_cache_dirty = false;
if (points.size() == 0) {
#ifdef TOOLS_ENABLED
points_in_cache.clear();
#endif
baked_point_cache.clear();
baked_tilt_cache.clear();
baked_dist_cache.clear();
@ -1561,6 +1564,11 @@ void Curve3D::_bake() const {
}
if (points.size() == 1) {
#ifdef TOOLS_ENABLED
points_in_cache.resize(1);
points_in_cache.set(0, 0);
#endif
baked_point_cache.resize(1);
baked_point_cache.set(0, points[0].position);
baked_tilt_cache.resize(1);
@ -1584,10 +1592,18 @@ void Curve3D::_bake() const {
{
Vector<RBMap<real_t, Vector3>> midpoints = _tessellate_even_length(10, bake_interval);
#ifdef TOOLS_ENABLED
points_in_cache.resize(points.size());
points_in_cache.set(0, 0);
#endif
int pc = 1;
for (int i = 0; i < points.size() - 1; i++) {
pc++;
pc += midpoints[i].size();
#ifdef TOOLS_ENABLED
points_in_cache.set(i + 1, pc - 1);
#endif
}
baked_point_cache.resize(pc);
@ -1791,6 +1807,22 @@ real_t Curve3D::_sample_baked_tilt(Interval p_interval) const {
return Math::lerp(r[idx], r[idx + 1], frac);
}
// Internal method for getting posture at a baked point. Assuming caller
// make all sanity checks.
Basis Curve3D::_compose_posture(int p_index) const {
Vector3 forward = baked_forward_vector_cache[p_index];
Vector3 up;
if (up_vector_enabled) {
up = baked_up_vector_cache[p_index];
} else {
up = Vector3(0.0, 1.0, 0.0);
}
const Basis frame = Basis::looking_at(forward, up);
return frame;
}
Basis Curve3D::_sample_posture(Interval p_interval, bool p_apply_tilt) const {
// Assuming that p_interval is valid.
ERR_FAIL_INDEX_V_MSG(p_interval.idx, baked_point_cache.size(), Basis(), "Invalid interval");
@ -1801,22 +1833,9 @@ Basis Curve3D::_sample_posture(Interval p_interval, bool p_apply_tilt) const {
int idx = p_interval.idx;
real_t frac = p_interval.frac;
Vector3 forward_begin = baked_forward_vector_cache[idx];
Vector3 forward_end = baked_forward_vector_cache[idx + 1];
Vector3 up_begin;
Vector3 up_end;
if (up_vector_enabled) {
up_begin = baked_up_vector_cache[idx];
up_end = baked_up_vector_cache[idx + 1];
} else {
up_begin = Vector3(0.0, 1.0, 0.0);
up_end = Vector3(0.0, 1.0, 0.0);
}
// Build frames at both ends of the interval, then interpolate.
const Basis frame_begin = Basis::looking_at(forward_begin, up_begin);
const Basis frame_end = Basis::looking_at(forward_end, up_end);
// Get frames at both ends of the interval, then interpolate.
const Basis frame_begin = _compose_posture(idx);
const Basis frame_end = _compose_posture(idx + 1);
const Basis frame = frame_begin.slerp(frame_end, frac).orthonormalized();
if (!p_apply_tilt) {
@ -1825,12 +1844,38 @@ Basis Curve3D::_sample_posture(Interval p_interval, bool p_apply_tilt) const {
// Applying tilt.
const real_t tilt = _sample_baked_tilt(p_interval);
Vector3 forward = frame.get_column(2);
Vector3 tangent = -frame.get_column(2);
const Basis twist(forward, tilt);
const Basis twist(tangent, tilt);
return twist * frame;
}
#ifdef TOOLS_ENABLED
// Get posture at a control point. Needed for Gizmo implementation.
Basis Curve3D::get_point_baked_posture(int p_index, bool p_apply_tilt) const {
if (baked_cache_dirty) {
_bake();
}
// Assuming that p_idx is valid.
ERR_FAIL_INDEX_V_MSG(p_index, points_in_cache.size(), Basis(), "Invalid control point index");
int baked_idx = points_in_cache[p_index];
Basis frame = _compose_posture(baked_idx);
if (!p_apply_tilt) {
return frame;
}
// Applying tilt.
const real_t tilt = points[p_index].tilt;
Vector3 tangent = -frame.get_column(2);
const Basis twist(tangent, tilt);
return twist * frame;
}
#endif
Vector3 Curve3D::sample_baked(real_t p_offset, bool p_cubic) const {
if (baked_cache_dirty) {
_bake();

View file

@ -258,6 +258,10 @@ class Curve3D : public Resource {
};
Vector<Point> points;
#ifdef TOOLS_ENABLED
// For Path3DGizmo.
mutable Vector<size_t> points_in_cache;
#endif
mutable bool baked_cache_dirty = false;
mutable PackedVector3Array baked_point_cache;
@ -280,6 +284,7 @@ class Curve3D : public Resource {
Vector3 _sample_baked(Interval p_interval, bool p_cubic) const;
real_t _sample_baked_tilt(Interval p_interval) const;
Basis _sample_posture(Interval p_interval, bool p_apply_tilt = false) const;
Basis _compose_posture(int p_index) const;
real_t bake_interval = 0.2;
bool up_vector_enabled = true;
@ -302,6 +307,11 @@ protected:
static void _bind_methods();
public:
#ifdef TOOLS_ENABLED
// For Path3DGizmo.
Basis get_point_baked_posture(int p_index, bool p_apply_tilt = false) const;
#endif
int get_point_count() const;
void set_point_count(int p_count);
void add_point(const Vector3 &p_position, const Vector3 &p_in = Vector3(), const Vector3 &p_out = Vector3(), int p_atpos = -1);